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Abstract

Melatonin supplementation to obese mothers during gestation and lactation might benefit the
pancreatic islet cellular composition and beta-cell function in male offspring adulthood.
C57BL/6 females (mothers) were assigned to two groups (n= 20/each) based on their
consumption in control (C 17% kJ as fat) or high-fat diet (HF 49% kJ as fat). Mothers were
supplemented with melatonin (Mel) (10mg/kg daily) during gestation and lactation, or vehicle,
forming the groups (n= 10/each): C, CMel, HF, and HFMel. The male offspring were studied,
considering they only received the C diet after weaning until three months old. The HFmothers
and their offspring showed higher body weight, glucose intolerance, insulin resistance, and low
insulin sensitivity than the C ones. However, HFMel mothers and their offspring showed
improved glucose metabolism and weight loss than the HF ones. Also, the offspring’s higher
expressions of pro-inflammatory markers and endoplasmic reticulum (ER) stress were
observed in HF but reduced in HFMel. Contrarily, antioxidant enzymes were less expressed in
HF but improved in HFMel. In addition, HF showed increased beta-cell mass and
hyperinsulinemia but diminished in HFMel. Besides, the beta-cell maturity and identity gene
expressions diminished in HF but enhanced in HFMel. In conclusion, obese mothers
supplemented with melatonin benefit their offspring’s islet cell remodeling and function.
In addition, improving pro-inflammatory markers, oxidative stress, and ER stress resulted in
better glucose and insulin levels control. Consequently, pancreatic islets and functioning beta
cells were preserved in the offspring of obese mothers supplemented with melatonin.

Introduction

The overweight/obesity status continues its global rise,1 compromising women of reproductive
age since the risk of developing gestational diabetes mellitus is approximately two, four, and
eight times higher in overweight, obese, and severely obese women.2

The Developmental Origin of Health and Disease (DOHaD) hypothesis associates
environmental conditions in early life, such as maternal nutritional status, with the offspring’s
metabolic health in the long term.3,4 In addition, maternal obesity contributes to a raised risk of
obesity and insulin resistance in the offspring in childhood, adolescence, and adult life.5 Indeed,
maternal obesity during pregnancy and lactation in mice increased beta-cell mass due to beta-
cell proliferation,6 inducing adverse pancreatic changes in the progeny.7

Melatonin (N-acetyl-5-methoxy tryptamine), a pleiotropic hormone, is implicated in
circadian rhythm and is involved in glucose homeostasis.8 Melatonin is an endogenous
indoleamine secreted by the pineal gland and shows bioactive anti-inflammatory properties in
epigenetic regulation and fetal development.9,10 Its short-term use does not cause adverse effects,
even at extreme doses.11 In addition, melatonin has been studied as a reprogramming factor for
diseases related to maternal metabolic programming.12,13

Melatonin might protect against oxidative stress,14 facilitating electron transfer antioxidant
processes in the mitochondrial membrane.15 Also, melatonin induces the endogenous synthesis
of superoxide dismutase (Sod), glutathione peroxidase (Gpx), and glutathione reductase,
enzymes with antioxidant activities or stimulates enzymes that metabolize reactive species.16

The role of melatonin in pregnancy is emerging, but maternal melatonin supplementation’s
long-term metabolic effects are not well-known.13 Also, melatonin signaling influences the
placenta directly17 and regulates the proliferation, apoptosis, and invasion of trophoblasts in
preeclampsia by inhibiting endoplasmic reticulum (ER) stress.18 In addition, we have
demonstrated recently that melatonin supplementation in obese mothers can alleviate the
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development of nonalcoholic liver disease in their male offspring
by decreasing lipogenesis and increasing beta-oxidation in the liver
tissue.19

These findings allow us to hypothesize that maternal melatonin
supplementation during gestation and lactation in a known model
of diet-induced obesity (DIO) in mice20,21 would mitigate the
development of altered glucose metabolism and insulin resistance,
inflammation, ER stress, oxidative stress, and islet remodeling and
beta-cell dysfunction in adult male offspring.

Material and methods

Animals and procedures

The authors assert that all procedures contributing to this work
comply with the ethical standards of the relevant national guides
on the care and use of laboratory animals (National Academies
Press, 8th Edition, Washington, DC, 2011) and ARRIVE guide-
lines.22 The local ethics committee approved animal experimenta-
tion (CEUA protocol n° 003/2021). Male and female mice of the
C57BL/6 lineage at onemonth of age weremaintained in ventilated
cages under a controlled and enriched environment (NexGen
system, Allentown Inc., PA, USA, 21 ± 2°C, 12 h/12 h dark/light
cycle) with free access to water and food.

Females (mothers) were randomly assigned to one of two
experimental diets for eight weeks before the mating: control diet
(17 % kJ as fat, defined as C group, n= 20) or high-fat diet (49 % kJ
as fat, defined as HF group, n= 20) to allow for the development of
obesity. Males (fathers) received just the C diet. The Pragsoluções
(Jau, SP, Brazil) manufactured the diets based on rodents’ AIN-
93G recommendations23,24 (Supplementary Table S1). Then, two
weeks before mating, the C and HF female mice were again
randomly allocated to one of two supplemented groups, Melatonin
(Mel) or vehicle, forming four groups: C; CMel, HF; HFMel
(Fig. 1).

Melatonin (M5250 Sigma-Aldrich Co., St Louis, MO, USA) was
daily subcutaneously administrated at 10 mg/Kg one hour after
starting the dark vivarium cycle.25 The melatonin supplementation
lasted eight weeks during the gestation and lactation until the
offspring weaning. The mothers assigned to the groups without
melatonin supplementation received an equal dose of an alcoholic-
saline solution as a vehicle. In addition, the mothers’ body weight
(BW) and food intake (FI) were measured daily.

At three months old, one female from each group was crossed
for mating. After confirming a vaginal plug formation (day 1 of
pregnancy), the mother mice were individually housed and
continued their diet. At birth, offspring sex was assessed based on

the anogenital distance,26 weighed, and continued with their
mother until weaning (Fig. 1).

At weaning, one male offspring was randomly taken off each
litter to form the experimental groups, and they were fed with the C
diet. The male offspring groups were named considering the
mother’s diet and supplementation, thus: C, CMel, HF, and HFMel
(n= 10/each). In addition, the offspring’s BW was measured at
birth and then weekly, and FI was measured daily.

Carbohydrate metabolism

The mother’s oral glucose tolerance test (OGTT) was performed
two days before mating and one day after weaning. Offspring
OGTT was analyzed at 12 weeks old. First, the animals fasted for
six hours and took a 2 g/kg glucose load by orogastric gavage. Then,
blood was collected from the tail vein after zero, 15, 30, 60, and
120 min, and glucose was measured (glucometer Accu-Chek,
Roche, SP, Brazil), allowing the “area under the curve” calculation
(GraphPad Prism, v. 9.5.1 for Windows, La Jolla CA, USA).

Furthermore, the fasting insulin resistance index (FIRi) and
quantitative insulin sensitivity check index (QUICKi) were
performed on mothers and on offspring to measure insulin
resistance and insulin sensitivity, respectively: FIRi = (fasting
glucose × fasting insulin)/25)27 and QUICKI= 1/[log(fasting
insulin (μU/mL) þ log(fasting glucose (mg/dL)].28

Sacrifice and tissue extraction

We sacrificed the mothers two days after weaning and the adult
offspring at 12 weeks old. The animals fasted for six hours and were
heparinized (Dalteparin Sodium, Fragmin, Pfizer, SP, Brazil,
200 mg/kg) and anesthetized (intraperitoneal Ketamine 240mg/kg
and Xylazine 30 mg/kg). Blood was collected through the cervical
vessels section, and plasma was separated from the blood by
centrifugation (712 xg for 15 min).

Immediately the pancreas was dissected, weighed, and fixed
(n= 5, formaldehyde at 4 % w/v, phosphate buffer 0.1 M pH 7.2),
then embedded in Paraplast plus (Sigma-Aldrich Co., St Louis,
MO, USA) or inflated through the pancreatic duct with Hank’s
solution (n= 5, supplemented with bovine serum albumin, BSA,
1.0 mg/mL). Next, the islets were isolated after collagenase
digestion (type V 0.8 mg/mL, Sigma-Aldrich Co., St Louis, MO,
USA), the exocrine portion was discarded, and the islets were
manually collected in a Petri dish and used to analyze static insulin
secretion in vitro (n= 15 islet/group) or frozen at −80°C for
molecular analysis.

Figure 1. Experimentation timeline. 4th-week-old female C57BL/6 (future mothers) were grouped according to the allocated diet control (C) or high fat (HF). Melatonin
supplementation (Mel) started in the 10th week, and females were regrouped as C, CMel, HF, and HFMel (Mel extended for the preconception, pregnancy, and lactation periods).
The animals weremating with nonconsanguineousmales of the same age in the 12th week. Male offspring were randomly grouped at weaning, fed the C diet, and sacrificed at the
12th-week-old.
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Plasma

In mothers, we measured adiponectin (Mouse adiponectin ELISA
kit #EZMADP-60K, Millipore, Missouri, USA) and insulin (Rat/
mouse Insulin ELISA Kit #EZRMI-13K, Millipore, Missouri, USA).

In offspring, we measured the C-Peptide, Glucose-dependent
Insulinotropic Peptide (GIP), Glucagon, Interleukin (IL)-6,
Insulin, Leptin, Peptide YY (PYY), and Tumor Necrosis Factor-
alpha (TNFa) byMultiplex Biomarker Immunoassays for Luminex
xMAP technology (Millipore, Billerica, MA, USA, cat.
#MMHMAG-44K). Furthermore, to measure adiponectin, we
used an enzyme-linked immunosorbent assay (Mouse adiponectin
ELISA kit #EZMADP-60K, Millipore, Missouri, USA).

Pancreas

The pancreas prepared for light microscopy was entirely sectioned
at 5 μm thickness, and sections were stained with hematoxylin and
eosin or incubated with anti-insulin antibodies for immunohis-
tochemistry analysis. The observations and digital photomicro-
graphs were obtained in a Nikon microscope (model 80i and
DS-Ri1 digital camera, Nikon Instruments, Inc., New York, USA).

We analyzed 15 nonconsecutive random sections in each animal.
First, the islet volume density (Vv [islet, pancreas]) was estimated by
point-counting, and islet mass (M [islet, pancreas]) was estimated as
the product of Vv [islet, pancreas], and pancreas mass. Second, the
numerical density per area of the islets (QA [islet, pancreas]) was
determined by taking into consideration the edge effect in the
counts).29 Then, the islet cross-sectional area was determined as
A [islet, pancreas] = Vv [islet, pancreas]/2*QA [islet, pancreas].30,31

Furthermore, we used image analysis in sections incubated with
anti-glucagon (CSB-PA002654, Cusabio, 1:100) and anti-insulin
(sc-9168, Santa Cruz Biotech, CA, USA; 1:100) to estimate the
volume density of alpha and beta cells. Briefly, the sections were
incubated with biotinylated secondary antibodies and strepta-
vidin-peroxidase conjugates, washed in PBS, revealed with liquid
diaminobenzidine (DAB, Histostain Plus Kit, Invitrogen, CA,
USA), and counterstained with hematoxylin. Then, using the
ImagePro Plus 7.1 for Windows (Media Cybernetics Corp.,
Rockville, MD, USA), islets were outlined, and the deconvoluted
color was the DAB image measured in intensity units, then
converted to the optical density.32 Finally, alpha and beta-cell mass
was estimated as the product of [Vv [alpha-cell] (or Vv [beta-cell]),
and M [islet].33,34

Glucose-stimulated insulin secretion in vitro

Fifteen isolated islets per group were incubated for 30 min at 37°C
in a Krebs–Ringer bicarbonate buffer (KRB) growth medium
containing 115 mM NaCl, 5 mM KCl, 10 mM NaHCO3, 2.56 mM
CaCl2, 1 mM MgCl2, and 15 mM HEPES. This solution was
supplemented with glucose 5.6 mM and BSA 0.3% (pH 7.4, Sigma-
Aldrich Co., St Louis, MO, USA) and continuously gassed with
95%O2/5%CO2. Next, the culturemediumwas replaced with fresh
buffer, and five islets per group were incubated for another hour at
three different concentrations of glucose (2.8, 11.1, or 22.2 mM.).
Finally, the insulin level was measured (rat/mouse Insulin ELISA
Kit #EZRMI-13K, Millipore, Missouri, USA).

Quantitative real-time polymerase chain reaction (RT-qPCR)

Briefly, the isolated pancreatic islets had the total RNA extracted
using Trizol (Invitrogen, CA, USA), and 1 μg of mRNAwas treated
with DNAse I (Invitrogen) and evaluated with Nanovue

(GE Healthcare Life Sciences, Piscataway, NJ, USA). cDNA was
synthesized (Oligo dT) from the mRNA of the samples, and cDNA
was mixed with the gene of interest primer and SYBR Green Mix
(Invitrogen). First, the expression of the TATA- box binding
protein (Tbp) gene was performed and used as the reference gene
for mRNA standardization. Next, negative controls were
performed in wells in which the cDNA was replaced by deionized
water. Then, the qPCR was evaluated with the Step One Plus real-
time PCR cycler system (Applied Biosystems by Life Technologies,
Waltham,Massachusetts, USA) and SYBRGreenmix (Invitrogen).
In addition, signal amplification was measured using the 2−ΔΔCt

method to estimate the difference between target gene cycles and
endogenous control.35 Primer sequences were designed by Primer3
software (http://bioinfo.ut.ee/primer3-0.4.0/).

Statistical analysis

Data were tested for normality (for small samples, Shapiro–Wilk
test) and homogeneity of variances (Bartlett test) and then shown
as mean and standard deviation. The differences between groups
were tested using Student’s t-test with Welch’s correction
(mothers, two groups) or two-way ANOVA followed by Tukey’s
multiple comparison test (GraphPad Prism v.9.5.1 for Windows,
GraphPad Software, San Diego, CA, USA). We accepted the
P-value<0.05 statistical significance.

Results

Mother data

Before mating, after eight weeks of diet, the HFmother was heavier
than the C mother, and melatonin supplementation did not alter
BW. However, the OGTT’s area under the curve (AUC) was 20%
higher in HF mothers than in C mothers and 12% lower in HFMel
mothers than in HF mothers. After weaning, BW increased
byþ14% inHFmothers than in Cmothers and decreased by−12%
inHFMelmothers than in HFmothers. Food intake did not show a
difference among the groups. However, the energy intake was
higher in HF mothers than in C mothers (Table 1).

The HF mothers showed hyperinsulinemia (þ130%), insulin
resistance (FIRiþ236 %), and diminished insulin sensitivity
(QUICKi −21%) compared to the C mothers, which were restored
in the HFMel vs. HF. In addition, lower plasmatic adiponectin
levels (−34%) were observed in the HF mothers than in the
C mothers, but higher levels of adiponectin (þ58%) and an
improvement of glucose metabolism was seen in the HFMel
mothers in comparison to the HF mothers (Table 1).

Offspring data

At birth, the HF offspring was heavier byþ16%, and the CMel
byþ8% than the C offspring (Fig. 2B). The initial difference
observed in CMel vs. C was not maintained in the following weeks,
but a heavier HF offspring existed until week 12 compared to the
C offspring. However, BW decreased in the HFMel offspring from
the fourth week compared to the HF offspring. At twelve weeks, the
HF offspring was heavier byþ9% than the C offspring, and HFMel
lost weight by −7% than HF (Fig. 2A). In addition, FI and EI were
increased in the HF offspring compared to the C offspring, but
reduced in HFMel than in HF.

There was an “area under the curve” increase (OGTTþ15%,
Fig. 1B-C), hyperinsulinemia (þ30%), insulin resistance
(FIRiþ46%), and reduced insulin sensitivity (QUICKi −8%) in
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HF than in C (Table 2). However, HFMel vs. HF showed lessened
OGTT (−8%, Fig. 2C-D), plasma insulin (−40%), insulin
resistance (FIRi −50%), and increased insulin sensitivity
(QUICKiþ18%) (Table 2).

Plasma

The HF offspring, compared to the C one, showed lower
adiponectin (−25%), GIP (−60%), and PYY (−45%), and higher

IL6 (þ88%), TNFalpha (þ18%), C-Peptide (þ45%), and leptin
(þ27%). Also, HFMel vs. HF showed higher adiponectin (þ18%)
and diminished IL6 and TNF alpha (−30%). In addition, the
groups did not differ in glucagon (Table 2).

Pancreatic islets

Typical rodent Islet alpha and beta-cell distributions were
observed in C and CMel and showed in the first two rows of

Table 1. Biometry and plasma analyses of mothers

Data C CMel HF HFMel

BW (g, n= 20) 12.7 ± 1.09 13.1 ± 1.60

Pre-mating

BW (g, n= 10) 19.4 ± 0.71 20.1 ± 0.57 22.0 ± 0.40† 21.3 ± 0.70

OGTT (auc, mmol/L/min, n= 5) 1047.1 ± 49.60 1053.0 ± 49.40 1246.2 ± 32.15† 1099.1 ± 90.54‡

After weaning

BW (g, n= 10) 21.1 ± 0.55 20.9 ± 1.10 24.2 ± 0.54† 21.4 ± 1.32‡

FI (g/day/mouse, n = 10) 1.5 ± 0.08 1.5 ± 0.06 1.4 ± 0.20 1.4 ± 0.20

EI (g/day/mouse, n= 10) 22.5 ± 3.19 22.7 ± 2.75 28.7 ± 3.88† 27.5 ± 3.77

PW (g, n= 10) 0.114 ± 0.02 0.108 ± 0.02 0.134 ± 0.01 0.121 ± 0.01

PW/BW (%, n= 10) 0.54 ± 0.08 0.49 ± 0.07 0.58 ± 0.05 0.57 ± 0.05

OGTT (auc, mmol/L/min, n= 5) 827.1 ± 5.70 789.2 ± 47.53 1150.0 ± 111.62† 844.1 ± 43.75‡

Adiponectin (106 pg/mL, n= 5) 14.0 ± 1.75 13.4 ± 0.69 9.2 ± 0.95† 14.4 ± 1.80‡

Insulin (pg/mL, n= 5) 606.0 ± 90.00 660.0 ± 79.00 1388.0 ± 193.46† 711.0 ± 68.27‡

FIRi (n= 5) 3.3 ± 0.40 3.8 ± 0.50 11.1 ± 1.60† 5.0 ± 0.60‡

QUIKi (n= 5) 0.5 ± 0.01 0.5 ± 0.01 0.4 ± 0.01† 0.5 ± 0.01‡

AUC, area under the curve; BW, bodyweight; EI, energy intake; FI, food intake; FIRi, Fasting Insulin Resistance index; OGTT, oral glucose tolerance test; PW, pancreas weight; QUICKi, Quantitative
Insulin Sensitivity Check Index. Groups: C, control; HF, high fat; Mel, melatonin. Mean ± SD, P< 0.05 when: †≠ C; ‡≠ HF.

Figure 2. Offspring body weight evolution and oral glucose tolerance test. A. Body weight evolution; B. Birthday body weight. C. Oral glucose tolerance test curves; D. Area under
the curve. Data are mean ± SD, n= 10/group, Groups: C (control), CMel (control melatonin), HF (high fat), and HFMel (high-fat melatonin) P < 0.05 when †≠ C e ‡≠ HF.
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photomicrographs of Fig. 3. However, islets were hypertrophied in
the HF group, but restored in the HFMel group (Fig. 3A).
Consequently, alpha and beta cells were hypertrophied in the HF
group than in the C group but reduced in the HFMel vs. HF
(Fig. 3B-C).

Glucose-stimulated insulin secretion in vitro

Islet insulin secretion was higher in the HF offspring than in the C
one (þ530 % at 2.8 mM) but lower in the HFMel offspring than in
the HF one (−85 %) (Fig. 4A) as well as at 11.1 and 22.2 mM of
glucose (higher secretion in HF than in C, and lower secretion in
HFMel than in HF) (Fig. 4B-C). In addition, at 22.2 mM, insulin
secretion was lower in CMel than in C (Fig. 4C).

Pro-inflammatory cytokines

Il6, Il1b, and Tnfawere augmented, but Sirt1was diminished in the
HF offspring than in the C offspring. These cytokines were
mitigated, and Sirt1 was increased in the HFMel offspring
compared to the HF one. Also, CMel offspring showed diminished
Il1b and augmented Sirt1 expressions compared to the HFMel
offspring (Fig. 5A-D).

Oxidative stress and ER stress

Sod, Catalase, and Gpx were reduced, and Chop, Gadd45, and
activating transcription factor 4 (Atf4) were improved in HF than
in C. However, HFMel showed higher Sod, Catalase, and Gpx and
lower Chop, Gadd45, andAtf4 than HF. In addition, Chop andAtf4
genes were downregulated in the CMel vs. HFMel (Fig. 6A-F).

Transcriptional factors and beta-cell identity markers

There were decreased expressions of Pdx1 (−36%, Fig. 7A), Mafa
(−60%, Fig. 7B), Neurod1 (−65%, Fig. 7C), Pax6 (−31%, Fig. 7F),

and Pparg (−75%, Fig. 7H) in HF than in C. However, the
expressions of these genes were regulated in HFMel than in HF,
except Pax6. In addition, although it has not been decreased in the
HF group, aristaless-related homeobox (Arx) (þ70%, Fig. 7D) and
Ppara (þ400%, Fig. 7G) were enhanced in HFMel vs. HF.
Conversely, Pax4 was augmented in HF than in C (þ260%) but
diminished in HFMel vs. HF (−25%, Fig. 7E). Furthermore,
Neurod1 and Pax6 were enhanced in CMel vs. HFMel (Fig. 7C
and 7F).

Discussion

It is known that obesity in the mother might implicate the
offspring’s adverse pancreatic islet cell remodeling and altered
metabolism.36-38 These alterations are associated with changes in
islet pro-inflammatory regulators, oxidative stress, ER stress, and
beta-cell integrity in adult offspring, consequently deteriorating
insulin production and glycemic control.39,40 However, these
alterations were mitigated in the offspring when the obese mother
received melatonin supplements during pregnancy and lactation,
which agreed with our initial hypothesis that melatonin treatment
improves insulin sensitivity and glucose tolerance in mice.41 Fig. 8
summarizes our findings.

Fetal programming affects male and female offspring differ-
ently.42-44 Therefore, sexual dimorphism merits a more detailed
study to investigate the link with maternal melatonin supple-
mentation. Usually, studying male offspring is suitable when we
are not interested in sexual dimorphism because males suffer less
influence from the variety of sexual hormones. On the contrary,
mature female cycle periodically (they go through the four phases
of the estrous cycle at each period), which would be another
variable to consider in the study, including themoment of sacrifice.
Hence, to avoid the inherent aspect of females and focus on the
study’s central theme, only males were sampled.

Table 2. Biometry and plasma analyses of offspring

Data C CMel HF HFMel

FI (g/day/mouse, n= 10) 1.5 ± 0.1 1.5 ± 0.04 1.8 ± 0.02† 1.5 ± 0.06‡

EI (g/day/mouse, n= 10) 24.3 ± 2.15 25.0 ± 0.70 29.0 ± 0.30† 25.3 ± 0.90‡

PW (g, n= 10) 0.10 ± 0.02 0.10 ± 0.02 0.11 ± 0.01 0.11 ± 0.01

PW/BW (%, n= 10) 0.51 ± 0.05 0.53 ± 0.03 0.51 ± 0.07 0.53 ± 0.08

Plasmatic levels (n= 5)

Insulin (pg/mL) 619.0 ± 93.00 565.0 ± 87.20 804.3 ± 106.37† 488.0 ± 54.66‡

FIRi 2.8 ± 0.44 2.7 ± 0.45 4.1 ± 0.46† 2.1 ± 0.43‡

QUIKi 0.6 ± 0.0 0.6 ± 0.02 0.5 ± 0.01† 0.6 ± 0.03‡

Adiponectin (106 pg/mL) 8.5 ± 0.40 9.8 ± 0.71† 6.4 ± 0.45† 7.6 ± 0.16 ‡ #

C-Peptide (pg/mL) 282.9 ± 38.68 256.5 ± 26.94 413.0 ± 25.90† 215.1 ± 14.30‡

GIP (pg/mL) 590.2 ± 33.73 578.8 ± 37.48 236.4 ± 35.45† 412.8 ± 35.53‡#

Glucagon (pg/mL) 51.2 ± 5.52 40.7 ± 12.61 48.6 ± 6.62 40.1 ± 15.90

IL-6 (pg/mL) 6.5 ± 0.47 7.7 ± 0.49 12.1 ± 0.73† 8.4 ± 1.40‡

Leptin (pg/mL) 417.4 ± 52.99 391.4 ± 58.38 529.7 ± 32.28† 324.1 ± 20.37‡

PYY (pg/mL) 323.3 ± 51.20 348.5 ± 28.87 177.8 ± 29.82† 243.2 ± 32.89 #

TNFa (pg/mL) 6.1 ± 0.32 5.5 ± 0.30 7.2 ± 0.50† 4.8 ± 0.57‡

BW, body weight; EI, energy intake; FI, food intake; FIRi, Fasting Insulin Resistance index; GIP, gastric inhibitory polypeptide; IL, Interleukin; PW, pancreas weight; PYY, intestinal polypeptide;
QUICKi, Quantitative Insulin Sensitivity Check Index; TNFa, tumoral necrosis factor-alpha. Groups: C, control; HF, high fat; Mel, melatonin; Mean ± SD, P< 0.05 when: †≠ C; ‡≠ HF; #≠CMel.
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Figure 4. Insulin secretion in isolated
islets in adult offspring. Data are mean ± SD,
n= 5/group, ***P < 0.001. Groups: Groups:
C (control), CMel (control melatonin), HF (high
fat), HFMel (high-fat melatonin).

Figure 5. Pro-inflammatory markers in the pancreatic islet of adult offspring. A. Il6, interleukin6; B. Il1b, interleukin1 beta; C. Tnfa, tumor necrosis factor-alpha; D. Sirt1, Sirtuin 1.
Data are mean ± SD, n= 5/group, *P< 0.05, **P< 0.01, ***P < 0.001. Groups: Groups: C (control), CMel (control melatonin), HF (high fat), HFMel (high-fat melatonin).

Figure 3. Pancreatic islets in adult offspring. The two rows show islets immunolabeled by anti-glucagon (alpha cells) and anti-insulin (beta cells) (same magnification in all
images). A. Islet cross-sectional area, B. alpha-cell mass, C. beta-cell mass. Data are mean ± SD, n= 5/group, *P < 0.05, **P< 0.01. Groups: C (control), CMel (control melatonin),
HF (high fat), HFMel (high-fat melatonin).
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Maternal obesity induces inflammation in offspring,45,46

leading to impaired oxidative stress,47,48 and ER stress.49

Melatonin might restore regular physiological function during

pregnancy by alleviating oxidative damage in the placenta, favoring
nutrient transfer, and improving the placenta vascular dynamics
at the uterine-placental interface.50-52 Additionally, maternal

Figure 6. Obese mother melatonin supplementation restored biomarkers of oxidative and endoplasmatic reticulum stress in pancreatic islets of adult offspring.
A. Sod, superoxide dismutase; B. Catalase; C. Gpx, glutathione peroxidase. D. Chop, DNA-damage-inducible transcript 3; E. Gadd45, growth arrest and DNA-damage-inducible 45;
F. Atf4, activating transcription factor 4. Data aremean ± SD, n= 5/group, *P< 0.05, **P< 0.01, ***P< 0.001. Groups: C (control), CMel (control melatonin), HF (high fat), and HFMel
(high-fat melatonin).

Figure 7. Melatonin supplementation of obesemothers improves transcription factors and beta-cell identitymarkers in adult offspring. A. Pdx 1, pancreatic duodenal homeobox
1;Mafa, v-mafmusculoaponeurotic fibrosarcoma oncogene family; C. Neurod1, neurogenic differentiation 1; D. Arx, transcription factor aristaless-related homeobox gene; E. Pax4,
paired box 4; F. Pax6, paired box 6; G. Ppara, peroxisome proliferator-activated receptor alpha; H. Pparg, peroxisome proliferator-activated receptor gamma. Data are mean ± SD,
n= 5/group, *P < 0.05, **P < 0.01, ***P < 0.001. Groups: C (control), CMel (control melatonin), HF (high fat), HFMel (high-fat melatonin).
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melatonin freely crosses the placenta and can influence offspring
development, programming several functions related to neural and
brain development, energy, and glucose metabolism.53

Melatonin plays an anti-oxidative effect and protects against
obesity-related insulin resistance54 and prevents the generation of
reactive oxygen species, regulating the redox state in the beta cell.55

Also, melatonin is a potent antioxidant molecule and has been
reported to increase the antioxidant enzyme expression and
activity,56 and melatonin reduces SODK68 acetylation in oocytes
in culture.57 In agreement, our findings demonstrated enhanced
Sod, catalase, and Gpx, decreasing pro-inflammatory cytokines in
offspring, emphasizing the interplay between inflammation and
oxidative stress.58

Melatonin regulates GLUT4 expression and triggering via its
G-protein-coupled membrane receptors, the phosphorylation of
the insulin receptor, and intracellular substrates mobilizing the
insulin-signaling pathway.59 In the current study, melatonin
supplementation was linked with weight loss in obese mothers and
their offspring, possibly because melatonin determined an
adequate energy balance mainly by regulating energy flow to
and from the stores.59 Furthermore, maternal melatonin supple-
mentation diminished glucose intolerance and insulin resistance in
mothers and their offspring, improving Pparg expression, an
insulin sensitizer.

The upregulation of the oxidative stress enzymes may explain
the relief of ER stress observed in the offspring, possibly associated
with the increased expression of Sirt1, which alleviates oxidative
stress and ER stress14 in HFMel offspring. In addition, melatonin
strongly inhibits oxidative stress and partially inhibits ER stress in
pancreatic beta cell in vitro.60

Maternal obesity impairs offspring’s beta-cell function in
rodents61 and humans.62 Here, maternal obesity negatively affects
the genetic regulation of beta-cell differentiation, maturation, and

glucose metabolism in the offspring, such as pancreatic duodenal
homeobox 1 (Pdx1), v-maf musculoaponeurotic fibrosarcoma
oncogene family (Mafa); neurogenic differentiation 1 (Neurod1);
paired box 4 (Pax4) and paired box 6 (Pax6). Moreover, some
transcription factors are required at specific stages of the islet cell
formation stimulating a network of transcription factors regulating
cell differentiation genes in the embryonic stages.63

Pdx1 is a crucial transcription factor in different stages of
pancreatic development, and the process of differentiation of beta
cells starts early in the embryonic period.64 The expression of Pdx1
assures beta-cell function but decreases during insulin resistance
and type 2 diabetes.65,66

Mafa is found exclusively in developing and adult insulin cells,
linked to insulin cell production.67 Moreover, induction of Mafa
expression is essential for regenerative approaches to regenerate
functional and mature beta cells from pluripotent stem cells.68

An insulin resistance environment includes hyperglycemia,
hyperinsulinemia, increased FIRi, and diminished QUICKi.
Insulin seems not to perform its role in reducing blood glucose
in our HF animals, even with the pancreatic islet hypersecreting
insulin at different glucose concentrations. Besides, Pdx1 defi-
ciency increases beta-cell susceptibility to ER stress, as Pdx1
regulates a wide range of genes involved in diverse ER functions,
including the proper formation of disulfide bonds and protein
folding, and the unfolded protein response. Therefore, the reduced
expression of the Pdx1 gene in HF offspringmay favor the beta-cell
failure to compensate for insulin resistance related to impaired
critical ER functions.69 However, it might indicate an early beta-
cell failure in this group, programmed by maternal obesity.

Neurod1 is detected in the developing embryonic pancreas70

and, in elderly life, plays a predominant role in the maintenance
of functional beta cells.71 Pax4 is transiently expressed in all
endocrine progenitors during pancreatic development and

Figure 8. Obese mothers supplemented with melatonin have beneficial effects on their adult offspring (reduced body weight and insulin resistance). In addition,
pro-inflammatory cytokines and endoplasmic reticulum stress markers were mitigated, and enzymes related to oxidative stress increased. The hypertrophied islets due to obese
mothers were mitigated by melatonin supplementation to mothers. Arrow-up indicates an increase, and arrow-down indicates a decrease. Atf4, activating transcription factor 4;
Catalase; Chop, DNA-damage inducible transcript; Gadd45, growth arrest and DNA-damage-inducible 45; Gpx, glutathione peroxidase.; Il1b, interleukin1 beta; Il6, interleukin6;
Mafa, v-maf musculoaponeurotic fibrosarcoma oncogene family; Neurod1, neurogenic differentiation 1; Pax4, paired box 4; Pdx 1, pancreatic duodenal homeobox 1; Sirt1, Sirtuin
1; Sod, superoxide dismutase; Tnfa, tumor necrosis factor-alpha.
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downregulated shortly after birth.66 Pax4 appears essential for the
appropriate initiation of beta-cell differentiation.72,73 Remarkably,
upregulated gene expressions of Pdx1, Mafa, and Neurod1 were
observed in the offspring of obese mothers supplemented with
melatonin.

Pax6 is detected at the end of the embryonic period as a critical
transcriptional regulator of adult beta-cell identity and function.74

Therefore, diminished Pax6 expression might be associated with
beta-cell failure in diabetes.75 Here, we determined that maternal
obesity reduced Pax6 expression, which was not altered by
maternal melatonin supplementation.

Arx expression begins during mouse pancreatic development
and persists into mature alpha cells.76 Furthermore, maternal
melatonin supplementation increased Arx in offspring. Although
Arx is required for early specification and maintenance of alpha-
cell mass,77 is not directly involved in glucagon expression.78

Therefore, the effect of melatonin on glucagon secretion is
controversial.79,80 Here, the impact of melatonin on the offspring
was indirect (administered to the mothers), which might explain
the absence of changes in glucagon secretion in programming
offspring.

The Pax4 and Arx balance is crucial for cell fate determination
of islet alpha and beta cells.72 In the current study, we determined a
decrease in the Pax4 gene related to an immature beta cell in the
offspring of obese mothers supplemented with melatonin.

Our findings demonstrated that obese mothers supplemented
with melatonin favored cell remodeling in the adult offspring’s
pancreatic islet and preserved glucose-stimulated insulin secretion
in vitro. These findings agree with a report in pinealectomized
pregnant rats and impaired glucose metabolism, insulin secretion
dysregulation, and failure in the glucose-stimulated insulin
secretion.81

Beta-cell dedifferentiation is characterized by lessened gene
expressions related to mature beta-cell function and enhanced
endocrine precursor cells, an adaptive response to avoid
apoptosis.82 Our obese mother’s offspring showed alterations
indicating more susceptibility to beta-cell failure with advancing
age. In addition, maternal melatonin supplementation seems to
favor adult offspring beta-cell function.

In conclusion, obese mothers supplemented with melatonin
benefit their offspring’s islet cell remodeling and function. In
addition, improving pro-inflammatory markers, oxidative stress,
and ER stress resulted in better glucose and insulin level control.
Consequently, pancreatic islets and functioning beta cells were
preserved in the offspring of obese mothers supplemented with
melatonin.

Supplementarymaterials. The supplementary material for this article can be
found at https://doi.org/10.1017/S2040174423000168.
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Significance of study and contribution to science. Maternal melatonin
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are not well-known. Therefore, we hypothesized that maternal melatonin
supplementation during gestation and lactation in a known model of diet-
induced obesity (DIO) in mice would mitigate the development of altered
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In the current study, we observed the benefits of melatonin supplementation to
obese mothers on their offspring’s islet cell remodeling and function.
In addition, there were benefits in pro-inflammatory markers, oxidative stress,
and ER stress resulting in glucose and insulin improvement. Consequently,
pancreatic islets and functioning beta cells were preserved in the offspring of
obese mothers supplemented with melatonin.
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