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Riemannian metrics of regularity below C2. These are, on the one hand, the
synthetic definition via weak displacement convexity of entropy functionals in the
framework of optimal transport, and the distributional one based on non-negativity
of the Ricci-tensor in the sense of Schwartz. It turns out that distributional bounds
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C1,1-metrics under an additional convergence condition on regularizations of the
metric.
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1. Introduction

Applications of the theory of optimal transport to Riemannian geometry have had a
transformative influence on the field and have led to far-reaching generalizations of
classical notions of curvature. In particular, lower Ricci-curvature bounds have been
re-cast into convexity conditions on certain entropy functionals, which make sense
in settings that go far beyond the original field of Riemannian geometry. Indeed,
such curvature (or curvature-dimension) conditions in the sense of Lott–Villani and
Sturm can be formulated in general metric measure spaces, where no differentiable
structure is available a priori (cf. [28, 38, 39], as well as the introductory texts
[2, 40]). For Riemannian metrics of regularity C2, these synthetic formulations of
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lower Ricci curvature bounds are known to be equivalent to the classical (pointwise)
estimates ([9, 41], see also [40]).

In particular, synthetic Ricci curvature bounds can be imposed on Riemannian
metrics whose regularity lies strictly below C2. On the other hand, for such metrics,
there is another, more analytic, way of making sense of curvature bounds, namely
by calculating the curvature quantities directly in the space of Schwartz distribu-
tions and then imposing distributional inequalities as curvature bounds. Also this
approach reduces to the classical pointwise estimates as soon as the regularity of
the metric is at least C2. Especially in physics, be it in classical electrodynamics,
general relativity or quantum field theory, this analytic approach is widely used to
model singular sources or fields or to describe matched spacetimes (cf., e.g. [4, 37]
and references therein). In recent years, distributional Ricci bounds (in the shape
of strong energy conditions) have also featured prominently in the generalization of
the classical singularity theorems of Penrose and Hawking to spacetime metrics of
regularity below C2 ([14, 15, 20, 24, 25]). On the synthetic side, a generalization
of Hawking’s singularity theorem to Lorentzian synthetic spaces was established by
Cavalletti and Mondino in [6].

A natural question arising in this context is whether the synthetic and the dis-
tributional approach to lower Ricci curvature bounds continue to agree for metrics
of regularity strictly below C2. We analyse this problem for Riemannian metrics
of class C1 and C1,1 on compact manifolds, comparing distributional Ricci bounds
with ∞-Ricci bounds in the sense of Lott–Villani ([28, 38, 39]). Our main results
are that, on the one hand, distributional lower Ricci bounds imply lower ∞-Ricci
bounds for C1-metrics (theorem 5.4), and that, conversely, lower ∞-Ricci bounds
on a C1,1-Riemannian metric imply the corresponding distributional bounds under
an additional convergence condition on regularizations of the metric (theorem 6.4).

Technically, our approach rests on a characterization of distributional curvature
bounds via regularization (theorem 4.3), and on a refined study of properties of the
exponential map of a C1,1-metric due to Minguzzi ([31]). The latter in particular
makes it possible to directly generalize a number of essential properties of optimal
transport on Riemannian manifolds (as laid out in McCann’s fundamental work
[30]) from the regularity class C2 to C1,1. This is the content of § 2. In § 3 we give
a brief overview of distributional Riemannian geometry and curvature bounds in
this setting. The regularization results we require are derived in § 4. The remaining
§ 5 and 6 are devoted to proving the main results stated above.

2. Fundamentals of optimal transport for C1,1-metrics

In this section, we closely follow the fundamental paper [30] and show that its
results carry over unchanged from Riemannian metrics of regularity C2 to those of
class C1,1. Let M be a compact connected Riemannian manifold without boundary.
We shall assume M to be C∞-smooth, but all results derived below hold for C2,1-
manifolds as well. Indeed, by [19, Th. 2.9], for any Ck-manifold (k � 1), there exists
a unique Ck-compatible C∞-atlas on M . We are studying the Monge problem for
probability measures μ, ν on M with cost function c(x, y) = d2(x, y)/2, where d is
the Riemannian distance on M . Thus, we are looking for a map S : M →M that
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minimizes the transportation cost

C(S) =
∫

M

c(x, S(x)) dμ(x) (2.1)

among all Borel maps S that push forward μ to ν, S#μ = ν, and we call the set of
these maps S(μ, ν). For any ψ : M → R ∪ {±∞}, we define its infimal convolution
by

ψc(y) := inf
x∈M

(
c(x, y) − ψ(x)

)
.

The dual Kantorovich problem consists in finding (ψ, φ) maximizing

J(ψ, φ) =
∫

M

ψ(x) dμ(x) +
∫

M

φ(y) dν(y) (2.2)

over the set Lipc := {(u, v) | u, v : M → R continuous, ∀(x, y) : u(x) + v(y) �
c(x, y)}.

As a preparation for the following results, we collect some general properties of
the exponential map and the distance function of a C1,1-Riemannian metric. By
[31, Th. 4] (or also [22, Th. 4.1]), any x ∈M possesses a convex normal neigh-
bourhood U (called a totally normal neighbourhood in [22]). This means that for
any y ∈ U , U is a normal neighbourhood of y, i.e. expy is a bi-Lipschitz homeomor-
phism from a star-shaped open neighbourhood of 0 in TyM onto U . In particular,
Rademacher’s theorem (cf. [30, Lem. 4] for the version we use here) implies that
exp−1

y is differentiable almost everywhere on its domain, as is expy. By [31, Th. 6],
the unique shortest absolutely continuous curve σ in M from y ∈ U to x is (has a
reparametrization as) the radial geodesic σ : [0, 1] →M , σ(t) = expy(t · exp−1

y x).
In particular, for the Riemannian distance of x and y, we obtain

d(x, y) = | exp−1
y x|y. (2.3)

Covering a minimizing curve between points that are not necessarily contained in a
common convex normal neighbourhood by such neighbourhoods and applying the
above, we conclude that also in this case the curve has a reparametrization as an
unbroken geodesic, hence in particular of regularity C2,1 (as follows directly from
the geodesic equation).

Furthermore, for any x ∈M , v �→ expx v is strongly differentiable (in the sense
of Peano, cf. [31, Def. 2]) at v = 0 with strong differential T0 expx = idTxM ([31,
Th. 3 and Sec. 2.3]). By Leach’s inverse function theorem (cf. [31, Th. 2]), also
z �→ exp−1

x (z) is strongly differentiable at z = x with strong differential idTxM . In
particular, the corresponding statements with standard differentials are valid as
well. Also the Gauss lemma holds at every point x ∈ U where expy is differentiable
([31, Th. 5]): for such x, v1 := exp−1

y (x) and any v2 ∈ TyM ∼= Tv1(TyM) we have:

g(Tv1 expy(v1), Tv1 expy(v2)) = g(v1, v2).

Finally, it is proved in ([31, Th. 5]) that the map D2
y := x �→ g(exp−1

y x, exp−1
y x)

is of differentiability class C1,1 on U , with tangent map

TxD
2
y = 2g(σ̇(1), .), (2.4)
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where σ(t) = expy(t · exp−1
y x) is as above, and (y, x) �→ P (y, x) := σ̇(1) is the

position vector field of x with respect to y.
Based on these results, we can now extend the validity of [30, Prop. 6] to

Riemannian metrics g ∈ C1,1:

Proposition 2.1. Let (M, g) be a C1,1-Riemannian manifold (with or without
boundary). Let y ∈M and set φ : M → R, φ(x) := d2(x, y)/2. Then:

(i) There exists a neighbourhood U of y such that φ is differentiable at every
point in U .

(ii) For each x ∈M , if there exists a distance-realizing absolutely continuous
curve σ from y to x, then σ can be parametrized as a geodesic σ : [0, 1] →M
and φ has supergradient σ̇(1) ∈ ∂̄φx at x.

Proof. (i) Pick a convex normal neighbourhood U ⊆M of y. Then for any x ∈ U , by
(2.3) we have φ(x) = 1

2D
2
y(x), so (2.4) gives ∇φ(x) = σ̇(1). Using d(x, y) =

√
2φ(x),

we conclude that ∇xd(x, y) = σ̇(1)/|σ̇(1)|x for x �= y.
(ii) This now follows exactly as in [30, Prop. 6]. For the reader’s convenience, we

include the argument. Suppose that y does not lie in a convex normal neighbourhood
U around x and let σ be a minimizing a.c. curve from y to x. By what was said
above, σ possesses a parametrization as an unbroken geodesic [0, 1] →M with
y = σ(0) and x = σ(1). Pick z �= x on σ such that z ∈ U . Then (i) gives ∇xd(x, z) =
σ̇(1)/|σ̇(1)|x. Since T0 expx = idTxM , for any v ∈ TxM we have

T0(v �→ d(expx v, z)) = g(σ̇(1), . )/|σ̇(1)|x,

which combined with the triangle inequality and the fact that z lies on σ leads to

d(y, expx v) � d(y, z) + d(z, x) + g(σ̇(1), v)/|σ̇(1)|x + o(|v|x)

= d(y, x) + g(σ̇(1), v)/|σ̇(1)|x + o(|v|x).

This shows that d(y, . ) =
√

2φ is superdifferentiable at x and the chain rule [30,
Lem. 5] finally gives σ̇(1) ∈ ∂̄φx, as claimed. �

Proposition 2.1 is the key to transferring all further results from [30, Sec. 3] to
C1,1-metrics. We begin with [30, Lem. 7]:

Lemma 2.2. Let M be a connected closed Riemannian manifold with g ∈ C1,1 and
let ψ : M → R, ψ = ψcc. Then c(x, y) − ψ(x) − ψc(y) � 0 for all x, y ∈M, and if
ψ is differentiable in x then equality holds if and only if y = expx(−∇ψ(x)).

Proof. This follows exactly as in [30, Lem. 7], only noting that the Hopf–Rinow
theorem remains true in this regularity (indeed even for g ∈ C0, cf. [5, 2.5.28]) and
the fact that minimizers are geodesics, hence C2,1 by what was said above. �

Note that any ψ as in the previous lemma is Lipschitz continuous, hence differ-
entiable a.e. by [30, Lem. 2]. Based on the above results, the proofs of theorems 8
and 9 in [30] carry over verbatim to the current situation to give:
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Theorem 2.3. Let M be a connected closed manifold with a C1,1-Riemannian met-
ric g and let μ, ν be Borel probability measures on M with μ volg. Also, let
c(x, y) = d(x, y)2/2. Then:

(i) (Uniqueness) If ψ : M → R satisfies ψ = ψcc, then T : x �→ expx(−∇ψ(x))
minimizes (2.1) among all Borel maps S with S#μ = T#μ. Any other such
map must equal T μ-almost everywhere.

(ii) (Existence) There exists a potential ψ : M → R with ψ = ψcc such that
T : x �→ expx(−∇ψ(x)) satisfies T#μ = ν. Any other potential that pushes
μ forward to ν gives rise to the same map T , up to a set of μ-measure 0.

By Kantorovich duality ([40, Th. 5.10]), it follows that for ψ and T as in theorem
2.3, we have

J(ψ,ψc) =
∫

M

ψ(x) dμ(x) +
∫

M

ψc(y) dν(y) = sup
(u,v)∈Lipc

J(u, v)

= min
S∈S(μ,ν)

∫
M

c(x, S(x)) dμ(x) =
∫

M

c(x, T (x)) dμ(x)

= min
π∈Π(μ,ν)

∫
M×M

c(x, y) dπ(x, y),

where Π(μ, ν) denotes the set of all couplings between μ and ν.
We note that also invertibility of T ([30, Cor. 10]) and polar factorization of

maps ([30, Th. 11]) carry over unchanged to C1,1-metrics.

3. Distributional curvature quantities

In order to lay out the distributional approach to curvature bounds for metrics of
low regularity within a consistent framework, we are going to employ the theory of
distributional connections due to LeFloch and Mardare ([27], cf. also [17, 29, 36]),
which we briefly summarize below.

For k ∈ N0 ∪ {∞}, let Vol(M) denote the volume bundle over M , and
Γk

c (M, Vol(M)) the space of compactly supported Ck one-densities on M (i.e. sec-
tions of Vol(M)) that are k times continuously differentiable. Then the space of
distributions of order k on M is the topological dual of Γk

c (M, Vol(M)) (cf. [17,
Sec. 3.1]):

D′(k)(M) := Γk
c (M,Vol(M))′.

For k = ∞, we will omit superscript (k). There are topological embeddings
D′(k)(M) ↪→ D′(k+1)(M) ↪→ D′(M) for all k. The space of distributional (r, s)-
tensor fields of order k is defined as

D′(k)T r
s (M) ≡ D′(k)(M,T r

sM) := Γk
c (M,T s

r (M) ⊗ Vol(M))′.

Furthermore (cf. [17, 3.1.15]), denoting by X(M) the space of smooth vector fields
on M and by Ω1(M) that of smooth one-forms,

D′T r
s (M) ∼= D′(M) ⊗C∞(M) T r

s (M) ∼= LC∞(M)(Ω1(M)r × X(M)s;D′(M)), (3.1)
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and in fact these isomorphisms hold in the bornological sense ([32]). Analogous iso-
morphisms hold in finite differentiability classes: For the Ck(M)-module ΓCk(M, F )
(1 � k � ∞), we have:

D′(k)T r
s (M) ∼= D′(k)(M) ⊗Ck(M) (T r

s )Ck(M)

∼= LCk(M)(Ω
1
Ck(M)r × XCk(M)s;D′(k)(M)).

(3.2)

The space of smooth tensor fields is continuously and densely embedded via

T r
s (M) ↪→ D′(k)T r

s (M)

t �→
[
(θ1, . . . , θr,X1, . . . , Xs) �→

[
ω �→

∫
M

t(θ1, . . . , θr,X1, . . . , Xs)ω
]]
,

where ω is a one-density. We note that the dense embedding of T r
s (M) in

D′(k)T r
s (M) already fixes the form of all the operations on distributional tensor

fields to be introduced below since we want to have compatibility with smooth
Riemannian geometry.

Any t ∈ T r
s (M) possesses a unique extension to a map that acts on distributions

in one of its arguments: if θ̃1 ∈ D′T 0
1 (M), then since t( . , θ2, . . . , Xs) ∈ X(M), we

may set

t(θ̃1, θ2, . . . , Xs) := θ̃1(t( . , θ2, . . . , Xs)) ∈ D′(M), (3.3)

and analogously for the other arguments.

Definition 3.1. A distributional connection is a map

∇ : X(M) × X(M) → D′T 1
0 (M)

such that for X, X ′, Y, Y ′ ∈ X(M) and f ∈ C∞(M) the usual computational rules
hold: ∇fX+X′Y = f∇XY + ∇X′Y , ∇X(Y + Y ′) = ∇XY + ∇XY

′, ∇X(fY ) =
X(f)Y + f∇XY . It is called an L2

loc-connection, ∇ ∈ L2
loc, if ∇XY is an L2

loc-vector
field for any X, Y ∈ X(M) (cf. [27, Sec. 3]).

More generally, denoting by G any of the spaces Ck (0 � k) or Lp
loc (1 � p), we

call a distributional connection a G-connection if ∇XY is a G-vector field for any
X, Y ∈ X(M). L2

loc-connections play a distinguished role in this hierarchy since
they form the largest class for which there is a stable definition of the curvature
tensor in distributions, cf. [12, 27, 36].

Any L2
loc-connection can be extended to a map ∇ : X(M) × XL2

loc
(M) →

D′T 1
0 (M) by setting

(∇XY )(θ) := X(θ(Y )) − Y (∇Xθ) (X ∈ X(M), Y ∈ XL2
loc

(M), θ ∈ Ω1(M)).
(3.4)

Based on this extension, we can assign a Riemann tensor to each L2
loc-connection

as follows ([27, Def. 3.3]):
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Definition 3.2. The distributional Riemann tensor of an L2
loc-connection ∇ is the

map R : X(M)3 → D′T 1
0 (M),

R(X,Y,Z)(θ) := (∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z)(θ)

for X, Y, Z ∈ X(M) and θ ∈ Ω1(M),

If Fi is a smooth local frame in X(U) and F j ∈ Ω1(U) its dual frame (i.e.
F j(Fi) = δj

i ), then the Ricci tensor corresponding to ∇ is given by (using the
Einstein summation convention)

Ric(X,Y ) := (R(X,Fi)Y )(F i) ∈ D′(U) (X,Y ∈ X(U)), (3.5)

and is readily seen not to depend on the choice of local frame.
A distributional Riemannian metric on M ([17, 27, 29]) is an element of

D′T 0
2 (M) that is symmetric and non-degenerate in the sense that g(X, Y ) = 0

for all Y ∈ X(M) implies X = 0. In particular, any C1-Riemannian metric is an
example of a distributional metric in this sense. With a view to defining a met-
ric connection in this generality, recall first the Koszul formula which uniquely
determines the Levi–Civita connection of a smooth metric g on M (cf. [33, Ch. 3]):

2g(∇XY,Z) = X(g(Y,Z)) + Y (g(Z,X)) − Z(g(X,Y ))

− g(X, [Y,Z]) + g(Y, [Z,X]) + g(Z, [X,Y ]) =: F (X,Y,Z).
(3.6)

For a distributional metric g, we may use the right-hand side of (3.6) to define a
bilinear map X(M) × X(M) → D′T 0

1 (M),

∇�
XY := Z �→ 1

2
F (X,Y,Z) ∈ D′T 0

1 (M), (3.7)

called the distributional Levi–Civita connection of g ([27, Def. 4.2]). Note, however,
that this is not (yet) a distributional connection in the sense of definition 3.1 since
it is of order (0, 1) instead of (1, 0). In addition to the standard product rules, it
also satisfies (the analogues of properties (D4) and (D5) in [33, Th. 3.11])

∇�
XY −∇�

Y X = [X,Y ]�, i.e. (∇�
XY −∇�

Y X)(Z) = g([X,Y ], Z)

X(g(Y,Z)) = (∇�
XY )(Z) + (∇�

XZ)(Y )
(3.8)

for all X, Y, Z ∈ X(M).
In order to obtain an L2

loc-connection from ∇� (which then will allow us to define
the curvature tensors via definition 3.2), we want to raise the index via g, i.e.

g(∇XY,Z) := (∇�
XY )(Z) (X,Y,Z ∈ X(M)). (3.9)

To be able to do this, we need to restrict to metrics of higher regularity. It
turns out that the Geroch–Traschen class of metrics is a reasonable family of
metrics where this strategy can be implemented. This class consists of met-
rics in H1

loc(M) ∩ L∞
loc(M) that are uniformly non-degenerate in the sense that

|det g(Fi, Fj)| is locally bounded away from zero for any local frame Fi, see [27,
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Prop. 4.4]. For such metrics, hence in particular for any C1-Riemannian metric,
(3.9) defines an L2

loc-connection in the sense of definition 3.1, which therefore has
well-defined distributional curvature tensors.

Let us analyse the case of a C1-Riemannian metric in more detail, as it will be the
most relevant setting in this paper. For such a g and X, Y ∈ X(M), ∇XY is in fact
a continuous vector field, so ∇ is a C0-connection, implying that (R(X, Y )Z)(θ) ∈
D′(1)(M). Consequently, R ∈ D′(1)T 1

3 (M).
Given W, X, Y, Z ∈ X(M), we then define R(W, X, Y, Z) ∈ D′(1) by

R(W,X, Y, Z) := X(g(W,∇Y Z)) − Y (g(W,∇XZ))

− g(∇XW,∇Y Z) + g(∇Y W,∇XZ) − g(W,∇[X,Y ]Z).

Then using (3.3), (3.4) and (3.8), it follows that (cf. [27, Rem. 4.5])

R(W,Z,X, Y ) = g(W,R(X,Y )Z).

This identity can also be verified using local coordinates since there is a well-defined
multiplication of distributions of first order with C1-functions.

The Ricci tensor of a C1-Riemannian metric g is given by (3.5), and will be
denoted by Ricg or Ric(g). Alternatively, it can be calculated in terms of g-
orthonormal frames (which are only C1): Note that (3.4) remains valid even when
Y and θ are only C1, so (∇X(∇Y Z))(θ) ∈ D′(1)(M) (X ∈ X(M)). Given a smooth
local frame Fi with dual frame F j , by (3.5) we have Ric(X, Y ) = (R(X, Fi)Y )(F i).
If now Ei ∈ XC1(U) is a local g-orthonormal frame, g(Ei, Ej) = δij and we set
Ei := g(Ei, . ) ∈ Ω1

C1(U). Expressing F i, Fi as C1-linear combinations of Ei, Ei,
then by what was said above, we may calculate as in the smooth case to arrive at

Ric(X,Y ) =
∑

i

g(Ei, R(Ei,X)Y ),

where the scalar product is now between the C1-vector field Ei and the D′(1)-
vector field R(Ei, X)Y . Finally, again by the above observations, the standard
local formulae hold in D′(1):

Rm
ijk = ∂jΓm

ik − ∂kΓm
ij + Γm

jsΓ
s
ik − Γm

ksΓ
s
ij

Ricij = Rm
imj .

(3.10)

Turning now to Ricci curvature bounds, recall ([35, Ch. I, §4]) that a distribution
T ∈ D′(U) (U ⊆ R

n open) is called non-negative, T � 0, if T (ϕ) ≡ 〈T, ϕ〉 � 0 for
each test function ϕ � 0. In the manifold context, we therefore call T ∈ D′(M)
non-negative if T (ω) ≡ 〈T, ω〉 � 0 for any compactly supported non-negative one-
density ω. Any such distribution is in fact of order 0, hence is a measure on M .
For S, T ∈ D′(M) we say that S � T if S − T � 0. Following [14, Def. 3.3], we say
that a C1-Riemannian metric g satisfies Ric � K for some K ∈ R if

Ric(X,X) � Kg(X,X) ∀X ∈ X(M), (3.11)

where the inequality is in D′(1)(M) ⊂ D′(M), as explained above. Upper bounds
are defined analogously.
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In our analysis of distributional curvature bounds, a main tool will be regulariza-
tion via convolution. To accomodate the manifold setting, we employ a construction
from [17, 3.2.10], [23, Sec. 2], [14, Sec. 3.3]). Let ρ ∈ D(B1(0)) (with B1(0) the unit
ball in R

n),
∫
ρ = 1, ρ � 0 and, for ε ∈ (0, 1], set ρε(x) := ε−nρ(x

ε ). Pick a count-
able and locally finite family of relatively compact chart neighbourhoods (Ui, ψi)
(i ∈ N), as well as a subordinate partition of unity (ζi)i with supp(ζi) � Ui for
all i. Moreover, choose a family of cut-off functions χi ∈ D(Ui) with χi ≡ 1 on
a neighbourhood of supp(ζi). Denote by f∗ (respectively f∗) the push-forward
(resp. pull-back) of a distribution under a diffeomorphism f , and set, for any
T ∈ D′T r

s (M),

T �M ρε(x) :=
∑

i

χi(x)ψ∗
i

((
ψi∗(ζi · T )

)
∗ ρε

)
(x), (3.12)

where the convolution of tensor fields on open subsets of R
n is to be under-

stood component-wise. Due to the presence of the cut-off functions χi, the map
(ε, x) �→ T �M ρε(x) is smooth on (0, 1] ×M . Note that, for any compact set
K � M , there exists an εK such that for all ε < εK and all x ∈ K (3.12) is in
fact a finite sum with all χi ≡ 1. More precisely, this is the case whenever εK is less
than the distance between the support of ζi ◦ ψ−1

i and the boundary of ψi(Ui) for
all i with Ui ∩K �= ∅.

This ‘manifold convolution’ has smoothing properties that are closely analogous
to those of convolution with a mollifier on open subsets of R

n. In particular, for
T ∈ D′T r

s (M) we have

T �M ρε → T in D′T r
s (M) (ε→ 0), (3.13)

and indeed this convergence is even in Ck
loc or W k,p

loc if T is contained in these spaces
([14, Prop. 3.5]). Note that since ρ � 0, �M preserves non-negativity:

T ∈ D′(M), T � 0 ⇒ T �M ρε � 0 in C∞(M). (3.14)

If M is compact and g is a Riemannian metric of regularity at least C0, then
since gε := g �M ρε → g uniformly on M , gε is a smooth Riemannian metric on M
for ε sufficiently small (which we shall always tacitly assume below).

4. Distributional curvature bounds via regularization

Let M be a compact manifold equipped with a distributional Riemannian metric
g. As in § 3, we fix a non-negative mollifier ρ ∈ D(B1(0)) with

∫
ρ = 1 and set

gε := g �M ρε. To begin with, we analyse the relationship between distributional
Ricci bounds for g and classical (pointwise) Ricci bounds for the approximating
smooth Riemannian metrics gε. The key to this analysis are certain versions of
Friedrichs’ lemma, which provide improved convergence properties of commutators
between differentiation and convolution operators. These turned out to be essential
for generalizing classical singularity theorems in Lorentzian geometry to metrics of
lower regularity ([14, 15, 20, 24, 25]). The versions we shall rely on here are the
following (see [14, Lem. 4.8, 4.9]):
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Lemma 4.1. (i) Let a ∈ C1(Rn), f ∈ C0(Rn). Then (a ∗ ρε)(f ∗ ρε) − (af) ∗
ρε → 0 in C1(K) for any compact set K ⊆ R

n.

(ii) Let a, aε ∈ C1(Rn) such that aε → a in C1 and such that for each K compact
in R

n there exists some cK such that ‖a− aε‖∞,K � cKε. Then for any f ∈
C0(Rn) we have aε(f ∗ ρε) − (af) ∗ ρε → 0 in C1(K) for any compact set
K ⊆ R

n.

Based on this, we can collect the following commutator properties. Note that the
convergence claimed in points (i)–(iii) of proposition 4.2 is, in each case, one order
of differentiation better than one would expect from the limiting properties of the
individual terms.

Proposition 4.2. Let g be a C1-Riemannian metric on M , gε := g �M ρε, and let
X, Y ∈ X(M). Then

(i) Ric(g �M ρε) − Ric(g) �M ρε → 0 in C0(M, T 0
2M) as ε→ 0.

(ii) Ricg(X, Y ) �M ρε − Ricgε
(X, Y ) → 0 in C0(M) as ε→ 0.

(iii) g(X, Y ) �M ρε − gε(X, Y ) → 0 in C2(M) as ε→ 0.

Proof. (i) This is shown in (the proof of) [14, Lem. 4.6], so we only outline the
argument briefly. Let (ϕ, U) be any local chart on M . Then writing out the local
expressions for Ric(g �M ρε) and Ric(g) �M ρε, it follows that it suffices to show
that, setting h := ϕ∗g, hε := ϕ∗gε:

hij
ε ((ζ∂khlm) ∗ ρε) − (hijζ∂khlm) ∗ ρε → 0 (ε→ 0)

in C1 for any compactly supported smooth function ζ and all i, j, k, l, m. This in
turn follows from lemma 4.1 (ii), together with [14, (4.4)], which shows that g−1

ε

converges to g−1 at least at a linear rate in ε.
(ii) Writing Rε for a component function of a chart representation of Ric(g �M ρε)

and R for the corresponding one of Ric(g), the claim reduces to showing that, for
any smooth function h we have that (R · h) ∗ ρε −Rε · h→ 0 in C0. Due to (i), this
in turn will follow if we can show that

(R · h) ∗ ρε − (R ∗ ρε) · h→ 0 (4.1)

in C0. Here, R is a distribution of order one, hence can locally be written as a
derivative of a continuous function, which we schematically write as R = ∂f , with
f continuous. By lemma 4.1 (ii), (f ∗ ρε) · h− (fh) ∗ ρε → 0 in C1, so

(∂f ∗ ρε) · h+ (f ∗ ρε)∂h− (∂f · h) ∗ ρε − (f∂h) ∗ ρε → 0

in C0. Here, (f ∗ ρε)∂h− (f∂h) ∗ ρε → 0 in C0, and the remaining terms give the
claim (4.1).

(iii) Via chart representations, and schematically writing g also for the local
components of the metric g, as well as ∂g for any first-order derivative, the claim

https://doi.org/10.1017/prm.2023.70 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.70


Synthetic versus distributional lower Ricci curvature bounds 11

reduces to showing that, for h ∈ C∞, we have (∂g · h) ∗ ρε − (∂g ∗ ρε) · h→ 0 in
C1. Setting f := ∂g ∈ C0,

(f · h) ∗ ρε − (f ∗ ρε) · h = (f · h) ∗ ρε − (f ∗ ρε)(h ∗ ρε) + (f ∗ ρε)(h ∗ ρε)

− (f ∗ ρε) · h.

By [14, (3.7)], ‖h− h ∗ ρε‖∞,K � cKε for any compact set K, and the same is true
when replacing h by ∂h here. From this, convergence of the difference of the first
two terms to 0 in C1 is immediate from lemma 4.1 (ii). Finally, convergence to 0 in
C1 of the remaining difference follows by taking into account [14, Lem. 4.7]. �

Theorem 4.3. Let K ∈ R. Then for any C1-Riemannian metric g on a compact
manifold M , the following are equivalent:

(i) Ricg � K (resp. Ricg � K) in the sense of distributions (see (3.11)).

(ii) For each δ > 0 there exists some ε0 > 0 such that Ricgε
� K − δ (resp.

Ricgε
� K + δ) for all ε ∈ (0, ε0).

Proof. It will suffice to prove the case of lower bounds.
(ii)⇒(i): Fix X ∈ X(M). Setting δ := 1

k , by (ii) and proposition 4.2 (iii), we
can pick εk ↘ 0 such that (with Ricε := Ricgε

) Ricεk
(X, X) � (K − 1

k )g(X, X) �M

ρεk
. Then combining proposition 4.2 (ii) with the fact that Ricg(X, X) �M ρε →

Ricg(X, X) in D′(M), it follows that
∫

M
Ricεk

(X, X)ω → 〈Ricg(X, X), ω〉 for any
ω ∈ Γc(M, Vol(M)). If ω � 0, then

∫
M

Ricεk
(X,X) · ω �

(
K − 1

k

) ∫
M

(g(X,X) �M ρεk
) · ω.

Letting k → ∞ shows that 〈Ricg(X, X) −Kg(X, X), ω〉 � 0, as claimed.
(i)⇒(ii): We may without loss of generality assume that M possesses a global g-

orthonormal frame X1, . . . , Xn ∈ X(M) (otherwise cover M by finitely many chart
domains and argue separately). Due to proposition 4.2 (ii), given δ > 0, there exists
some ε1 > 0 such that for ε ∈ (0, ε1) we have

∣∣∣
n∑

i,j=1

λiλj(Ricgε
(Xi,Xj) − Ricg(Xi,Xj) �M ρε)|x

∣∣∣ < δ/3, (4.2)

for all x ∈M and all (λ1, . . . , λn) ∈ R
n with

∑
i λ

2
i = 1. Since the λi are indepen-

dent of x, by definition of �M (see (3.12)), we may interchange
∑
λi and �M here.

Thus, setting V :=
∑

i λiXi, (4.2) means that

|Ricgε
(V, V ) − Ricg(V, V ) �M ρε)|x| < δ/3, (4.3)

for any x ∈M and any (λ1, . . . , λn) ∈ R
n as above. Analogously, it follows from

proposition 4.2 (iii) that there exists some 0 < ε0 � ε1 such that for any ε ∈ (0, ε0)
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12 M. Kunzinger, M. Oberguggenberger and J. A. Vickers

and for any such choice of vector field V , we have

|K||g(V, V ) �M ρε − gε(V, V )| < δ/3

uniformly on M . By assumption, Ricg(V, V ) −Kg(V, V ) � 0 in D′(M), hence
(3.14) implies that Ricg(V, V ) �M ρε −Kg(V, V ) �M ρε � 0. Consequently,

Ricgε
(V, V ) −Kgε(V, V ) > −2δ/3 = (−2δ/3)g(V, V ). (4.4)

This same inequality then holds for each individual g-unit vector V in any TxM .
Finally, since gε → g uniformly on the g-unit tangent bundle, by making ε0 smaller
once more we may replace (−2δ/3)g(V, V ) by −δgε(V, V ) on the right-hand side
of (4.4), thereby concluding the proof. �

Remark 4.4. The arguments used to prove proposition 4.2 and theorem 4.3 in fact
do not depend on the particular form of the Ricci tensor. Analogous characteriza-
tions of distributional curvature bounds via regularizations therefore also hold for
other curvature quantities, in particular for sectional curvature bounds.

5. From distributional to synthetic lower Ricci bounds

In this section, we show that if M is a compact manifold with a C1-Riemannian
metric that has K ∈ R as a lower distributional Ricci curvature bound, then the
associated metric measure space satisfies the corresponding bound on its ∞-Ricci
curvature in the sense of [28]. Let us first recall the basic notions and definitions,
following [28, 40]. For any Polish space (X, d) and probability measures μ, ν ∈
P (X) denote by W2(μ, ν) the Wasserstein distance of order 2 between μ and ν (cf.
[40, Def. 6.1]), i.e.

W2(μ, ν) :=
(

inf
π∈Π(μ,ν)

∫
X

d(x, y)2 dπ(x, y)
) 1

2

.

The space of probability measures μ such that
∫

X
d(x0, x)2 dμ(x) <∞ for some

(hence any) x0 ∈ X, equipped with the metric W2, is called the Wasserstein space
of order 2, and is denoted by P2(X). We will henceforth always assume that X
is compact. In the case we are mainly interested in, X = M will be a compact
Riemannian manifold. We then write P ac

2 (X) for the subspace of P2(X) of those
measures that are absolutely continuous with respect to the Riemannian volume
density dvolg.

Given a continuous convex function U : [0, ∞) → R with U(0) = 0 and ν ∈ P (X),
define Uν : P2(X) → R ∪ {∞} by

Uν(μ) :=
∫

X

U(ρ(x)) dν(x) + U ′(∞)μs(X).

Here, μ = ρν + μs is the Lebesgue decomposition of μ with respect to ν into
the absolutely continuous part ρν and the singular part μs, and U ′(∞) :=
limr→∞ U(r)/r. The space of all functions U as above such that additionally the
function ψ(λ) := eλU(e−λ) is convex on R is denoted by DC∞. The only example
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of an element of DC∞ that we shall make use of is U∞(r) := r log r. Using these
notions, we now can give the following definition ([28, Def. 0.7]):

Definition 5.1. A compact measured length space (X, d, ν) (with ν a probabil-
ity measure) has ∞-Ricci curvature bounded below by K ∈ R if for all μ0, μ1 ∈
P2(X) with supp(μ0) ⊆ supp(ν) and supp(μ1) ⊆ supp(ν), there exists a Wasser-
stein geodesic {μt}t∈[0,1] from μ0 to μ1 such that for all U ∈ DC∞ and all t ∈ [0, 1],
we have

Uν(μt) � tUν(μ1) + (1 − t)Uν(μ0) −
1
2
λK(U)t(1 − t)W2(μ0, μ1)2. (5.1)

Here, the function λK is defined as follows: Let p(r) := rU ′
+(r) − U(r), p(0) = 0,

then λK(U) := infr>0Kp(r)/r (see [28, Def. 5.13]).

This property is called weak displacement convexity. We note that in the case of
U∞, we obtain λK(U∞) = K.

For (M, g), a compact connected Riemannian manifold with volume form dvolg,
letting

νg :=
dvolg

volg(M)
, (5.2)

and denoting by dg the Riemannian distance induced by g, [28, Th. 0.12, Th. 7.3]
implies:

Theorem 5.2. Let M be a compact connected manifold with a Riemannian metric g
of regularity C2. Then the measured length space (M, dg, νg) has ∞-Ricci curvature
bounded below by K ∈ R if and only if Ricg � Kg.

Let now g be a Riemannian metric of regularity C1 on the compact manifold
M , and let gε := g �M ρε be as in (3.12). We first study the convergence of the
measured length spaces (M, dgε

, volgε
) towards (M, dg, dvolg):

Proposition 5.3. Let M be a compact connected manifold with a C0-Riemannian
metric g, and let gε = g �M ρε. Then (M, dgε

, volgε
) → (M, dg, dvolg) in the

measured Gromov–Hausdorff sense.

Proof. Since gε → g uniformly on M , for any δ > 0, there exists some ε0 > 0 such
that for any ε ∈ (0, ε0), we have

(1 − δ)g(v, v) � gε(v, v) � (1 + δ)g(v, v) ∀v ∈ TpM ∀p ∈M. (5.3)

Moreover, also by uniform convergence, volgε
(M) → volg(M). The claim therefore

follows from [1, Th. 1.2]. �

Using this result, we can now show:

Theorem 5.4. Let M be a compact connected manifold with a C1-Riemannian
metric g that satisfies Ricg � Kg in the distributional sense (see (3.11)). Then
(X, dg, νg) has ∞-Ricci curvature bounded below by K.
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Proof. Fix δ > 0. By theorem 4.3, there exists some ε0 > 0 such that, for any
0 < ε < ε0, the smooth metric gε satisfies Ricgε

� (K − δ)gε. Furthermore, proposi-
tion 5.3 shows that (M, dgε

, νgε
) → (M, dg, νg) in the measured Gromov–Hausdorff

sense. Also, due to theorem 5.2, each (M, dgε
, νgε

) has ∞-Ricci curvature bounded
below by K − δ. We may now employ the stability of weak displacement convexity
[28, Th. 4.15] to conclude that for any U ∈ DC∞, Uνg

is weakly λK−δ-displacement
convex. Since this holds for any δ > 0, the claim follows. �

6. From synthetic to distributional lower Ricci bounds

We now turn to the converse of the implication considered previously. When try-
ing to infer distributional Ricci bounds from synthetic ones, one faces significantly
greater technical difficulties. Indeed one can observe that when deriving classical
bounds for smooth (at least C2-) Riemannian metrics from synthetic ones, the stan-
dard proofs (e.g. [28, Th. 7.3], [41, Th. 1.1]) make use of analytic tools that cease
to be available in regularities strictly below C2, e.g. Jacobi fields, or estimates of
curvature quantities along geodesics, both of which would require the evaluation of
curvature terms (which are, at best, only defined almost everywhere) along curves,
hence along null sets. Our strategy will again be to work with regularized smooth
metrics gε = g �M ρε, and we will assume the metric g itself to be of class C1,1 (con-
tinuously differentiable with Lipschitz continuous first derivatives). This regularity
class has turned out to be of considerable interest in applications to general rela-
tivity, since it still guarantees, on the one hand, unique solvability of the geodesic
equations, and local boundedness of all curvature quantities (cf. [15, 24, 25, 31]).
From the technical point of view, such metrics still provide enough control over
curvature quantities of the approximating metrics gε to suitably adapt arguments
from the smooth setting.

Suppose that g is a C1,1-Riemannian metric on a compact connected manifold
M such that Ricg does not have K as a lower distributional bound. By theorem
4.3, this means that for some δ > 0 there exists a sequence εk ↘ 0 and vectors
vk ∈ Txk

M , such that

Ricgεk
(vk, vk) < (K − δ)gεk

(vk, vk). (6.1)

Henceforth, we write gk for gεk
. By compactness, we may suppose that xk → x0,

vk → v, v ∈ Tx0M . For later use, we note that (6.1) remains true if we multiply vk

by a constant, so that by re-scaling we may assume the norms of vk, v as small
as we wish. Our aim in this section is to derive a contradiction to g possessing
K as a lower ∞-Ricci bound by constructing a Wasserstein geodesic along which
displacement convexity (5.1) fails for the function U∞(r) = r log r. To this end, we
will follow the basic structure of the proof of [28, Th. 7.3].

To begin with, for any k, we choose a smooth map φk : M → R such that

∇gkφk(xk) = −vk, and Hessgk(φk)(xk) = 0, (6.2)

as follows: Working in local coordinates centred at x0, we define

φ̃k(x) := (gk(xk))ilv
i
k(xl

k − xl) − 1
2

gkΓl
ij(xk)(gk(xk))rlv

r
k(xi − xi

k)(xj − xj
k)
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in a neighbourhood of x0 = 0 and extend this function to all of M as φk := ζ ·
φ̃k, where ζ is a plateau function that equals 1 in a neighbourhood of x0 (to be
further specified below). Here, gkΓl

ij denote the Christoffel symbols of gk in the
local coordinates. Clearly, φk → φ = ζφ̃ in C∞(M), where

φ̃(x) = (g(x0))ilv
i(xl

0 − xl) − 1
2

gΓl
ij(x0)(g(x0))rlv

r(xi − xi
0)(x

j − xj
0),

and we have ∇gφ(x0) = −v and Hessg(φ)(x0) = 0.
As in § 2, let c(x, y) := d(x, y)2/2, with d the Riemannian distance induced by

g and analogously ck(x, y) := dk(x, y)2/2 for the metric gk. We next want to show
that there exists some constant κ > 0 such that, if ‖∇gkφk‖∞ � κ (which can be
achieved by making ‖vk‖gk

uniformly small), then φk is ck-concave for each k ∈ N.
To this end, we employ the following result from [13]:

Theorem 6.1 [13, Th. 1.1]. Let (M, g) be a compact Riemannian manifold with
sectional curvature bounded from above by K � 0. Then there exists a constant
C∗ := C∗(inj(M), K, diam(M)) > 0 such that, for any ε > 0, if φ ∈ C2(M, R)
satisfies

‖∇φ‖∞ � min
(

ε

3Kdiam(M)
, C∗

)
and Hess(φ) � (1 − ε)g,

then φ is c-concave.

Thus, to establish the above claim, we need to see that when applying this result
to gk, all the quantities used in the estimates can be controlled uniformly in k. For
the injectivity radii injgk

this follows from [7, Th. 4.7], to the effect that a uniform
bound on the Riemann tensor combined with a uniform lower bound on the volumes
of distance balls of radius 1 gives a lower bound on the injectivity radius (cf. [22, Th.
3.3] and the discussion following it). Moreover, both the Hessians with respect to gk

and the gk-diameters of M converge uniformly, so the claim follows. We henceforth
assume that the ‖vk‖gk

are sufficiently small to guarantee ck-concavity of φk.
Let η(k)

0 := volgk
(V )−11V be a uniform distribution on some open neighbourhood

V of x0 (to be specified more precisely below, but in any case such that φk = φ̃k and
φ = φ̃ on V ), η0 := volg(V )−11V , μ(k)

0 := η
(k)
0 dvolgk

and μ0 := η0dvolg. Then μ(k)
0 

dvolgk
and μ0  dvolg are probability measures. Set F (k)

t (y) := expgk
y (−t∇gkφk),

Ft(y) := expg
y(−t∇gφ) and F (k) := F

(k)
1 , F := F1. Since φk is ck-concave, [30, Th.

8] and [9, Cor. 5.2] show that, for each t ∈ [0, 1], μ(k)
t := (F (k)

t )#μ
(k)
0 is a ck-

optimal transport from μ
(k)
0 to μ

(k)
t . Consequently, t �→ μ

(k)
t is a geodesic for the

2-Wasserstein distance induced by gk. Furthermore, denoting by W (k)
2 and W2 the

Wasserstein distances induced by dgk
and dg, respectively, (5.3) shows that by pick-

ing a subsequence, we may assume without loss of generality that for each k we have
(1 − 1/k)W2(μ, ν) � W

(k)
2 (μ, ν) � (1 + 1/k)W2(μ, ν) for all μ, ν ∈ P2(M). Since

P2(M) is compact ([40, Rem. 6.19]), we are precisely in the setting of the following
auxilliary result:
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Lemma 6.2. Let (X, d) be a compact metric space and let dk be a sequence of
metrics on X such that, for each k ∈ N,

(1 − 1/k)d(x, y) � dk(x, y) � (1 + 1/k)d(x, y) (6.3)

for all x, y, ∈ X. Let γk : [0, 1] → X be a dk-geodesic. Then there exists a subse-
quence (γkl

) of (γk) that converges uniformly to a d-geodesic γ : [0, 1] → X with
d-length Ld(γ) = liml→∞ Ldkl

(γkl
).

Proof. By compactness, we may suppose that γk(0) → p ∈ X and γk(1) → q ∈ X.
Also, we may assume the γk to be parametrized proportional to arclength, so
dk(γk(s), γk(t)) = dk(γk(0), γk(1))|s− t|. Then by (6.3) we obtain

d(γk(s), γk(t)) � 2d(p, q)|s− t|

for k large and any s, t ∈ [0, 1], showing that (γk)k is uniformly equicontinuous,
and pointwise bounded as X is compact. The existence of a uniformly convergent
subsequence therefore follows from the Arzela–Ascoli theorem. For simplicity, we
denote this subsequence again by (γk)k.

Next, fix ε > 0 and denote by σ = {t0 = 0 < · · · < tnσ
= 1} any subdivision of

the interval [0, 1], then there exists some k0 = k0(ε, σ) such that for k � k0 we
have

nσ∑
i=1

d(γ(ti−1), γ(ti))�
nσ∑
i=1

dk(γk(ti−1), γk(ti))+ ε=Ldk
(γk) + ε� d(γ(0), γ(1)) + 2ε.

Consequently,

d(γ(0), γ(1)) �
nσ∑
i=1

d(γ(ti−1), γ(ti)) � d(γ(0), γ(1)) + 2ε.

Letting ε→ 0 and taking the supremum over all σ, we obtain d(γ(0), γ(1)) = Ld(γ).
Finally, Ldk

(γk) = dk(γk(0), γk(1)) → d(γ(0), γ(1)) = Ld(γ). �

Thus, up to picking another subsequence, we conclude that μ(k)
t converges to a

W2-geodesic χt. Since
√

det gk →
√

det g uniformly on M and volgk
(V ) → volg(V ),

by [40, Th. 6.9] μ(k)
0 → μ0 in W2. From the above, it therefore follows that, in

particular, χ1 is an optimal transport of μ0, hence by theorem 2.3 is of the form
χ1 = T#μ0, where T (y) = expy(−∇ψ(y)) for some c-concave function ψ : M → R.
Note that henceforth we will often simply write exp instead of expg, ∇ instead of
∇g, etc.

We wish to relate this function ψ to the limiting function φ from above. To this
end, we will make use of results on the strong differentiability of the exponential
map of a C1,1-metric over the zero-section of TM ([31, Th. 3]). Denote by E
the map, defined on a neighbourhood of M × {0} in TM , which maps (y, w) to
(y, expy(w)). By [31, Th. 3], E is strongly differentiable in any point in M × {0}.
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In particular, choosing, as above, local coordinates such that x0 = 0, the strong
differential of E in (0, 0) is given by

L :=
(
I 0
I I

)
,

Indeed, the estimate given below [31, (39)] shows that, for max(‖y‖, ‖z‖, ‖v‖, ‖w‖)
< δ, δ sufficiently small, we have

‖E(y, v) − E(z, w) − L · (y − z, v − w)ᵀ‖ � max(‖y − z‖, ‖v − w‖) ·O(h(δ)).
(6.4)

Here, h(δ) → 0 as δ → 0. We pick δ > 0 such that h(δ) < 1/4. Now Ft(y) = pr2 ◦
E(y, t∇φ(y)), and rescaling v suitably we can assume that ‖∇φ(y)‖, ‖∇φ(z)‖ � δ
and ‖D2φ‖∞ � 1/2, so that ‖∇φ(y) −∇φ(z)‖ � 1

2‖y − z‖ for y, z in a δ-ball around
0. Then (6.4) gives

‖Ft(y) − Ft(z) − (y − z) − t(∇φ(y) −∇φ(z))‖ � h(δ)‖y − z‖.

Thus,

‖y − z − t(∇φ(y) −∇φ(z))‖ − h(δ)‖y − z‖ � ‖Ft(y) − Ft(z)‖

for all t ∈ [0, 1]. By the choices made above, this entails

‖Ft(y) − Ft(z)‖ = ‖ expy(−t∇φ(y)) − expz(−t∇φ(z))‖ � 1
4
‖y − z‖.

It follows that there exists a neighbourhood of x0 on which, for any t ∈ [0, 1], Ft is
a bi-Lipschitz homeomorphism. We note that the same calculation can be carried
out for each F (k)

t , and in fact both δ and h(δ) can be chosen uniformly for all F (k)
t

and Ft since they only depend on the bounds on the Christoffel symbols and the
Lipschitz constants for the exponential maps (cf. [31, (27), (28), (33)]), all of which
are uniformly controlled since g ∈ C1,1.

From here, the standard change-of-variables formula for bi-Lipschitz maps implies
that given a measure ξ0dvolg, its push-forward under Ft possesses a density with
respect to dvolg, namely the map

x �→ ξ0(F−1
t (x))

1
detDFt(y)

∣∣∣∣
y=F−1

t (x)

. (6.5)

An analogous equation holds for each F
(k)
t . We also note that due to the uniform

bound we have on the Lipschitz constants of the gk-exponential maps, it follows
directly from the proofs of the main theorem in [26] and that of [31, Th. 3] that
the inverses of Ft and F (k)

t are defined on a neighbourhood of Ft(x0) resp. F (k)
t (x0)

whose size is independent of t ∈ [0, 1] and of k. Rescaling the vk, we may therefore
assume that all inverses of the F

(k)
t are defined on a neighbourhood Ṽ of x0 =

F0(x0) = F
(k)
0 (x0), and that they converge locally uniformly to F−1

t on Ṽ (cf. [3]).
Finally, we pick a neighbourhood V of x0 whose image under all F (k)

t and Ft lies
in Ṽ .
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Taking this V in the definition of μ(k)
t above, we want to show that the densities

of the μ(k)
t converge to the density of μt := (Ft)�μ0. This will require us to uniformly

control the functions detDF (k)
t from below, a property that will also be needed in

a later stage of the proof. We will derive such an estimate by Riccati comparison of
the Jacobian differentials of the exponential maps of the gk (cf., e.g. [10, Sec. 1.5]
or [28, Sec. 7]).

Fix some k ∈ N and, given y ∈M , consider the gk-geodesic γ(t) := F
(k)
t (y) =

expgk
y (−t∇gkφk(y)). Also, let ei be a gk-orthonormal basis at y, parallelly trans-

ported along γ. Let Ji be the Jacobi-field

Ji(t) := DF
(k)
t (ei) (6.6)

along γ. Then Ji(0) = ei and J ′
i(0) = Hessgk(φk)y(ei). Setting Jij := 〈Ji, ej〉gk

, the
matrix J := (Jij) satisfies the initial value problem

J ′′(t) +K(t)J(t) = 0, J(0) = In, J ′(0) = Hessgk(φk)y.

Here, Kij(t) = 〈Rgk(ei(t), γ̇(t))γ̇(t), ej(t)〉gk(γ(t)). Let U(t) := J ′(t) · J−1(t), J (t)
:= detJ(t) = detDF (k)

t (y), and

h(t) := logJ (t) = log detDF (k)
t (y).

Then,

tr(U) =
d

dt
(logJ ) = ḣ,

and U satisfies the matrix Riccati equation (cf. [10, (1.5.2)])

U̇ + U2 +K = 0

with initial condition U(0) = Hessgk(φk)y. Since g ∈ C1,1, K is bounded, indepen-
dently of k (cf. proposition 4.2 and remark 4.4), so there exists some constant H > 0
such that

−H · In � K � H · In
in the sense of symmetric bilinear forms. Consider now the comparison equations

U̇−H + U2
−H −H · In = 0

U̇H + U2
H +H · In = 0

with identical initial condition UH(0) = U−H(0) = U(0). The main theorem of [11]
then implies that

UH(t) � U(t) � U−H(t)

on any common existence interval [0, t̄] of UH , U−H .
To solve the comparison equations, it suffices to take a gk-orthogonal matrix

T that diagonalizes the initial condition. Then ŨH := T−1UHT solves the same
equation, but with diagonal initial conditions, hence the system decouples
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and can be solved explicitly, namely ŨH(t) = diag(s1H(t), . . . , sn
H(t)), Ũ−H(t) =

diag(s1−H(t), . . . , sn
−H(t)) for smooth functions si

H , si
−H on [0, t̄], given by

si
H = −

√
H tan

(
t
√
H − arctan(si

H(0)/
√
H)

)
,

si
−H =

√
H tanh

(
t
√
H + tanh−1(si

−H(0)/
√
H)

)
.

Transforming back it follows that

min
1�i�n

si
H(t)In � U(t) � max

1�i�n
si
−H(t)In

on [0, t̄]. Consequently,

n min
1�i�n

si
H(t) � tr(U(t)) = ḣ(t) � n max

1�i�n
si
−H(t)

on [0, t̄], which in turn implies a uniform bound on h(t), independently of k.
We conclude that, in particular,

log(detDF (k)
t (y))is bounded, uniformly in k ∈ N, y ∈M, t ∈ [0, t̄]. (6.7)

Hence, also detDF (k)
t (y)) is uniformly bounded below. From the explicit form of

F
(k)
t it follows that, rescaling the vk by a factor independent of k, we may assume

without loss of generality that t̄ = 1.
We now make the following technical assumption (cf. remark 6.5 below for a

discussion):

Assumption 6.3. There exists a (Lebesgue-) null set N ⊆M such that, for each
y ∈M \N ,

DF
(k)
t (y) → DFt(y), (6.8)

uniformly for t ∈ [0, 1].

Together with the above, (6.5) for F (k)
t , and the fact that volgk

→ volg uniformly
on M imply that μ(k)

t → μt weakly for each t ∈ [0, 1]. Since, on the other hand,
convergence in the Wasserstein sense implies weak convergence, it follows that χt =
μt for all t ∈ [0, 1].

To continue the argument, we now require the validity of the following two stan-
dard results also for C1,1-Riemannian metrics: First, the proof of [2, Cor. 3.22]
relies on [2, Th. 3.10], which clearly applies to the current setting, as well as on
[2, Rem. 2.35], which corresponds to our lemma 2.2, so remains true for g ∈ C1,1.
Furthermore, [9, Cor. 5.2] is derived from [9, Lem. 5.1], which carries over verbatim
to the C1,1-setting, together with McCann’s characterization of optimal transport,
which in this regularity takes the form of theorem 2.3, showing that also this result
holds for g ∈ C1,1.

Combining these two results, we conclude that with ψ the c-concave func-
tion introduced after the proof of lemma 6.2, we have χt = (Ht)�μ0, where
Ht = y �→ expy(−t∇ψ(y)). By theorem 2.3 we therefore have, for each t ∈ [0, 1],
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that expy(−t∇φ(y)) = expy(−t∇ψ(y)) μ0-almost everywhere and hence Lebesgue-
almost everywhere on V . We now again use the fact that by [31, Th. 3], the map
TM →M ×M , vy �→ expg

y(vy) is a bi-Lipschitz homeomorphism on a neighbour-
hood of the zero-section in TM . For t > 0 small, both t∇φ and t∇ψ lie in this
neighbourhood, hence coincide almost everywhere on V . Since, in all further calcu-
lations, φ enters only via ∇φ, and only measures supported in V will be considered,
we may without loss of generality henceforth assume that φ itself is c-concave.
We also note that, by what was said above, μt is the unique Wasserstein geodesic
between μ0 and μ1.

Now that we know c-concavity of φ, we consider more general initial densities
η0 than the constant one we used above. Thus, let μ0 = η0dvolg be any probability
measure on V with density η0 with respect to dvolg. Then since φ is c-concave,
μt := (Ft)#μ0 is a dg-Wasserstein geodesic, and in fact is the unique geodesic by
what was said above. Setting U ≡ U∞ = r log r, by definition 5.1, we therefore have
for all t ∈ [0, 1]:

Uν(μt) � tUν(μ1) + (1 − t)Uν(μ0) −
1
2
Kt(1 − t)W2(μ0, μ1)2, (6.9)

where ν was given in (5.2). As in the proof of [28, Th. 7.3] (but now using the
standard transformation formula for bi-Lipschitz homeomorphisms for Ft), we have

Uν(μt) =
∫

M

U
(
volg(M) · η0(y)

det(DFt)(y)

)
det(DFt)(y)

dvolg(y)
volg(M)

.

Then setting

C(y, t) := − log(volg(M)) + log(detDFt(y)),

and noting that also for g ∈ C1,1 we have W2(μ0, μ1)2 =
∫

M
|∇φ(y)|2η0(y) dvolg(y),

it follows that (6.9) is equivalent to

−
∫

M

η0(y)C(y, t)dvolg(y)

�
∫

M

η0(y)
(
−tC(y, 1)−(1−t)C(y, 0) − 1

2
Kt(1 − t)|∇φ(y)|2

)
dvolg(y).

(6.10)
Since this inequality is invariant under non-negative scaling, η0 can be any non-
negative Borel measurable function on V here.

Arguing in a coordinate chart around x0 (hence setting M = R
n and x0 = 0 for

the moment), we now let ζ : R
n → [0, 1] be smooth with compact support in the

unit ball and ζ(0) = 1 and set, for ε ∈ (0, 1], η0ε(x) := ε · ζ(x/ε), and η
(k)
0ε (x) :=

ε · ζ((x− xk)/ε). Then

|η0ε(x) − η
(k)
0ε (x)| � ‖Dζ‖∞ · ‖xk‖ → 0 (k → ∞), (6.11)

uniformly in x and ε. Also, setting Ck(y, t) := − log(volgk
(M)) + log(detDF (k)

t (y)),
(6.7) and (6.8) imply that |C(y, t) − Ck(y, t)| is uniformly bounded in y, t, k and
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converges pointwise to zero for almost all y, uniformly in t, as k → ∞. Together
with the fact that ∇gkφk → ∇gφ uniformly on M , we conclude that

∫
M

η
(k)
0ε (y)Ck(y, t)dvolgk

(y) →
∫

M

η0ε(y)C(y, t)dvolg(y)

as well as
∫

M

η
(k)
0ε (y)

(
−tCk(y, 1) − (1 − t)Ck(y, 0) − 1

2
Kt(1 − t)|∇gkφk(y)|2

)
dvolgk

(y)

→
∫

M

η0(y)
(
−tC(y, 1) − (1 − t)C(y, 0) − 1

2
Kt(1 − t)|∇φ(y)|2

)
dvolg(y),

as k → ∞, uniformly in t ∈ [0, 1] and in ε ∈ (0, 1]. Due to (6.10), we conclude that
there exists some k0 such that, for all k � k0, any ε ∈ (0, 1] and any t ∈ [0, 1] we
have

−
∫

M

η
(k)
0ε (y)Ck(y, t)dvolgk

(y)

�
∫

M

η
(k)
0ε (y)

(
−tCk(y, 1) − (1 − t)Ck(y, 0)

− 1
2

(
K − δ

2

)
t(1 − t)|∇gkφk(y)|2

)
dvolgk

(y).

(6.12)

Letting ε→ 0, the support of η(k)
0ε can be concentrated arbitrarily close to xk. The

fundamental lemma of the calculus of variations yields that

−Ck(xk, t) � −tCk(xk, 1) − (1 − t)Ck(xk, 0) − 1
2

(
K − δ

2

)
t(1 − t)|∇gkφk(xk)|2

(6.13)

for all t ∈ [0, 1]. Using that |∇gkφk(xk)|2 = gk(vk, vk) and adding −1/2(K −
δ/2)t2gk(vk, vk) on both sides of (6.13), we see that the function

−Ck(xk, t) −
1
2

(
K − δ

2

)
t2gk(vk, vk)

is convex. In particular,

− ∂2

∂t2
Ck(xk, 0) −

(
K − δ

2

)
gk(vk, vk) � 0. (6.14)

We now note that

∂2

∂t2
Ck(xk, 0) = −Ricgk

(vk, vk). (6.15)

To see this, we follow the line of argument in [28, Lem. 7.4]. Fixing k and
setting D(t) := det

1
n (DF (k)

t (xk)), we have C(t) := Ck(xk, t) = log(volgk
(M)) +
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n log(D(t)). By [28, (7.24), (7.30)] and (6.2),

D′(0)
D(0)

= − 1
n

Δgk
φk(xk) = 0,

hence

C ′′(0) = n
D′′(0)
D(0)

− n
(D′(0)
D(0)

)2

= n
D′′(0)
D(0)

. (6.16)

On the other hand, by [28, (7.16)],

D′′(t)
D(t)

=
1
n2

(Tr(R))2 − 1
n

Tr(R2) − 1
n

Ricgk
((F (k)

t )′(xk), (F (k)
t )′(xk)). (6.17)

Here, taking Ji as in (6.6) (with y = xk), R(t) is the matrix defined by
J ′

i(t) =
∑

j R(t)j
iJj(t). Thus, R(0) is the matrix of the gk-Hessian of φk at xk

and therefore vanishes by our assumptions (6.2) on φk, which also imply that
(t �→ F

(k)
t (xk))′(0) = vk. Consequently, (6.17) gives

D′′(0)
D(0)

= − 1
n

Ricgk
(vk, vk),

and substituting this into (6.16) proves (6.15).
Finally, combining (6.14) with (6.15) results in

Ricgk
(vk, vk) = − ∂2

∂t2
Ck(xk, 0) �

(
K − δ

2

)
gk(vk, vk) >

(
K − δ

)
gk(vk, vk)

for all k � k0, giving the desired contradiction to (6.1). Thus, we arrive at the
following result:

Theorem 6.4. Let M be a compact connected manifold with a C1,1-Riemannian
metric g such that (X, dg, dvolg/volg(M)) has ∞-Ricci curvature bounded below by
K. Assume further that for some subsequence of g �M ρε, (6.8) is satisfied. Then
also Ricg � Kg in the distributional sense.

Remark 6.5. There is a large class of examples of C1,1-Riemannian metrics that
fail to be C2 but still satisfy the additional assumption (6.8) in theorem 6.4. Indeed,
since the gk are obtained by convolution, for any C1,1-metric that is C2 outside a
closed zero set (6.8) clearly holds. In particular, this situation occurs whenever
two C2-Riemannian metrics are glued along a closed embedded submanifold of
codimension greater or equal than 1 in such a way that the resulting metric is C1,1.

To conclude this paper, let us mention some directions of further research that
naturally suggest themselves based on the results derived above. A main question
is whether the optimal transport approach and the distributional method cease to
produce equivalent lower Ricci curvature bounds when further lowering the regular-
ity of the metric, i.e. if the theories ‘branch’ in the direction of lower differentiability.
That this may indeed be the case is supported by two observations: On the one
hand, as has also become apparent in § 6, already for C1,1 metrics one is deprived
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of many of the standard tools of Riemannian geometry and regularization methods
can only partially make up for this loss. Whereas this may be seen as a mere tech-
nical inconvenience, it should be taken into account that geometric properties that
are taken for granted for C2-metrics in fact cease to hold below this regularity. As
examples, we mention the coming apart of the notions of local distance minimizers
and geodesics (solutions of the geodesic equation) for C1,α-metrics (α ∈ (0, 1)), cf.
[18, 34], or the more obvious fact that geodesic branching is a generic phenomenon
for C1-metrics. It is also an open question whether the well-known equivalence
of various entropy conditions (e.g. that of CD(K, ∞) with the ∞-Ricci bounds
employed here) continues to hold below C2, i.e. if the synthetic approach itself
might branch when lowering the differentiability class of the metric.

The methods used in this paper are not specifically tied to metrics of Riemannian
signature. In fact, our regularization results were derived from constructions that
had first been developed in the context of generalizing the classical singularity the-
orems of general relativity, hence can also be used to analyse metrics of Lorentzian
(or indeed arbitrary) signature. Also in this direction, similar questions arise: It has
been noted in recent years that a number of standard results of Lorentzian causal-
ity theory may lose their validity for metrics of low regularity (and certainly do so
below the Lipschitz class), cf., e.g. the phenomenon of ‘bubbling’ metrics ([8, 16]).
The Lorentzian synthetic framework [21] employed in [6] avoids such pathologies
explicitly, but at the prize of excluding certain continuous but non-Lipschitz space-
times from consideration. Finally, it will be of interest to compare the synthetic
approach to generalizing the singularity theorems of general relativity ([6]) with
the distributional one ([14, 15, 20, 24, 25]).
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