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ON INFINITE FULL COLOURINGS OF GRAPHS 

BARRY FAWCETT 

This paper answers affirmatively a question of Pavol Hell [2]: if a graph 
admits a full n-colouring for every finite n ^ n0, does it admit an infinité full 
colouring? (A colouring is full if every pair of distinct colour classes is joined 
by a t least one edge). 

The graphs considered here are undirected graphs without loops or spindles. 
The edge which joins vertices x and y is denoted by the unordered pair [x, y]. 
A graph is then a pair X = ( V, E) where V (or V(X)) is a set and E (or E(X)) 
is a set of unordered pairs of distinct elements of V. An equivalence relation R 
on the vertex set V is a congruence of the graph X if (x, y) Ç R implies [x, y] (? 
E for all vertices x and y. T h e congruence relations determine quotient objects 
in the usual way: the vertices of the quotient graph X/R are the equivalence 
classes {Rx: x Ç V}, two of which are joined whenever some edge joins these 
classes in X. Morphisms are defined as edge-preserving maps on the vertex sets 
of graphs; thus congruence relations are characterized by the feature t ha t the 
natural projection to the quotient is a morphism. An ^-colouring is a morphism 
onto a complete graph Kn. A graph satisfying a formally (see [1, p. 143]) 
weaker version of the hypothesis of Hell's question, namely tha t it is fully 
n-colourable for arbitrari ly large finite n will be called colourful. 

Colourful graphs . I t is readily verified tha t a quotient X/R is a complete 
graph if and only if the congruence R is maximal with respect to inclusion; 
thus a colouring of X is full if and only if X/R is complete where R is tha t 
relation induced by the part i t ion of X into its colour classes. In another 
direction, full colourings may be obtained by coarsening the equivalence 
relation induced by an arbi t rary colouring. (R refines S or S coarsens R if 
and only if every »5-class is a union of /^-classes). S tandard maximali ty argu­
ments applied to the partially ordered set of congruences of a graph ordered by 
refinement yield the following result. 

T H E O R E M 1. Every colouring of a graph may be coarsened to a full colouring. 

Any colourful graph is co-colourable. An inductive construction will demon­
s t ra te t ha t not every co-colouring of a colourful graph may be coarsened to a 
finite full colouring. 

L E M M A 1. A colourful graph remains colourful after the removal of a finite 
subgraph. 
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Proof. Let X be colourful and consider a fixed finite subgraph F where 
\F\ = n. Let 6 be a full ^-colouring of X whose colour classes are {ci, c2, . . • ck\. 
The restriction of 6 to X — F may fail to colour X — F fully but may be 
coarsened to a full-colouring x as follows: first omit altogether any colour class 
which is unrepresented outside F\ if the colour class of an element of F is not 
joined to an external class in X — F, amalgamate that class into one such 
external class. After at most n losses of colour through omission or amalgama­
tion, a full colouring x of X — F is obtained whose colour classes number at 
least k — n. (The point is that the colour classes not represented in F cannot 
be reduced in number by coarsening 6.) Since k may be made arbitrarily large 
and n is fixed, X — F is colourful. 

LEMMA 2. If 6 fully n-colours a graph X, then S fully n-colours some finite 
subgraph F of X. 

Proof. Choose edges between the colour classes, as guaranteed by fullness. 

Since the endpoints form a suitable F one may take \F\ ^ 2 I J. 

LEMMA 3. Let X be a colourful graph. There exists a sequence (Gt), i < to, of 
finite subgraphs of X and, for each i, a finite full colouring 0* of Gt whose range is 
an initial segment of co satisfying: 

(1) Gi C Gi+i for all i < co; 
(2) 0i+i agrees with Si when restricted to Gt; 
(3) pu the number of colour classes of 0U satisfies pt < pi+ifor all i < co. 

Proof. Choose pi < co such that X admits a full pi-colouring. Let F\ be a 
finite fully ^-coloured subgraph, set Gi = Fx and let B\ be a full /^-colouring 
of G\ based on the numbers {1, 2, . . . pi). Suppose that Gt has been suitably 
defined for all i < n + 1. 

Then X — Gn is colourful by Lemma 1 and we may take \p to be a full 
(/-colouring of X — Gn where q > pn and range \f/ = {ci, c2, . . . , cq\. Let Fn+\ 
be a finite subgraph of X — Gn which is fully g-coloured by \p. Let Gn+i = 
Gn \J Fn+i (that is, the subgraph of X induced by the union of these sets of 
vertices). 

Define dn+\ as follows: on Gn, 6n+i = 6n; on Fn+\ the colour classes are lined 
up in a finite sequence C\y C2, . . • , cq. Looking at each class in turn we write 
C\ as 1 if there is no edge in Gn+i joining the two classes. If there is such an 
edge, we attempt in the same manner to identify c\ with the classes 2, 3, . . . , p„ 
respectively, wThere possible. If c\ cannot be identified with any of the classes 
1, 2, . . . , / ? „ , it is assigned the integer pn + 1. Repeating the procedure leads 
to a full colouring with pn+i colours and the inequalities 

(*) Pn < q ^ Pn+1 <q+ Pn-

By construction 6n+i is full; the verification of (1), (2), and (3) is routine. 

THEOREM 2. Every colourful graph has an infinite full œ-colourable subgraph. 
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Proof. Let X be colourful, and from the preceding lemma take G = U K W G J 
together with its colouring d = U i<œ 0. d fully co-colours G. I t is crucial to note 
tha t the subgraph G is actually an induced subgraph of X. (If vertices X\ an 
%2 belong to G, they belong to a common Gn. By the given construction, any 
edge of X joining xi and x2 will be an edge of Gn+i and so an edge of G.) 

T H E O R E M 3. Every colourful graph admits an infinite full colouring. 

Proof. Let X be colourful and let 6 be the full co-colouring of subgraph G of 
Theorem 2. 6 may be extended to an co-colouring 6 of X. No coarsening of S is 
possible which eliminates all bu t finitely many of the colour classes since S 
restricted to G is full with infinitely many classes. 

The preceding theorem answers Hell 's question affirmatively. The proof 
of the analogue of Theorem 3 for infinite cardinals goes through by transfinite 
induction with only trivial modifications. This gives the following theorem. 

T H E O R E M 4. / / a graph is fully k-colourable for every k < m (m a limit 
cardinal), then it is fully m~colourable. 

The author expresses his thanks to Paul Bankston for his helpful criticism; 
and Alex Rosa for his kind support and encouragement. 
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