J. Austral. Math. Soc. (Series A) 37 (1984), 139-142

ON TRANSLATION-BOUNDED MEASURES

A. P. ROBERTSON and M. L. THORNETT

(Received 20 February 1983)

Communicated by R. L. Tweedie

Abstract

It is shown that a positive measure μ on the Borel subsets of \mathbf{R}^k is translation-bounded if and only if the Fourier transform of the indicator function of every bounded Borel subset of \mathbf{R}^k belongs to $L^2(\mu)$.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 60 G 10; secondary 28 A 33, 42 B 10.

1. Introduction

We shall be considering non-negative measures defined on the class \mathfrak{B} of Borel subsets of \mathbb{R}^k , taking finite values on the subclass \mathfrak{B}_0 of bounded Borel sets; for convenience these will be called *Borel measures*. A Borel measure μ is called *translation-bounded* if, for every $A \in \mathfrak{B}_0$,

$$\sup\{\mu(A+x):x\in\mathbf{R}^k\}<\infty.$$

It is clearly sufficient that this property hold for some A_0 with non-empty interior, for by a compactness argument any other $A \in \mathfrak{B}_0$ can be covered by a finite union of translates of A_0 .

As in [3], we shall use the same notation for a set A and its indicator function; thus A(x) = 1 if $x \in A$ and A(x) = 0 otherwise. For each $A \in \mathcal{B}_0$, its Fourier transform \hat{A} is defined for all $\xi \in \mathbf{R}^k$ by

$$\hat{A}(\xi) = \int_{\mathbf{R}^k} A(x) e^{ix.\xi} dx,$$

where x. ξ denotes the canonical inner product in \mathbf{R}^k .

^{© 1984} Australian Mathematical Society 0263-6115/84 \$A2.00 + 0.00

140

It is shown in [3] that if μ is translation-bounded, then $\hat{A} \in L^2(\mu)$ for every $A \in \mathfrak{B}_0$. The purpose of this note is to prove the converse and thus establish the following result.

THEOREM. A non-negative Borel measure μ on \mathbb{R}^k is translation-bounded if and only if $\hat{A} \in L^2(\mu)$ for every bounded Borel subset A of \mathbb{R}^k .

2. Proof of the theorem

We are given that μ is a non-negative Borel measure, finite on bounded sets, for which $\hat{A} \in L^2(\mu)$ for each $A \in \mathcal{B}_0$.

Take any subset $I \in \mathfrak{B}_0$ with nonempty interior and denote by B(I) the space of bounded Borel-measurable (complex-valued) functions on I, with the supremum norm. The indicator functions of Borel subsets of I form a subset X(I), generating the dense vector subspace S(I) of B(I) consisting of the simple functions on I.

Every function $f \in B(I)$ has a Fourier transform $\hat{f} = T(f)$; the main part of the proof is to show the continuity of T.

LEMMA. Under the hypothesis of the theorem, T is a continuous linear transformation from B(I) to $L^2(\mu)$; that is, there is a constant c such that

$$\int |\hat{f}(\xi)|^2 d\mu \leq c^2 \sup\{|f(x)|^2 \colon x \in I\} \quad \text{for all } f \in B(I).$$

PROOF. Take any compact set K_1 in \mathbb{R}^k and any $g \in L^2(\mu)$. By hypothesis, $\hat{A} \in L^2(\mu)$ for each $A \in X(I)$ and so

$$\nu_1(A) = \int_{K_1} \hat{A} \, \bar{g} \, d\mu$$

is defined in X(I). In fact, ν_1 is a (complex-valued) measure on the Borel subsets of I. For ν_1 is clearly finitely additive. Also, if (A_n) is a sequence decreasing to the empty set, then

$$|\nu_{1}(A_{n})|^{2} \leq \int_{K_{1}} |\hat{A}_{n}|^{2} d\mu \int_{K_{1}} |\bar{g}|^{2} d\mu \leq ||g||_{2}^{2} \mu(K_{1}) (\lambda(A_{n}))^{2},$$

where λ denotes Lebesgue measure in \mathbb{R}^k . So $\nu_1(A_n) \to 0$ as $n \to \infty$ and therefore ν_1 is countably additive.

Now take a sequence of compact sets K_n increasing to \mathbb{R}^k and let ν_n be the corresponding measures. For each $A \in X(I)$,

$$\lim_{n\to\infty}\nu_n(A)=\lim_{n\to\infty}\int_{K_n}\hat{A}\bar{g}\,d\mu=\int_{\mathbf{R}^k}\hat{A}\bar{g}\,d\mu=\nu(A)$$

exists by hypothesis. Hence, by the theorem of Nikodým ([1] page 160, [2]) ν is a measure, which is therefore bounded on the Borel subsets of *I*. This shows that the set of \hat{A} with $A \in X(I)$ is weakly bounded in $L^2(\mu)$ and hence, by the uniform boundedness theorem, it is norm-bounded:

$$\sup\{\|\hat{A}\|_2: A \in X(I)\} < \infty.$$

Now, since every $f \in S(I)$ with $0 \le f(x) \le 1$ on I is a convex combination of elements of X(I), $\{\hat{f}: f \in S(I)\}$ is also norm-bounded in $L^2(\mu)$. Hence there is a constant c such that

$$\|\tilde{f}\|_2 \le c \|f\|_{\infty} \quad \text{for all } f \in S(I).$$

Finally, any $f \in B(I)$ is the uniform limit of a sequence (f_n) of functions of S(I). By the continuity of T on S(I), (\hat{f}_n) converges in $L^2(\mu)$, but also (\hat{f}_n) converges to \hat{f} pointwise on \mathbb{R}^k . So

$$\|\widehat{f}\|_{2} = \lim_{n \to \infty} \|\widehat{f}_{n}\|_{2} \leq \lim_{n \to \infty} c \|f_{n}\|_{\infty} = c \|f\|_{\infty},$$

and the lemma is proved.

The proof of the theorem can now be completed. Since \hat{I} is continuous and not identically zero, there is an open set D on which \hat{I} is bounded away from zero; say $|\hat{I}(\xi)| \ge h > 0$ for $\xi \in D$. For any ζ , let $f(x) = I(x)e^{-ix\cdot\zeta}$. Then

$$|\hat{f}(\xi)| = |\hat{I}(\xi - \zeta)| \ge h \quad \text{for } \xi \in D + \zeta.$$

So $h^2 \mu (D + \zeta) = \int_{D+\zeta} h^2 d\mu \le \int |\hat{f}|^2 d\mu \le c^2 \sup_I |f|^2 = c^2$, whence
 $\sup \{ \mu (D + \zeta) : \zeta \in \mathbf{R}^k \} \le \frac{c^2}{h^2}$

and μ is translation-bounded.

3. Comment

The paper [3] was concerned with a class of measures μ on \mathbb{R}^k which satisfy the properties

(i) $\hat{A} \in L^2(\mu)$ for all $A \in \mathfrak{B}_0$, and

(ii) if (A_n) is a decreasing sequence of sets of \mathfrak{B}_0 with empty intersection, then $\hat{A}_n \to 0$ in $L^2(\mu)$,

and it was there shown that translation-bounded measures have both these properties. Thus it follows as a corollary to the theorem that (i) implies (ii) for Borel measures μ .

Acknowledgement

We thank Wendy Robertson for her help and encouragement in the preparation of this paper.

References

- [1] N. Dunford and J. T. Schwartz, *Linear operators*, part I: *General theory* (Interscience, New York, 1958).
- [2] A. P. Robertson, 'Unconditional convergence and the Vitali-Hahn-Saks theorem', *Colloque* Anal. Function. [1971, Bordeaux] Bull. Soc. Math. France, Mémoire 31-32 (1972), 335-341.
- [3] M. L. Thornett, 'A class of second-order stationary random measures', *Stochastic Processes* Appl. 8 (1979), 323-334.

Murdoch University Murdoch, W.A. 6150 Australia University of Western Australia Nedlands, W.A. 6009 Australia

[4]