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Abstract Let l[y] be a formally self-adjoint differential expression of an even order on the interval
[0, b〉(b � ∞) and let L0 be the corresponding minimal operator. By using the concept of a decomposing
boundary triplet, we consider the boundary problem formed by the equation l[y] − λy = f , f ∈ L2[0, b〉,
and the Nevanlinna λ-dependent boundary conditions with constant values at the regular endpoint 0. For
such a problem we introduce the concept of the m-function, which in the case of self-adjoint separated
boundary conditions coincides with the classical characteristic (Titchmarsh–Weyl) function. Our method
allows one to describe all minimal spectral functions of the boundary problem, i.e. all spectral functions
of the minimally possible dimension. We also improve (in the case of intermediate deficiency indices
n±(L0) and non-separated boundary conditions) the known estimate of the spectral multiplicity of the
(exit space) self-adjoint extension Ã ⊃ L0. Results are obtained for expressions l[y] with operator-valued
coefficients and arbitrary (equal or unequal) deficiency indices n±(L0).
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1. Introduction

The paper deals with differential operators generated by a formally self-adjoint differential
expression l[y] of an even order 2n on an interval ∆ = [0, b〉, b � ∞, with a regular
endpoint 0 and either regular or singular endpoint b. We consider the expression l[y]
with operator-valued coefficients and arbitrary (possibly unequal) deficiency indices, but
in order to simplify presentation of the main results let us assume that

l[y] =
n∑

k=1

(−1)k(pn−ky(k))(k) + pny (1.1)

is a scalar expression with real-valued coefficients pk(t), t ∈ ∆, such that pk ∈ L1(0, β)
for each β ∈ (0, b) [30]. Denote by L0 and L (= L∗

0) minimal and maximal operators,
respectively, generated by the expression (1.1) in the Hilbert space H := L2(∆) and let
D be the domain of L. As is known, L0 is a symmetric operator with equal deficiency
indices m = n±(L0) and n � m � 2n.
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We develop an approach based on the concept of a decomposing boundary triplet for
a differential operator (see [27–29]). First recall the following definitions.

Definition 1.1 (Gorbachuk and Gorbachuk [14]). Let H be a Hilbert space, let
A be a densely defined symmetric operator in H with equal deficiency indices and let
D(A∗) be the domain of its adjoint A∗. A collection Π = {H, Γ0, Γ1}, where H is an
auxiliary Hilbert space and Γ0, Γ1 : D(A∗) → H are linear maps, is called a boundary
triplet for A∗ if the map Γ := (Γ0, Γ1)T is surjective and the following ‘abstract Green’s
identity’ holds:

(A∗f, g) − (f, A∗g) = (Γ1f, Γ0g) − (Γ0f, Γ1g), f, g ∈ D(A∗).

Definition 1.2 (Derkach and Malamud [4]). Let Π = {H, Γ0, Γ1} be a boundary
triplet for A∗. The operator-valued (Nevanlinna) function M(λ) (∈ [H]) defined by

Γ1fλ = M(λ)Γ0fλ, fλ ∈ Nλ := Ker(A∗ − λ), λ ∈ C \ R

is called the Weyl function corresponding to Π.

By choosing a suitable boundary triplet for a concrete problem, one can parametrize
various classes of extensions Ã ⊃ A in the most convenient form. In particular, for the
minimal operator L0 generated by the expression (1.1) we suggest the use of the special
boundary triplet called decomposing in [27]. According to [27] such a triplet is of the
form Π = {C

n ⊕ C
nb , Γ0, Γ1}, where nb = m − n and Γj : D → C

n ⊕ C
nb , j ∈ {0, 1}, are

the linear maps given by

Γ0y = {y(2)(0), Γ ′
0y} (∈ C

n ⊕ C
nb), Γ1y = {−y(1)(0), Γ ′

1y} (∈ C
n ⊕ C

nb). (1.2)

Here y(j)(0) are vectors of quasi-derivatives (2.18) at the point 0 and Γ ′
0y, Γ ′

1y(∈ C
nb)

are boundary values of a function y ∈ D at the singular endpoint b, which satisfy the
identity (2.24) (for more details see Definition 2.5).

Next assume that P = {C0(λ), C1(λ)}(λ ∈ C \ R) is a pair of holomorphic operator
functions C0(λ) and C1(λ) defined by the block representations

C0(λ) = (Ĉ0, C
′
0(λ)) : C

n ⊕C
nb → C

m, C1(λ) = (Ĉ1, C
′
1(λ)) : C

n ⊕C
nb → C

m (1.3)

with the constant entries Ĉ0, Ĉ1. Moreover, assume that such a pair belongs to the
Nevanlinna class (in short, the Nevanlinna pair), which means that the corresponding
family of linear relations τ = τ(λ) := {{h, h′} : C0(λ)h + C1(λ)h′ = 0} is a Nevanlinna
family (see, for example, [7]).

Denote by K̂ the range of the operator Ĉ = (Ĉ0, Ĉ1) and let

n̂ = dim K̂ = rank(Ĉ0, Ĉ1), n′ = m − n̂.

Then n � n̂ � m and the operator pair (1.3) admits the block representation

C0(λ) =

(
N0 C ′

01(λ)

0 C ′
02(λ)

)
: C

n ⊕ C
nb → K̂ ⊕ K̂⊥, (1.4)

C1(λ) =

(
N1 C ′

11(λ)

0 C ′
12(λ)

)
: C

n ⊕ C
nb → K̂ ⊕ K̂⊥, (1.5)
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where Nj are (n̂ × n)-matrices with rank(N0, N1) = n̂, and C ′
j1(λ), C ′

j2(λ), j ∈ {0, 1},
are, respectively, (n̂ × nb)- and (n′ × nb)-matrix functions. By using the boundary oper-
ators (1.2), consider the boundary problem

l[y] − λy = f (1.6)

C0(λ)Γ0y − C1(λ)Γ1y = 0. (∗)

It follows from (1.4), (1.5) that the boundary condition (∗) can be written as two
equalities

N0y
(2)(0) + N1y

(1)(0) + C ′
01(λ)Γ ′

0y − C ′
11(λ)Γ ′

1y = 0, (1.7)

C ′
02(λ)Γ ′

0y − C ′
12(λ)Γ ′

1y = 0, (1.8)

which in fact define m linearly independent boundary conditions in the sense of [8].
The problem (1.6)–(1.8) is a particular case of a general Nevanlinna-type boundary

problem and hence it generates a generalized resolvent R(λ) = Rτ (λ) and the correspond-
ing spectral function F (t) = Fτ (t) of the operator L0 [29]. Moreover, each self-adjoint
boundary problem is given by the boundary condition (∗) with a constant-valued Nevan-
linna pair P = {C0, C1}, which implies that each canonical resolvent of the operator L0

is generated by the boundary problem (1.6)–(1.8) with C ′
j1(λ) ≡ C ′

j1 and C ′
j2(λ) ≡ C ′

j2,
j ∈ {0, 1}, λ ∈ C \ R. Observe also that the problem (1.6)–(1.8) contains as a particular
case a decomposing boundary problem. Namely, if (and only if) the equality n̂ = n is
satisfied, then C ′

01(λ) = C ′
11(λ) = 0 and the boundary conditions (1.7), (1.8) become

decomposing.
Next assume that M(·) is the Weyl function of the decomposing boundary triplet (1.2)

in the sense of Definition 1.2 and let

M(λ) =

(
m(λ) M2(λ)

M3(λ) M4(λ)

)
: C

n ⊕ C
nb → C

n ⊕ C
nb , λ ∈ C \ R, (1.9)

be the block representation of M(λ). Moreover, let Ω(λ) = Ωτ (λ) be the Štraus char-
acteristic matrix of the generalized resolvent R(λ) = Rτ (λ) [35] (for more details see
(2.35)). Then, according to [29], Ωτ (λ) is defined immediately in terms of a Nevanlinna
boundary parameter τ by the equalities

Ω̃τ (λ) =

(
M(λ) − M(λ)(τ(λ) + M(λ))−1M(λ) − 1

2I + M(λ)(τ(λ) + M(λ))−1

− 1
2I + (τ(λ) + M(λ))−1M(λ) −(τ(λ) + M(λ))−1

)
,

(1.10)

Ωτ (λ) = PCn⊕CnΩ̃τ (λ) � C
n ⊕ C

n, λ ∈ C \ R.

For a given operator pair (1.4), (1.5), consider also the operator function

Ωτ,W ′(λ) = (W ′)−1Ωτ (λ)(W ′)−1∗, λ ∈ C \ R, (1.11)
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where

W ′ =

(
−N∗

0 ∗
N∗

1 ∗

)

is an invertible (2n × 2n)-matrix (the form of the entries ∗ does not matter). We shall
show that the operator function (1.11) is of the form

Ωτ,W ′(λ) =

(
mP(λ) C∗

C 0

)
: K̂ ⊕ K̂⊥ → K̂ ⊕ K̂⊥, λ ∈ C \ R, (1.12)

where C is a constant operator. The equality (1.12) generates the uniformly strict Nevan-
linna operator function mP(·), which we call an m-function of the boundary prob-
lem (1.6)–(1.8). This function can also be defined explicitly in terms of the boundary
conditions (1.7), (1.8) (see Theorem 3.11 (3)). Moreover, in the case of self-adjoint decom-
posing boundary conditions, the function mP(·) coincides with the classical characteristic
(Titchmarsh–Weyl) function [30].

It turns out that the characteristic matrix Ωτ (·) and the m-function mP(·) are con-
nected by

mP(λ) = N̂∗Ωτ (λ)N̂ + Ĉ, Ĉ = Ĉ∗,

where N̂ is the right inverse operator for N ′ = (−N0, N1). This implies that mP(·) is the
uniformly strict part of the Nevanlinna function Ωτ (·) and the function Ωτ (·) is uniformly
strict if and only if m = n̂ = 2n and the (2n × 2n)-matrix (N0, N1) is invertible.

In the final part of the paper we consider some questions of the eigenfunction expansion.
Namely, let ϕ(t, λ) = (ϕ1(t, λ), ϕ2(t, λ), . . . , ϕd(t, λ)) be a system of d linearly indepen-
dent solutions of the equation l[y]−λy = 0 with the constant initial data ϕ(j)(0, λ) ≡ ϕj ,
j ∈ {0, 1}. Recall that a (d × d)-matrix distribution function Σ(s) = Στ,ϕ(s), s ∈ R,
is called a spectral function of the boundary problem (1.6)–(1.8) corresponding to the
solution ϕ(·, λ) if, for each function f ∈ H with compact support, the Fourier transform

gf (s) =
∫ b

0
ϕT(t, s)f(t) dt

satisfies the equality

((Fτ (β) − Fτ (α))f, f)H =
∫

[α,β)
(dΣτ,ϕ(s)gf (s), gf (s)), [α, β) ⊂ R

(here Fτ (·) is the spectral function of L0). As is known [8,30,35], in the case d = 2n

there exists a unique spectral function Στ,ϕ(·) of the problem (1.6)–(1.8). At the same
time, for simplification of calculations, it is important to make d as small as possible [8,
Chapter 13.5]. Therefore, the natural problem seems to be a description of all spectral
functions Στ,ϕ(·) with the minimally possible value of d (we denote this value by dmin

and we call the corresponding spectral function minimal). It turns out that the complete
solution of this problem is based on the concept of the m-function, mP(·). Namely, the
following theorem is immediate from the more general result obtained in the present
paper (see Theorem 4.15).
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Theorem 1.3. Let P = {C0(λ), C1(λ)} be a Nevanlinna pair (1.4), (1.5) and let
ϕN (t, λ) = (ϕ1(t, λ), ϕ2(t, λ), . . . , ϕn̂(t, λ)) be the n̂-component linearly independent solu-
tion of the equation l[y]−λy = 0 with the initial data ϕ

(1)
N (0, λ) = −N∗

0 , ϕ
(2)
N (0, λ) = N∗

1 .
Then

1. there exists a unique (n̂ × n̂)-spectral function ΣP,N (s) of the problem (1.6)–(1.8)
corresponding to ϕN (·, λ) and this function is calculated by means of the Stieltjes
formula (4.18) for the m-function mP(·),

2. dmin = n̂ and the set of all minimal spectral functions Σmin(·) is given by

Σmin(s) = X∗ΣP,N (s)X,

where X is an invertible (n̂ × n̂)-matrix.

Moreover, we show that for a fixed pair N = (N0, N1) the set of all spectral functions
ΣP,N (s) is parametrized by the Stieltjes formula (4.18) and the following equality:

mP(λ) = TN,0(λ) + TN (λ)(C0(λ) − C1(λ)M(λ))−1C1(λ)T ∗
N (λ̄), λ ∈ C \ R, (1.13)

which is similar to the known Krein formula for resolvents (see, for example, [4]). In
(1.13) M(λ) is the Weyl function (1.9) and TN,0(λ), TN (λ) are the matrix functions
defined by means of M(λ) and the pair N . The role of a parameter in (1.13) is played
by a Nevanlinna pair P = {C0(λ), C1(λ)} given by (1.4), (1.5) with fixed N0, N1 and
all possible C ′

ij(λ). Note in this connection that, for a decomposing boundary problem,
formula (1.13) leads to a similar formula given in [26]. Moreover, (1.13) implies the known
description of all Titchmarsh–Weyl functions m(·) obtained for quasi-regular expressions
l[y] by Fulton [9] and Khol′kin [18,33] (we shall touch upon these problems elsewhere).

Next, by using Theorem 1.3, we prove the inequality sm(Ã) � n̂, where sm(Ã) is
the spectral multiplicity of the (exit space) self-adjoint extension Ã ⊃ L0 given by the
boundary conditions (1.7), (1.8). This result improves the known estimate sm(Ã) �
m implied by simplicity of the operator L0. In this connection note that, in the case
∆ = [0, b], one can let Γ ′

0y = y(2)(b), Γ ′
1y = y(1)(b) in (1.7), (1.8), which implies that the

multiplicity of each eigenvalue of the canonical extension Ã = Ã∗ does not exceed n̂ (=
rank(N0, N1)). Hence, in the case ∆ = [0, b], the estimate sm(Ã) � n̂ (for the canonical
extension Ã) is immediate from (1.7), (1.8) and the discreteness of the spectrum of Ã.
Meanwhile, such an estimate does not seem to be so obvious in the case of intermediate
deficiency indices n < m < 2n and non-separated boundary conditions.

In conclusion, note that spectral multiplicity of differential operators and spectral
matrix-functions of minimal dimension have been studied by many authors. Thus,
Kac [16] and Gilbert [13] examined the spectral multiplicity of the self-adjoint oper-
ator Ã generated by the Sturm–Liouville expression

l[y] = −y′′ + V (t)y, V (t) = V (t) (1.14)

on R, which is supposed to be in the limit point case at +∞ and −∞. In [13, 16]
under the above assumptions the spectral multiplicity of Ã was described in terms of
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properties of the classical Titchmarsh–Weyl functions m+(·) and m−(·) associated with
the restrictions l[y] � R+ and l[y] � R−, respectively.

In the recent papers by Gesztesy and Zinchenko [12] and Fulton and Langer [10,11],
some special classes of the expression (1.14) on (0,∞) were examined. These authors
modified the well-known Titchmarsh–Weyl method by considering certain singular and
regular solutions of the equation l[y] = λy and thus obtained a generalized Titchmarsh–
Weyl function m(·), which is a scalar function but no longer belongs to the Nevanlinna
class. Such an approach enables one to obtain a scalar spectral function and as a result
to show that the corresponding self-adjoint operator Ã has a simple spectrum. We also
refer the reader to [31], in which scalar differential expressions l[y] of a higher order with
minimal equal deficiency indices are considered and the upper bound for the multiplicity
of the continuous spectrum of an arbitrary self-adjoint realization Ã of l[y] is found.
Moreover, the method for calculation of the absolutely continuous spectrum’s multiplicity
in terms of the abstract Weyl function is provided in [23].

Note, in connection with the above, that our approach is applicable to differential
operators of a (higher) order 2n with arbitrary (possibly unequal) deficiency indices.
Moreover, our main results are formulated immediately in terms of the operators N0 and
N1 or, equivalently, in terms of boundary conditions at the regular endpoint 0 (see (1.7)).
Therefore, our approach seems to be convenient for applications, especially in the case of
intermediate deficiency indices n < m < 2n (we emphasize that, strictly, this case does
not hold for the Sturm–Liouville operator (1.14)).

2. Preliminaries

2.1. Notation

The following notation will be used throughout the paper.

• H, H denote Hilbert spaces.

• [H1,H2] is the set of all bounded linear operators defined on H1 with values in H2.

• [H] := [H,H].

• PL is the orthogonal projector in H onto the subspace L ⊂ H.

• C+ (C−) is the upper (lower) half-plane of the complex plane.

Recall that a closed linear relation from H0 to H1 is a closed subspace in H0 ⊕ H1.
The set of all closed linear relations from H0 to H1 (from H to H) will be denoted by
C̃(H0,H1) (C̃(H)). A closed linear operator T from H0 to H1 is identified with its graph
gr T ∈ C̃(H0,H1).

For a relation T ∈ C̃(H0,H1), we denote by D(T ), R(T ) and KerT the domain, range
and the kernel, respectively. Moreover, T−1 (∈ C̃(H1,H0)) and T ∗ (∈ C̃(H1,H0)) denote
the inverse and adjoint relations.
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In the case T ∈ C̃(H0,H1) we write

• 0 ∈ ρ(T ) if KerT = {0} and R(T ) = H1, or equivalently if T−1 ∈ [H1,H0],

• 0 ∈ ρ̂(T ) if KerT = {0} and R(T ) is closed.

For a linear relation T ∈ C̃(H) we denote by ρ(T ) = {λ ∈ C : 0 ∈ ρ(T − λ)} and
ρ̂(T ) = {λ ∈ C : 0 ∈ ρ̂(T − λ)} the resolvent set and the set of regular-type points
of T , respectively.

2.2. Holomorphic operator pairs

Recall that a holomorphic operator function Φ(·) : C \ R → [H] is called a Nevanlinna
function if Imλ · Im Φ(λ) � 0 and Φ∗(λ) = Φ(λ̄), λ ∈ C \ R. Moreover, the Nevanlinna
function Φ(·) is said to be uniformly strict if 0 ∈ ρ(Im Φ(λ)) when λ ∈ C \ R.

Next assume that Λ is an open set in C, that K, H0 and H1 are Hilbert spaces and that
Cj(·) : Λ → [Hj ,K], j ∈ {0, 1}, is a pair of holomorphic operator functions (hereafter ‘a
holomorphic pair’). In what follows, we identify such a pair with a holomorphic operator
function

C(λ) = (C0(λ), C1(λ)) : H0 ⊕ H1 → K, λ ∈ Λ. (2.1)

A pair (2.1) will be called admissible if R(C(λ)) = K for all λ ∈ Λ. In the following all
pairs (2.1) are admissible unless otherwise stated.

Definition 2.1. Two holomorphic pairs C(·) : Λ → [H0 ⊕ H1,K] and C ′(·) : Λ →
[H0 ⊕ H1,K′] are said to be equivalent if C ′(λ) = ϕ(λ)C(λ), λ ∈ Λ, with a holomorphic
isomorphism ϕ(·) : Λ → [K,K′].

Clearly, the set of all holomorphic pairs (2.1) falls into non-intersecting classes of
equivalent pairs. Moreover, such a class can be identified with a function τ(·) : Λ →
C̃(H0,H1), given for all λ ∈ Λ by

τ(λ) = {(C0(λ), C1(λ));K} := {{h0, h1} ∈ H0 ⊕ H1 : C0(λ)h0 + C1(λ)h1 = 0}. (2.2)

In what follows, we suppose that H0 is a Hilbert space, H1 is a subspace in H0,
H2 := H0 
 H1 and Pj is the orthoprojector in H0 onto Hj , j ∈ {1, 2}. With each linear
relation θ ∈ C̃(H0,H1) we associate a ×-adjoint linear relation θ× ∈ C̃(H0,H1), defined
as the set of all {k0, k1} ∈ H0 ⊕ H1 such that

(k1, h0) − (k0, h1) + i(P2k0, P2h0) = 0, {h0, h1} ∈ θ.

Clearly, in the case H0 = H1 =: H, the equality θ× = θ∗ is valid.
Next assume that K0 is an auxiliary Hilbert space, K1 is a subspace in K0 and

C(λ) = (C0(λ), C1(λ)) : H0 ⊕ H1 → K0, λ ∈ C+, (2.3)

D(λ) = (D0(λ), D1(λ)) : H0 ⊕ H1 → K1, λ ∈ C−, (2.4)

are holomorphic operator pairs with the block-matrix representations

C0(λ) = (C01(λ), C02(λ)) : H1 ⊕ H2 → K0, (2.5)

D0(λ) = (D01(λ), D02(λ)) : H1 ⊕ H2 → K1. (2.6)
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Definition 2.2. A Nevanlinna collection of holomorphic operator pairs (hereafter ‘a
Nevanlinna collection’) is a totality {C(·), D(·)} of holomorphic pairs (2.3), (2.4) satisfy-
ing

2 Im(C1(λ)C∗
01(λ)) + C02(λ), C∗

02(λ) � 0, 0 ∈ ρ(C0(λ) − iC1(λ)P1), λ ∈ C+, (2.7)

2 Im(D1(λ)D∗
01(λ)) + D02, (λ)D∗

02(λ) � 0, 0 ∈ ρ(D01(λ) + iD1(λ)), λ ∈ C−, (2.8)

and
C1(λ)D∗

01(λ̄) − C01(λ)D∗
1(λ̄) + iC02(λ)D∗

02(λ̄) = 0, λ ∈ C+. (2.9)

A Nevanlinna collection (2.3), (2.4) is said to be constant if K0 = K1 =: K and
Cj(λ) = Dj(z) ≡ Cj , j ∈ {0, 1}, for all λ ∈ C+, z ∈ C−.

Clearly, a constant Nevanlinna collection can be regarded as an operator pair

C = (C0, C1) : H0 ⊕ H1 → K (2.10)

with the block-matrix representation C0 = (C01, C02) : H1 ⊕ H2 → K satisfying

2 Im(C1C
∗
01) + C02C

∗
02 = 0, 0 ∈ ρ(C0 − iC1P1), 0 ∈ ρ(C01 + iC1). (2.11)

Equation (2.11) and [24, Proposition 3.4] imply that the equality

θ = {(C0, C1); K} := {{h0, h1} ∈ H0 ⊕ H1 : C0h0 + C1h1 = 0} (2.12)

define a linear relation θ ∈ C̃(H0,H1) such that (−θ)× = −θ. Moreover, a constant Nevan-
linna collection exists if and only if dimH1 = dimH0 (= dimK).

We emphasize that in Definition 2.2 we just mean a collection that consists of the two
holomorphic operator pairs {C0(·), C1(·)} and {D0(·), D1(·)}.

Definition 2.3. A collection τ = {τ+, τ−} of two functions τ+(·) : C+ → C̃(H0,H1)
and τ−(·) : C− → C̃(H0,H1) is said to be of the class R̃(H0,H1) if, for all λ ∈ C+ and
z ∈ C−, it admits the representation

τ+(λ) = {(C0(λ), C1(λ));K0}, τ−(z) = {(D0(z), D1(z));K1} (2.13)

with a Nevanlinna collection {C(·), D(·)} (see (2.2)).
A collection τ = {τ+, τ−} ∈ R̃(H0,H1) belongs to the class R̃0(H0,H1) if it admits the

representation τ±(λ) = {(C0, C1); K} = θ, λ ∈ C±, with a constant Nevanlinna collection
(operator pair) (2.10).

It follows from Definition 2.3 that a collection τ = {τ+, τ−} ∈ R̃(H0,H1) can be
regarded as a collection of two equivalence classes of holomorphic pairs (2.3) and (2.4)
satisfying (2.7)–(2.9). Moreover, according to [24],

Im λ · (2 Im(h1, h0) − ‖P2h0‖2) � 0, {h0, h1} ∈ τ±(λ), (2.14)

and −τ+(λ) = (−τ−(λ̄))×, λ ∈ C+, for any collection τ = {τ+, τ−} ∈ R̃(H0,H1).
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Remark 2.4.

1. Clearly, a Nevanlinna collection (2.3), (2.4) satisfies the equalities

dim H0 = dimK0, dim H1 = dimK1. (2.15)

Therefore, the representation (2.13) with K0 = K1 =: K is possible if and only
if dimH1 = dimH0, in which case the corresponding Nevanlinna collection (2.3),
(2.4) can be regarded as the unique holomorphic operator pair defined on C+ ∪C−.

2. The above concepts of a Nevanlinna collection and the class R̃(H0,H1) can be
regarded as a natural generalization of the well-known concepts of a Nevanlinna
pair and the class R̃(H) of C̃(H)-valued functions. To explain this assertion, recall
(see, for example, [7]) that a function τ(λ), λ ∈ C \ R, whose values are linear
relations in the Hilbert space H belongs to the class R̃(H) if for every λ ∈ C+ the
relation τ(λ) is maximal dissipative, τ(λ)∗ = τ(λ̄), λ ∈ C \ R, and (τ(λ) + i)−1,
λ ∈ C+, is a holomorphic operator function. A holomorphic operator pair

C(λ) = (C0(λ), C1(λ)) : H ⊕ H → K, λ ∈ C \ R,

is said to be a Nevanlinna pair if (cf. (2.7)–(2.9))

Im λ · Im(C1(λ)C∗
0 (λ)) � 0, 0 ∈ ρ(C0(λ) − λC1(λ))

and

C1(λ)C∗
0 (λ̄) − C0(λ)C∗

1 (λ̄) = 0, λ ∈ C \ R,

or, equivalently, if the equality

τ(λ) = {(C0(λ), C1(λ));K}, λ ∈ C \ R, (2.16)

defines a function τ(·) ∈ R̃(H) [7]. Moreover, a constant Nevanlinna pair can be
identified by means of (2.10) and (2.12) with a self-adjoint linear relation (operator
pair) θ = θ∗ ∈ C̃(H).

The class R̃(H) plays an important role in the parametrization of all (exit space)
self-adjoint extensions of a symmetric operator A with equal deficiency indices and
related problems (see [4, 7, 20, 21, 36] and the references therein). At the same
time, in the case of unequal deficiency indices of the operator A, it is necessary to
consider unequal spaces H1 
= H0 and two functions τ+(λ), λ ∈ C+, and τ−(z),
z ∈ C−, which form a collection τ = {τ+, τ−} ∈ R̃(H0,H1) [24,25]. Of course, in
the case H0 = H1 =: H, one has R̃(H,H) = R̃(H) and the representations (2.13)
turn into (2.16).
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2.3. Differential operators

Let ∆ = [0, b〉, b � ∞, be an interval on the real axis (in the case b < ∞, the point b

may or may not belong to ∆), let H be a separable Hilbert space and let

l[y] =
n∑

k=1

(−1)k((pn−ky(k))(k) − 1
2 i[(q∗

n−ky(k))(k−1) + (qn−ky(k−1))(k)]) + pny (2.17)

be a differential expression of an even order 2n with sufficiently smooth operator-valued
coefficients pk(·), qk(·) : ∆ → [H] such that pk(t) = p∗

k(t) and 0 ∈ ρ(p0(t)). Denote by
y[k](·), k = 0, 1, . . . , 2n, the quasi-derivatives of a vector-function y(·) : ∆ → H, corre-
sponding to the expression (2.17) [30,32,33] and let D(l) be the set of functions y(·)
for which this expression makes sense. With every function y ∈ D(l), we associate the
functions y(j)(·) : ∆ → Hn, j ∈ {1, 2}, and ỹ(·) : ∆ → Hn ⊕ Hn by setting

y(1)(t) := {y[k−1](t)}n
k=1(∈ Hn),

y(2)(t) := {y[2n−k](t)}n
k=1(∈ Hn),

}
(2.18)

ỹ(t) = {y(1)(t), y(2)(t)} (∈ Hn ⊕ Hn), t ∈ ∆. (2.19)

Let K be a Hilbert space and let Y (·) : ∆ → [K, H] be an operator solution of the
differential equation

l[y] − λy = 0. (2.20)

With each such solution we associate the operator functions Y (j)(·) : ∆ → [K, Hn], j ∈
{1, 2}, and Ỹ (·) : ∆ → [K, Hn ⊕ Hn]:

Y (1)(t) = (Y (t), Y [1](t), . . . , Y [n−1](t))T,

Y (2)(t) = (Y [2n−1](t), Y [2n−2](t), . . . , Y [n](t))T,

Ỹ (t) = (Y (1)(t), Y (2)(t))T : K → Hn ⊕ Hn, t ∈ ∆,

where Y [k](·), k = 0, 1, . . . , 2n − 1 are quasi-derivatives of Y (·).
In what follows, H (= L2(∆; H)) is the Hilbert space of all measurable functions

f(·) : ∆ → H such that ∫ b

0
‖f(t)‖2 dt < ∞.

Moreover, L′
2[K, H] denotes the set of all operator functions Y (·) : ∆ → [K, H] such that

Y (t)h ∈ H for all h ∈ K.
It is known [30,32,33] that the expression (2.17) generates the maximal operator L

in H, defined on the domain D = D(L) := {y ∈ D(l) ∩ H : l[y] ∈ H} by Ly = l[y], y ∈ D.
Moreover, for all y, z ∈ D there exists the limit

[y, z](b) := lim
t↑b

(y(1)(t), z(2)(t))Hn − (y(2)(t), z(1)(t))Hn . (2.21)
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Let

D0 = {y ∈ D : ỹ(0) = 0 and [y, z](b) = 0, z ∈ D}

and let L0 = L � D0 be the minimal operator generated by the expression (2.17). Then
L0 is a closed densely defined symmetric operator in H and L∗

0 = L [30,32,33].
Next denote by Nλ(L0) := Ker(L − λ)(λ̄ ∈ ρ̂(L0)) the defect subspace of the operator

L0 and let n±(L0) := dimNλ(L0), λ ∈ C±, be its deficiency indices. As is known, these
indices are not necessarily equal [19].

Let θ = θ∗ ∈ C̃(Hn) and let Lθ be a symmetric extension of L0 with the domain
D(Lθ) = {y ∈ D : ỹ(0) ∈ θ, [y, z](b) = 0, for all z ∈ D}. According to [27] deficiency
indices n±(Lθ) of an operator Lθ do not depend on θ (= θ∗), which enables us to introduce
the deficiency indices at the right endpoint b as nb± := n±(Lθ).

2.4. Decomposing boundary triplets and Weyl functions

Assume that H′
1 is a subspace in a Hilbert space H′

0, H′
2 := H′

0 
 H′
1, Γ ′

0 : D → H′
0

and Γ ′
1 : D → H′

1 are linear maps and P ′
j is the orthoprojector in H′

0 onto H′
j , j ∈ {1, 2}.

Moreover, let H0 = Hn ⊕ H′
0, H1 = Hn ⊕ H′

1 and let Γj : D → Hj , j ∈ {0, 1}, be linear
maps given for all y ∈ D by

Γ0y = {y(2)(0), Γ ′
0y} (∈ Hn ⊕ H′

0), Γ1y = {−y(1)(0), Γ ′
1y} (∈ Hn ⊕ H′

1). (2.22)

Definition 2.5 (Mogilevskii [27]). A collection Π = {H0 ⊕ H1, Γ0, Γ1}, where Γ0

and Γ1 are linear maps (2.22), is said to be a decomposing D-boundary triplet (briefly a
decomposing D-triplet) for L if the map Γ ′ = (Γ ′

0, Γ
′
1)

T : D → H′
0 ⊕ H′

1 is surjective and
the following identity holds:

[y, z](b) = (Γ ′
1y, Γ ′

0z) − (Γ ′
0y, Γ ′

1z) + i(P ′
2Γ

′
0y, P ′

2Γ
′
0z), y, z ∈ D. (2.23)

In the case H′
0 = H′

1 =: H′(⇐⇒ H0 = H1 =: H) a decomposing D-triplet Π =
{H, Γ0, Γ1} is called a decomposing boundary triplet for L. For such a triplet, the identity
(2.23) takes the form

[y, z](b) = (Γ ′
1y, Γ ′

0z) − (Γ ′
0y, Γ ′

1z), y, z ∈ D. (2.24)

As was shown in [27, Lemma 3.4], a decomposing D-triplet (boundary triplet) for L

exists if and only if nb− � nb+ (respectively, nb− = nb+), in which case

dim H′
1 = nb− � nb+ = dimH′

0, dim H1 = n−(L0) � n+(L0) = dimH0 (2.25)

(respectively, nb− = nb+ = dimH′ and n−(L0) = n+(L0) = dimH). Therefore, in the
following we suppose (without loss of generality) that nb− � nb+ and, consequently,
n−(L0) � n+(L0).
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Remark 2.6.

1. It follows from (2.25) that, in the case dimH < ∞, the last term in (2.23) appears
if and only if n+(L0) > n−(L0).

2. To illustrate the concept of a decomposing D-triplet consider the following example.
Assume that dim H = 1 (the scalar case) and n+(L0) = n + 1, n−(L0) = n (such
a situation is possible in view of [19]). Then, according to [27, Proposition 3.10],
the following statements hold:

(i) the linear space Ñi = {y ∈ L2(∆) : l[y] = iy, y′(0) = 0} is one dimensional;

(ii) if v ∈ Ñi and ‖v‖L2(∆) = 1, then the operators

Γ0(y) = {y(2)(0), 1√
2
[y, v](b)} (∈ C

n ⊕ C), Γ1y = −y(1)(0) (∈ C
n), y ∈ D,

form the decomposing D-boundary triplet Π = {(Cn ⊕C)⊕C
n, Γ0, Γ1} for L.

Proposition 2.7 (Mogilevskii [27]). Let {H0 ⊕ H1, Γ0, Γ1} be a decomposing
D-triplet (2.22) for L. Then the following hold.

1. For each λ ∈ C+(z ∈ C−) there exists a unique operator function Z+(·, λ) ∈
L′

2[H0, H](Z−(·, z) ∈ L′
2[H1, H]) satisfying (2.20) and the boundary condition

Γ0(Z+(t, λ)h0) = h0, h0 ∈ H0 (respectively, P1Γ0(Z−(t, z)h1) = h1, h1 ∈ H1).
If

Z+(t, λ) = (v0(t, λ), u+(t, λ)) : Hn ⊕ H′
0 → H, λ ∈ C+, (2.26)

Z−(t, z) = (v0(t, z), u−(t, z)) : Hn ⊕ H′
1 → H, z ∈ C−, (2.27)

are the block representations of Z+(·, λ) and Z−(·, z), then the above boundary
condition can be represented as

v
(2)
0 (0, µ) = IHn(µ ∈ C \ R), Γ ′

0(v0(t, λ)ĥ) = 0, P ′
1Γ

′
0(v0(t, z)ĥ) = 0, ĥ ∈ Hn,

u
(2)
+ (0, λ) = 0, Γ ′

0(u+(t, λ)h′
0) = h′

0, λ ∈ C+, h′
0 ∈ H′

0,

u
(2)
− (0, z) = 0, P ′

1Γ
′
0(u−(t, z)h′

1) = h′
1, z ∈ C−, h′

1 ∈ H′
1.

2. The equalities (γ+(λ)h0)(t) = Z+(t, λ)h0, h0 ∈ H0, and (γ−(z)h1)(t) = Z−(t, z)h1,
h1 ∈ H1, define the isomorphisms γ+(λ) ∈ [H0,Nλ(L0)] and γ−(z) ∈ [H1,Nz(L0)].

Definition 2.8. The operator functions M+(·) : C+ → [H0,H1] and M−(·) : C− →
[H1,H0] given for all λ ∈ C+ and z ∈ C− by

M+(λ)h0 = Γ1(Z+(t, λ)h0), h0 ∈ H0,

M−(z)h1 = (Γ1 + iP2Γ0)(Z−(t, z)h1), h1 ∈ H1,

}
(2.28)

are called the Weyl functions for the decomposing D-triplet {H0 ⊕ H1, Γ0, Γ1}.
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As was proved in [27, Theorem 3.12] all the entries of the block representations

M+(λ) =

(
m(λ) M2+(λ)

M3+(λ) M4+(λ)

)
: Hn ⊕ H′

0 → Hn ⊕ H′
1, λ ∈ C+, (2.29)

M−(z) =

(
m(z) M2−(z)

M3−(z) M4−(z)

)
: Hn ⊕ H′

1 → Hn ⊕ H′
0, z ∈ C−, (2.30)

can be defined immediately in terms of boundary values of the functions v0(·, λ) and
u±(·, λ). In particular, (2.29) and (2.30) generate the uniformly strict Nevanlinna function
m(λ) = −v

(1)
0 (0, λ), which in [27] we called the m-function.

Observe also that, in the case of a decomposing boundary triplet {H, Γ0, Γ1} (i.e. if
H0 = H1 =: H = Hn ⊕H′), we can let Z(t, λ) = Z±(t, λ), λ ∈ C± (cf. (2.26) and (2.27)),
in which case the relations (2.28) can be written as

M(λ)h = Γ1(Z(t, λ)h), h ∈ H, λ ∈ C \ R. (2.31)

Formula (2.31) defines the Weyl function M(λ) (∈ [H]) of the triplet {H, Γ0, Γ1} with
the block representation

M(λ) =

(
m(λ) M2(λ)

M3(λ) M4(λ)

)
: Hn ⊕ H′ → Hn ⊕ H′, λ ∈ C \ R. (2.32)

Moreover, M(·) is a Nevanlinna function.

Remark 2.9. Recall that the concept of a D-boundary triplet and the corresponding
Weyl function for an abstract symmetric operator with arbitrary (possibly unequal)
deficiency indices was introduced in [25]. As proved in [27], a decomposing D-triplet
(2.22) for L is a D-boundary triplet, while γ±(·) and M±(·) are the corresponding γ-fields
and Weyl functions in the sense of [25]. Moreover, if Π is a decomposing boundary triplet
(that is, H0 = H1 =: H and n−(L0) = n+(L0)), then the operator functions γ(λ) = γ±(λ)
and M(λ) = M±(λ), λ ∈ C±, are respectively the γ-field and the abstract Weyl function
in the sense of Derkach and Malamud [4].

2.5. Generalized resolvents and characteristic matrices

Let Ã ⊃ L0 be an exit-space self-adjoint extension of the operator L0 acting in the
Hilbert space H̃ ⊃ H and let Ẽ(t) be the orthogonal spectral function of the operator
Ã. Recall that the operator functions R(λ) = PH(Ã − λ)−1 � H, λ ∈ C \ R, and F (t) =
PHẼ(t) � H are called the generalized resolvent and the spectral function, respectively,
of the operator L0. In the following we suppose that the spectral function Ẽ(t) (or
equivalently the extension Ã) is minimal, which means that span{H, Ẽ(t)H : t ∈ R} = H̃.

Let Y0(·, λ) : ∆ → [Hn ⊕Hn, H] be the ‘canonical’ operator solution of (2.20) with the
initial data Ỹ0(0, λ) = IHn⊕Hn and let

JHn :=

(
0 −IHn

IHn 0

)
: Hn ⊕ Hn → Hn ⊕ Hn. (2.33)

https://doi.org/10.1017/S0013091512000053 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091512000053


744 V. Mogilevskii

According to [3,35] the generalized resolvent R(λ) admits the representation

(R(λ)f)(x) =
∫ b

0
G(x, t, λ)f(t) dt := lim

η↑b

∫ η

0
G(x, t, λ)f(t) dt, f = f(·) ∈ H, (2.34)

with the Green function G(·, ·, λ) : ∆ × ∆ → [H] given by

G(x, t, λ) = Y0(x, λ)(Ω(λ) + 1
2 sgn(t − x)JHn)Y ∗

0 (t, λ̄), λ ∈ C \ R. (2.35)

Here Ω(λ) (∈ [Hn ⊕ Hn]) is a Nevanlinna operator function, which is called a character-
istic matrix of the generalized resolvent R(λ) [35].

Next assume that Π = {H0 ⊕ H1, Γ0, Γ1} is a decomposing D-triplet (2.22) for L and
τ = {τ+, τ−} ∈ R̃(H0,H1) is a collection of holomorphic pairs (2.13) with the block
representations

C0(λ) = (Ĉ0(λ), C ′
0(λ)) : Hn ⊕ H′

0 → K0,

C1(λ) = (Ĉ1(λ), C ′
1(λ)) : Hn ⊕ H′

1 → K0, λ ∈ C+,

}
(2.36)

D0(λ) = (D̂0(λ), D′
0(λ)) : Hn ⊕ H′

0 → K1,

D1(λ) = (D̂1(λ), D′
1(λ)) : Hn ⊕ H′

1 → K1, λ ∈ C−.

}
(2.37)

For a given function f ∈ H consider the boundary-value problem

l[y] − λy = f, (2.38)

Ĉ0(λ)y(2)(0) + Ĉ1(λ)y(1)(0) + C ′
0(λ)Γ ′

0y − C ′
1(λ)Γ ′

1y = 0, λ ∈ C+, (2.39)

D̂0(λ)y(2)(0) + D̂1(λ)y(1)(0) + D′
0(λ)Γ ′

0y − D′
1(λ)Γ ′

1y = 0, λ ∈ C−. (2.40)

In view of (2.36) and (2.37) the conditions (2.39) and (2.40) can be written as

C0(λ)Γ0y − C1(λ)Γ1y = 0, λ ∈ C+; D0(λ)Γ0y − D1(λ)Γ1y = 0, λ ∈ C−. (2.41)

A function y(·, ·) : ∆ × (C \ R) → H is called a solution of the boundary problem (2.38)–
(2.40) if, for each λ ∈ C \R, the function y(·, λ) belongs to D and satisfies (2.38) and the
boundary conditions (2.39), (2.40).

Theorem 2.10 (Mogilevskii [29]). Let τ = {τ+, τ−} ∈ R̃(H0,H1) be a collection
given by (2.13) and (2.36), (2.37) and let Ω̃τ+(λ) be the operator function defined for all
λ ∈ C+ by (1.10) (with τ+ and M+ in place of τ and M). Then we have the following.

1. For each f ∈ H the boundary problem (2.38)–(2.40) has the unique solution
y(t, λ) = yf (t, λ) and the equality (R(λ)f)(t) = yf (t, λ), f ∈ H, λ ∈ C \ R, defines
a generalized resolvent R(λ) := Rτ (λ) of the minimal operator L0.

2. The characteristic matrix of the generalized resolvent Rτ (λ) is

Ω(λ) = Ωτ (λ) := PHn⊕HnΩ̃τ+(λ) � Hn ⊕ Hn, λ ∈ C+. (2.42)

Conversely, for each generalized resolvent R(λ) there exists a unique τ ∈ R̃(H0,H1)
such that R(λ) = Rτ (λ). Moreover, Rτ (λ) is a canonical resolvent if and only if
τ ∈ R̃0(H0,H1).
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Proposition 2.11. The characteristic matrix Ωτ (·) satisfies the equality

s − lim
y→∞

Ωτ (iy)/y = 0. (2.43)

Proof. For simplicity, let Π = {H, Γ0, Γ1} be a decomposing boundary triplet for L.
Since the operator L0 is densely defined, it follows from [6,7] that

s − lim
y→∞

(M(iy) − M(iy)(τ(iy) + M(iy))−1M(iy))/y = 0,

s − lim
y→∞

(τ(iy) + M(iy))−1/y = 0.

Therefore, by (1.10), s − limy→∞ Ω̃τ (iy)/y = 0, which in view of (2.42) gives (2.43).
In the case of a decomposing D-triplet the proof is similar. �

Remark 2.12. It follows from Theorem 2.10 that the boundary problem (2.38)–(2.40)
gives a parametrization of all generalized resolvents R(λ) = Rτ (λ) and characteristic
matrices Ω(λ) = Ωτ (λ) by means of the Nevanlinna boundary parameter τ . Moreover,
since a spectral function F (t) is uniquely defined by the corresponding generalized resol-
vent R(λ), one obtains the parametrization F (t) = Fτ (t) of all spectral functions of the
operator L0 by means of the same boundary parameter τ .

3. m-functions and characteristic matrices

3.1. Quasi-constant and N-triangular Nevanlinna collections

Let
Π = {H0 ⊕ H1, Γ0, Γ1}

be a decomposing D-triplet (2.22) for L (with Hj = Hn ⊕ H′
j , j ∈ {0, 1}). A Nevanlinna

collection {C(·), D(·)} defined by (2.3), (2.4) and the block representations (2.36), (2.37)
will be called quasi-constant if Ĉj(λ) = D̂j(z) ≡ Ĉj(∈ [Hn,K1]), j ∈ {0, 1}, for all λ ∈ C+

and z ∈ C− (such a definition is correct, since K1 ⊂ K0). Clearly, each constant pair
θ(= θ∗) = {(C0, C1); K} is quasi-constant.

Next assume that
N = (N0, N1) : Hn ⊕ Hn → K̂ (3.1)

is an admissible operator pair (i.e. R(N) = K̂) and let θN ∈ C̃(Hn) be a linear relation
given by θN = {(N0, N1); K̂}. The operator pair (3.1) will be called symmetric (self-
adjoint) if the linear relation θN is symmetric (self-adjoint).

Definition 3.1. A Nevanlinna collection {C(·), D(·)} defined by (2.3), (2.4) will be
called N -triangular if there exist a Hilbert space K′

0 and a subspace K′
1 ⊂ K′

0 such that
Kj = K̂ ⊕ K′

j , j ∈ {0, 1}, and the following block representations hold:

C0(λ) =

(
N0 C ′

01(λ)

0 C ′
02(λ)

)
: Hn ⊕ H′

0 → K̂ ⊕ K′
0, λ ∈ C+, (3.2)

C1(λ) =

(
N1 C ′

11(λ)

0 C ′
12(λ)

)
: Hn ⊕ H′

1 → K̂ ⊕ K′
0, λ ∈ C+, (3.3)
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D0(λ) =

(
N0 D′

01(λ)

0 D′
02(λ)

)
: Hn ⊕ H′

0 → K̂ ⊕ K′
1, λ ∈ C−, (3.4)

D1(λ) =

(
N1 D′

11(λ)

0 D′
12(λ)

)
: Hn ⊕ H′

1 → K̂ ⊕ K′
1, λ ∈ C−. (3.5)

A constant N -triangular collection can be regarded as an operator pair

C = (C0, C1) : (Hn ⊕ H′
0) ⊕ (Hn ⊕ H′

1) → K̂ ⊕ K′ (3.6)

defined by the block-matrix representations

C0 =

(
N0 C ′

01

0 C ′
02

)
: Hn ⊕ H′

0 → K̂ ⊕ K′︸ ︷︷ ︸
K

, C1 =

(
N1 C ′

11

0 C ′
12

)
: Hn ⊕ H′

1 → K̂ ⊕ K′︸ ︷︷ ︸
K
(3.7)

and satisfying the relations (2.11).
Assume now that {C(·), D(·)} is a quasi-constant Nevanlinna collection defined

by (2.3), (2.4) and (2.36), (2.37) and let K̂(⊂ K1) be the range of the operator

Ĉ := C(λ) � Hn ⊕ Hn = (Ĉ0, Ĉ1) : Hn ⊕ Hn → K1. (3.8)

It is clear that the collection {C(·), D(·)} is N -triangular with some N if and only if K̂
is closed, in which case Nj = Ĉj(∈ [Hn, K̂]), j ∈ {0, 1} (here Ĉj is considered as acting
from Hn to K̂). In this connection the following proposition holds.

Proposition 3.2. If nb+ < ∞ (in particular, if dim H < ∞), then each quasi-constant
Nevanlinna collection is N -triangular.

Proof. Since the operator pair (2.3) is admissible, it follows that R(C(λ)) = K0 and,
therefore, the range of the operator C∗(λ) is a closed subspace in H0 ⊕ H1. Moreover,
by (3.8), Ĉ∗ = PHn⊕HnC∗(λ) and, consequently,

R(Ĉ∗) = PHn⊕HnR(C∗(λ)). (3.9)

Since in view of (2.25) codim(Hn ⊕Hn) = dim(H′
0 ⊕H′

1) < ∞, it follows from (3.9) that
R(Ĉ∗) is a closed subspace in Hn ⊕Hn. This implies that K̂ (= R(Ĉ)) is also closed. �

Remark 3.3. In the case nb+ = ∞ (⇐⇒ dim H′
0 = ∞) one can easily construct a

quasi-constant (and even constant) Nevanlinna collection {C(·), D(·)} with non-closed
subspace K̂, which implies that this collection is not N -triangular with any N . Hence,
the condition nb+ < ∞ in Proposition 3.2 is essential.

Two N -triangular Nevanlinna collections {C(·), D(·)} and {C̃(·), D̃(·)} (with the same
N) are said to be equivalent if the operator pairs C(·) and C̃(·) as well as D(·) and
D̃(·) are equivalent in the sense of Definition 2.1. It is clear that for a given operator
pair N (see (3.1)) the set of all N -triangular Nevanlinna collections falls into noninter-
secting equivalence classes. In what follows, the set of all such classes will be denoted
by TR(H0,H1). Moreover, we shall denote by P = {C(·), D(·)} both an N -triangular
Nevanlinna collection and the corresponding equivalence class.
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Definition 3.4. A collection (the corresponding equivalence class) P = {C(·), D(·)} ∈
TR(H0,H1) is said to belong to the class TR0(H0,H1) if it admits the representa-
tion (3.6), (3.7) as a constant N -triangular collection.

In the following, we write P = {C0, C1} ∈ TR0(H0,H1) identifying the collection
P ∈ TR0(H0,H1) and the corresponding operator pair (3.6), (3.7).

If Π = {H, Γ0, Γ1} is a decomposing boundary triplet (2.22) for L (i.e. if H′
0 = H′

1 =:
H′), then the above definition of the N -triangular Nevanlinna collection can be rather
simplified. Namely, in this case one can let K′

0 = K′
1 =: K′ in (3.2)–(3.5), so that the

Nevanlinna collection {C(·), D(·)} given by (3.2)–(3.5) can be considered as a unique
Nevanlinna operator pair (C0(λ), C1(λ)) : H ⊕ H → K defined for λ ∈ C \ R by the block
representations

C0(λ) =

(
N0 C ′

01(λ)

0 C ′
02(λ)

)
: Hn ⊕ H′ → K̂ ⊕ K′, (3.10)

C1(λ) =

(
N1 C ′

11(λ)

0 C ′
12(λ)

)
: Hn ⊕ H′ → K̂ ⊕ K′. (3.11)

As before, we identify equivalent N -triangular Nevanlinna pairs (3.10), (3.11) (with the
same N) and denote by P = {C0(·), C1(·)} both a pair (3.10), (3.11) and the correspond-
ing equivalence class. Observe also that in this case the constant operator pair (3.6), (3.7)
is self-adjoint, i.e. it defines by means of (2.12) a self-adjoint relation θ = θ∗ in Hn ⊕ H′

(cf. Remark 2.4 (2)).
In the following we denote by TR(H) the set of all equivalence classes of N -triangular

Nevanlinna pairs (3.10), (3.11) and by TR0(H) the set of all equivalence classes P ∈
TR(H) containing a constant (self-adjoint) pair (3.7).

Proposition 3.5. Assume that N = (N0, N1) is an operator pair (3.1) and that
{C(·), D(·)} ∈ TR(H0,H1) is a collection (3.2)–(3.5). Then the pair N is symmetric and

n dim H � dim K̂ � n−(L0). (3.12)

Proof. Let τ±(λ) be linear relations (2.13). Then in view of (3.2)–(3.5) θN =
τ±(λ) ∩ (Hn ⊕ Hn), λ ∈ C±, and (2.14) shows that θN is a symmetric linear relation.
Therefore, dimHn � codim θN = dim K̂, which, together with (2.15) and the second
relation in (2.25), gives (3.12). �

3.2. Generalized resolvents and the Green function

Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing D-triplet (2.22) for L and let P =
{C(·), D(·)} ∈ TR(H0,H1) be a collection (3.2)–(3.5). Then the corresponding boundary
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problem (2.38)–(2.40) can be written as

l[y] − λy = f, (3.13)

N0y
(2)(0) + N1y

(1)(0) + C ′
01(λ)Γ ′

0y − C ′
11(λ)Γ ′

1y = 0, (3.14)

C ′
02(λ)Γ ′

0y − C ′
12(λ)Γ ′

1y = 0, λ ∈ C+, (3.15)

N0y
(2)(0) + N1y

(1)(0) + D′
01(λ)Γ ′

0y − D′
11(λ)Γ ′

1y = 0, (3.16)

D′
02(λ)Γ ′

0y − D′
12(λ)Γ ′

1y = 0, λ ∈ C−. (3.17)

Moreover, in the case P = {C0, C1} ∈ TR0(H0,H1) (see (3.6) and (3.7)) the boundary
conditions (3.14)–(3.17) take the form

N0y
(2)(0) + N1y

(1)(0) + C ′
01Γ

′
0y − C ′

11Γ
′
1y = 0, (3.18)

C ′
02Γ

′
0y − C ′

12Γ
′
1y = 0. (3.19)

Observe also that, in the particular case of a decomposing boundary triplet Π =
{H, Γ0, Γ1} and a pair P = {C0(·), C1(·)} ∈ TR(H) given by (3.10), (3.11), the boundary
conditions (3.14)–(3.17) can be written in the simpler form

N0y
(2)(0) + N1y

(1)(0) + C ′
01(λ)Γ ′

0y − C ′
11(λ)Γ ′

1y = 0, (3.20)

C ′
02(λ)Γ ′

0y − C ′
12(λ)Γ ′

1y = 0, λ ∈ C \ R. (3.21)

The following corollary is immediate from Theorem 2.10.

Corollary 3.6. Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing D-triplet (2.22) for L

and let P = {C(·), D(·)} ∈ TR(H0,H1) be a collection given by (3.2)–(3.5). Then the
boundary problem (3.13)–(3.17) generates the generalized resolvent R(λ) = RP(λ) of
the operator L0 (in the same way as in Theorem 2.10). Moreover, R(λ) is a canonical
resolvent if and only if P ∈ TR0(H0,H1), in which case the corresponding boundary
conditions can be defined by (3.18) and (3.19).

If, in addition, H0 = H1 =: H (that is, Π is a decomposing boundary triplet), then
the above statements hold for the boundary problem (3.13), (3.20) and (3.21).

Remark 3.7. Note that, in view of Corollary 3.6, the generalized resolvent R(λ) =
RP(λ) can also be defined by RP(λ) = (Ã(λ) − λ)−1, λ ∈ C \ R, where Ã(λ) =
L � D(Ã(λ)), and D(Ã(λ)) is the set of all functions y ∈ D satisfying the boundary
conditions (3.14)–(3.17) or, equivalently, (2.41).

Assume that P = {C(·), D(·)} ∈ TR(H0,H1) is a collection (3.2)–(3.5) and let
D̃1(λ) (∈ [H1,K1]) and D̃0(λ) (∈ [H0,K1]) be defined by

D̃1(λ) := D0(λ) � H1, D̃0(λ) = D1(λ)P1 + iD0(λ)P2, λ ∈ C−.

It follows from (3.4) and (3.5) that the following block representations hold:

D̃1(λ) =

(
N0 D̃′

01(λ)

0 D̃′
02(λ)

)
: Hn ⊕ H′

1 → K̂ ⊕ K′
1, λ ∈ C−,

D̃0(λ) =

(
N1 D̃′

11(λ)

0 D̃′
12(λ)

)
: Hn ⊕ H′

0 → K̂ ⊕ K′
1, λ ∈ C−.
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Proposition 3.8. Let the conditions of Corollary 3.6 be satisfied. Then, we have the
following.

1. For each λ ∈ C \ R there exists the unique operator function v(·, λ) ∈ L′
2[K̂, H]

satisfying the equation l[y] − λy = 0 and the boundary conditions

(N0v
(2)(0, λ) + N1v

(1)(0, λ))ĥ + (C ′
01(λ)Γ ′

0 − C ′
11Γ

′
1)(v(t, λ)ĥ) = ĥ, (3.22)

(C ′
02(λ)Γ ′

0 − C ′
12(λ)Γ ′

1)(v(t, λ)ĥ) = 0, ĥ ∈ K̂, λ ∈ C+, (3.23)

(N0v
(2)(0, λ) + N1v

(1)(0, λ))ĥ + (D′
01(λ)Γ ′

0 − D′
11(λ)Γ ′

1)(v(t, λ)ĥ) = ĥ, (3.24)

(D′
02(λ)Γ ′

0 − D′
12(λ)Γ ′

1)(v(t, λ)ĥ) = 0, ĥ ∈ K̂, λ ∈ C−. (3.25)

2. The functions v(·, λ) and Z±(·, λ) (see (2.26) and (2.27)) are connected by

v(t, λ) =

{
Z+(t, λ)(C0(λ) − C1(λ)M+(λ))−1 � K̂, λ ∈ C+,

Z−(t, λ)(D̃1(λ) − D̃0(λ)M−(λ))−1 � K̂, λ ∈ C−.
(3.26)

where M±(·) are the Weyl functions (2.29) and (2.30) for Π.

Proof. It follows from (2.22) and (3.2)–(3.5) that the conditions (3.22)–(3.25) are
equivalent to

(C0(λ)Γ0 − C1(λ)Γ1)(v(t, λ)ĥ) = ĥ, ĥ ∈ K̂, λ ∈ C+, (3.27)

(D0(λ)Γ0 − D1(λ)Γ1)(v(t, λ)ĥ) = ĥ, ĥ ∈ K̂, λ ∈ C−. (3.28)

As was shown in [29], 0 ∈ ρ(C0(λ) − C1(λ)M+(λ)), 0 ∈ ρ(D̃1(λ) − D̃0(λ)M−(λ)) and

(C0(λ)Γ0 − C1(λ)Γ1)(Z+(t, λ)h) = (C0(λ) − C1(λ)M+(λ))h, h ∈ H0, λ ∈ C+,

(D0(λ)Γ0 − D1(λ)Γ1)(Z−(t, λ)h) = (D̃1(λ) − D̃0(λ)M−(λ))h, h ∈ H1, λ ∈ C−.

Hence, the equality (3.26) correctly defines the function v(·, λ) ∈ L′
2[K̂, H] satisfying

(3.27), (3.28) and consequently (3.22)–(3.25). The uniqueness of such a function follows
from the inclusion λ ∈ ρ(Ã(λ)), where Ã(λ) is defined in Remark 3.7. �

Remark 3.9. One can easily verify that for a given operator pair N = (N0, N1) the
operator function v(·, λ) is uniquely defined by the equivalence class P ∈ TR(H0,H1),
i.e. v(·, λ) does not depend on the choice of an N -triangular Nevanlinna collection (3.2)–
(3.5) inside the equivalence class. To emphasize this fact we shall write v(·, λ) = vP(·, λ).

Moreover, it is easy to prove that, for each λ ∈ C+ (respectively, λ ∈ C−), the equal-
ity y(t) = v(t, λ)ĥ gives a bijective correspondence between all ĥ ∈ K̂ and all solutions
y(·) of (2.20) that belong to H and satisfy the boundary condition (3.15) (respectively,
(3.17)). Therefore, the operator function vP(·, λ) is a fundamental solution of the bound-
ary problems (2.20), (3.15) for λ ∈ C+ and (2.20), (3.17) for λ ∈ C− (see [28,33]).
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Theorem 3.10. Assume that Π = {H0⊕H1, Γ0, Γ1} is a decomposing D-triplet (2.22)
for L, P = {C(·), D(·)} ∈ TR(H0,H1) is a collection (3.2)–(3.5) and ϕN (·, λ) : ∆ →
[K̂, H], λ ∈ C, is the operator solution of (2.20) with the initial data

ϕ
(1)
N (0, λ) = −N∗

0 , ϕ
(2)
N (0, λ) = N∗

1 , λ ∈ C. (3.29)

Then the generalized resolvent R(λ) = RP(λ) generated by the boundary problem (3.13)–
(3.17) admits the representation (2.34) with the Green function G(x, t, λ) = GP(x, t, λ)
given by

GP(x, t, λ) =

{
vP(x, λ)ϕ∗

N (t, λ̄), x > t,

ϕN (x, λ)v∗
P(t, λ̄), x < t,

λ ∈ C \ R. (3.30)

Proof. Let τ = {τ+, τ−} ∈ R̃(H0,H1) be a collection given by (2.13) and (2.36),
(2.37), and let Y+(·, λ) : ∆ → [K1, H], λ ∈ C+, and Y−(·, z) : ∆ → [K0, H], z ∈ C−, be
the operator solutions of (2.20) with the initial data

Ỹ+(0, λ) = (−D̂∗
0(λ̄), D̂∗

1(λ̄))T, Ỹ−(0, z) = (−Ĉ∗
0 (z̄), Ĉ∗

1 (z̄))T. (3.31)

Assume also that Z+(·, λ) ∈ L′
2[K0, H] and Z−(·, z) ∈ L′

2[K1, H] are given by

Z+(t, λ) = Z+(t, λ)(C0(λ) − C1(λ)M+(λ))−1, λ ∈ C+, (3.32)

Z−(t, z) = Z−(t, z)(D̃1(z) − D̃0(z)M−(z))−1, z ∈ C−, (3.33)

and let

Y (t, λ) =

{
Y+(t, λ), λ ∈ C+,

Y−(t, λ), λ ∈ C−,
Z(t, λ) =

{
Z+(t, λ), λ ∈ C+,

Z−(t, λ), λ ∈ C−.

Then according to [29, Theorem 16] the Green function in (2.34) is

G(x, t, λ) =

{
Z(x, λ)Y ∗(t, λ̄), x > t,

Y (x, λ)Z∗(t, λ̄), x < t,
λ ∈ C \ R. (3.34)

Next, in the case of the block representations (3.2)–(3.5) one has

Ĉj(λ) = (Nj , 0)T ∈ [Hn, K̂ ⊕ K′
0], D̂j(λ) = (Nj , 0)T ∈ [Hn, K̂ ⊕ K′

1], j ∈ {0, 1}.

Therefore, the initial data (3.31) can be written in the form

Ỹ+(0, λ) =

(
−N∗

0 0
N∗

1 0

)
∈ [K̂ ⊕ K′

1, H
n ⊕ Hn],

Ỹ−(0, z) =

(
−N∗

0 0
N∗

1 0

)
∈ [K̂ ⊕ K′

0, H
n ⊕ Hn],
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which, in view of (3.29), gives the block representations

Y+(t, λ) = (ϕN (t, λ), 0) : K̂⊕K′
1 → H, Y−(t, z) = (ϕN (t, z), 0) : K̂⊕K′

0 → H. (3.35)

Moreover, by (3.26), the operator functions (3.32) have the block representations

Z+(t, λ) = (vP(t, λ), u+(t, λ)), Z−(t, z) = (vP(t, z), u+(t, z)) (3.36)

with some operator functions u+(t, λ) and u−(t, z). Now, combining (3.35) and (3.36)
with (3.34), we arrive at the equality (3.30). �

3.3. m-functions

Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing D-triplet (2.22) for L and let N =
(N0, N1) be an admissible operator pair (3.1). Since R(N) = K̂, it follows that KerN∗ =
{0} and R(N∗) is a closed subspace in Hn ⊕ Hn. Therefore, there exist a Hilbert space
K̂⊥ and operators Tj ∈ [Hn, K̂⊥], j ∈ {0, 1}, such that the operator

W ′ =

(
−N∗

0 −T ∗
0

N∗
1 T ∗

1

)
: K̂ ⊕ K̂⊥ → Hn ⊕ Hn (3.37)

is an isomorphism.
Next assume that W ′ is an isomorphism (3.37) and let YW ′(·, λ) (∈ [K̂ ⊕ K̂⊥, H]) be

the operator solution of (2.20) such that ỸW ′(0, λ) = W ′. Then

YW ′(t, λ) = (ϕN (t, λ), ϕT (t, λ)) : K̂ ⊕ K̂⊥ → H, λ ∈ C, (3.38)

where ϕT (·, λ) : ∆ → [K̂⊥, H] is the operator solution of (2.20) given by (3.29) with T

in place of N . We also introduce the operator JW ′ = (W ′)−1JHn(W ′)−1∗ (∈ [K̂ ⊕ K̂⊥]),
where JHn is the operator (2.33). Since J ∗

W ′ = −JW ′ , the operator JW ′ has the block
representation

JW ′ =

(
J1 −J ∗

2

J2 J4

)
: K̂ ⊕ K̂⊥ → K̂ ⊕ K̂⊥, (3.39)

with J1 = −J ∗
1 and J4 = −J ∗

4 .

Theorem 3.11. Assume that the following assumptions are satisfied:

(i) Π = {H0 ⊕ H1, Γ0, Γ1} is a decomposing D-triplet (2.22) for L;

(ii) N = (N0, N1) is an operator pair (3.1);

(iii) P = {C(·), D(·)} ∈ TR(H0,H1) is a collection of holomorphic pairs (3.2)–(3.5);

(iv) τ = {τ+, τ−} ∈ R̃(H0,H1) is the corresponding collection (2.13);

(v) Ωτ (·) is the characteristic matrix (2.42).
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Moreover, let W ′ be an isomorphism (3.37) and let Ωτ,W ′(·) : C\R → [K̂⊕ K̂⊥] be the
operator function given by

Ωτ,W ′(λ) = (W ′)−1Ωτ (λ)(W ′)−1∗, λ ∈ C \ R. (3.40)

Then the following hold.

1. The Green function (3.30) admits the representation

GP(x, t, λ) = YW ′(x, λ)(Ωτ,W ′(λ) + 1
2 sgn(t − x)JW ′)Y ∗

W ′(t, λ̄). (3.41)

2. The operator function (3.40) has the block representation

Ωτ,W ′(λ) =

(
mP(λ) − 1

2J ∗
2

− 1
2J2 0

)
: K̂ ⊕ K̂⊥ → K̂ ⊕ K̂⊥, λ ∈ C \ R. (3.42)

3. The equality (3.42) generates the holomorphic operator function mP(·) : C \ R →
[K̂], which can also be defined by the following statement.

There exists a unique operator function mP(·) : C \ R → [K̂] such that,
for every λ ∈ C \ R, the operator function

v(t, λ) := ϕN (t, λ)(mP(λ) − 1
2J1) − ϕT (t, λ)J2 (3.43)

belongs to L′
2[K̂, H] and satisfies the boundary conditions (3.22)–(3.25).

Proof. 1. The representation (3.41) is immediate from (2.35) and the obvious equality
Y0(t, λ) = YW ′(t, λ)(W ′)−1, λ ∈ C.

2. Let vP(·, λ) be the operator function defined in Proposition 3.8 and let

u(x, λ) = (vP(x, λ), 0) : K̂ ⊕ K̂⊥ → H, λ ∈ C \ R.

Comparing (3.30) with (3.41), one obtains

u(x, λ)Y ∗
W ′(t, λ̄) = YW ′(x, λ)(Ωτ,W ′(λ) − 1

2JW ′)Y ∗
W ′(t, λ̄), x > t, (3.44)

for all λ ∈ C \ R. Since 0 ∈ ρ(ỸW ′(t, λ̄)), it follows from (3.44) that

u(x, λ) = YW ′(x, λ)(Ωτ,W ′(λ) − 1
2JW ′), x ∈ ∆, λ ∈ C \ R. (3.45)

Next assume that the block representation of the operator function Ωτ,W ′(λ) is

Ωτ,W ′(λ) =

(
mP(λ) Ω3(λ)
Ω2(λ) Ω4(λ)

)
: K̂ ⊕ K̂⊥ → K̂ ⊕ K̂⊥, λ ∈ C \ R. (3.46)

Then the equality (3.45) can be written as

(vP(x, λ), 0) = (ϕN (x, λ), ϕT (x, λ))

(
mP(λ) − 1

2J1 Ω3(λ) + 1
2J ∗

2

Ω2(λ) − 1
2J2 Ω4(λ) − 1

2J4

)
,
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which implies the relations

vP(x, λ) = ϕN (x, λ)(mP(λ) − 1
2J1) + ϕT (x, λ)(Ω2(λ) − 1

2J2), (3.47)

Ω3(λ) + 1
2J ∗

2 = 0, Ω4(λ) − 1
2J4 = 0, λ ∈ C \ R. (3.48)

Since Ωτ (λ) = Ω∗
τ (λ̄), it follows from (3.40) that Ωτ,W ′(λ) = Ω∗

τ,W ′(λ̄) and by (3.46) one
has Ω2(λ) = Ω∗

3(λ̄), Ω4(λ) = Ω∗
4(λ̄). Combining these relations with (3.48) and taking

the equality J4 = −J ∗
4 into account, one obtains

Ω3(λ) = − 1
2J ∗

2 , Ω2(λ) = − 1
2J2, Ω4(λ) = 0, λ ∈ C \ R. (3.49)

Therefore, the block-matrix representation (3.46) takes the form (3.42).

3. In view of (3.47) and the second equality in (3.49), the function v(·, λ) = vP(·, λ)
admits the representation (3.43). This and Proposition 3.8 give statement 3. �

Definition 3.12. The operator function mP(·) introduced in Theorem 3.11 will be
called an m-function corresponding to the collection P ∈ TR(H0,H1) or, equivalently,
to the boundary-value problem (3.13)–(3.17).

The m-function mP(·) will be called canonical if P ∈ TR0(H0,H1) or, equivalently, if
it corresponds to the canonical boundary problem (3.13), (3.18), (3.19).

Remark 3.13. Under the conditions of Theorem 3.11, let W ′ and W̃ ′ be different
isomorphisms (3.37) (with the same first column), let Ωτ,W ′(·) and Ωτ,W̃ ′(·) be the
corresponding functions (3.40) and let mP(λ) and m̃P(λ) be upper left entries in the
representations (3.42). One can easily verify that m̃P(λ) = mP(λ) + C, C = C∗, which
implies that the m-function mP(·) is defined by a collection P ∈ TR(H0,H1) up to the
self-adjoint constant.

For a given operator pair (3.1), introduce the operator N ′ ∈ [Hn ⊕ Hn, K̂] and the
subspaces θ and θ⊥ in Hn ⊕ Hn by

N ′ = (−N0, N1) : Hn ⊕ Hn → K̂, θ⊥ = Ker N ′, θ = (Hn ⊕ Hn) 
 θ⊥. (3.50)

Clearly, the operator N ′
0 := N ′ � θ isomorphically maps θ onto K̂ and the operator

N̂ := (N ′
0)

−1, N̂ ∈ [K̂, Hn ⊕ Hn], (3.51)

is the right inverse for N ′, i.e. N ′N̂ = IK̂.

Proposition 3.14. Let assumptions (i)–(v) of Theorem 3.11 be satisfied. Then the
following hold.

1. The m-function mP(·) is a uniformly strict Nevanlinna function such that

(Im λ)−1 Im(mP(λ)) �
∫ b

0
v∗

P(t, λ)vP(t, λ) dt, λ ∈ C+. (3.52)
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Moreover, the canonical m-function mP(·) satisfies the identity

mP(µ) − m∗
P(λ) = (µ − λ̄)

∫ b

0
v∗

P(t, λ)vP(t, µ) dt, µ, λ ∈ C+, (3.53)

where ∫ b

0
v∗

P(t, λ)vP(t, µ) dt = s − lim
η↑b

∫ η

0
v∗

P(t, λ)vP(t, µ) dt.

Formula (3.53) implies that, for the canonical m-function mP(·), the inequal-
ity (3.52) turns into the equality.

2. The characteristic matrix Ωτ (·) admits the representation

Ωτ (λ) =

(
Ω0(λ) Ω∗

1

Ω1 Ω2

)
: θ ⊕ θ⊥ → θ ⊕ θ⊥, λ ∈ C \ R, (3.54)

where Ω2 = Ω∗
2 ∈ [θ⊥] and Ω0(·) : C \ R → [θ] is a uniformly strict Nevanlinna

function associated with mP(·) by

Ω0(λ) = N ′∗
0 mP(λ)N ′

0 + C, C = C∗ ∈ [θ]. (3.55)

Moreover, the following equality holds

mP(λ) = N̂∗Ωτ (λ)N̂ + Ĉ, Ĉ = Ĉ∗ ∈ [K̂], λ ∈ C \ R. (3.56)

Proof. Let W ′ be an isomorphism (3.37) and let Ωτ,W ′(λ) be the operator func-
tion (3.40). Then Ωτ (λ) = W ′Ωτ,W ′(λ)W ′∗ and the immediate calculation with tak-
ing (3.42) into account shows that

Ωτ (λ) = N ′∗mP(λ)N ′ + C̃ (3.57)

with some C̃ = C̃∗ ∈ [Hn ⊕ Hn]. Multiplying the equality (3.57) by N̂∗ from the left and
by N̂ from the right one obtains (3.56). Therefore, mP(·) is a Nevanlinna function.

Next assume that γ+(λ) is the isomorphism from Proposition 2.7 (2) and let γτ (λ) ∈
[Hn ⊕ Hn,Nλ(L0)] be the operator given by

γτ (λ) = γ+(λ)(C0(λ) − C1(λ)M+(λ))−1(−Ĉ0(λ) : Ĉ1(λ)), λ ∈ C+. (3.58)

Then by (3.56) and [29, Proposition 23]

(Im λ)−1 · Im(mP(λ)) � N̂∗γ∗
τ (λ)γτ (λ)N̂ = γ∗

c (λ)γc(λ), λ ∈ C+, (3.59)

where γc(λ) = γτ (λ)N̂(∈ [K̂,Nλ(L0)]). Moreover, the canonical m-function mP(·) satis-
fies the identity

mP(µ) − m∗
P(λ) = (µ − λ̄)γ∗

c (λ)γc(µ), µ, λ ∈ C+. (3.60)
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It follows from (3.2) and (3.3) that the operator (−Ĉ0(λ) : Ĉ1(λ)) in (3.58) coincides with
N ′. This and the equality N ′N̂ = IK̂ imply that

γc(λ) = γ+(λ)(C0(λ) − C1(λ)M+(λ))−1 � K̂, (3.61)

and, consequently, 0 ∈ ρ(γ∗
c (λ)γc(λ)). Therefore, by (3.59) the Nevanlinna function

mP(·) is uniformly strict. Moreover, in view of (3.61) and (3.26) one has (γc(λ)ĥ)(t) =
vP(t, λ)ĥ(ĥ ∈ K̂). Now, applying [28, Lemma 4.1 (3)] to the operator function vP(t, λ),
one obtains

γ∗
c (λ)γc(µ) =

∫ b

0
v∗

P(t, λ)vP(t, µ) dt := s − lim
η↑b

∫ η

0
v∗

P(t, λ)vP(t, µ) dt.

Combining this relation with (3.59) and (3.60), we arrive at (3.52) and (3.53).
Finally, the equality (3.54) is immediate from (3.57) and the block representation

N ′ = (N ′
0, 0) : θ ⊕ θ⊥ → K̂. �

Corollary 3.15. Let assumptions (i)–(v) of Theorem 3.11 be satisfied. Then the
following statements are equivalent:

(i) the characteristic matrix Ωτ (·) is a uniformly strict Nevanlinna function;

(ii) the operator N = (N0, N1) in (3.1) isomorphically maps Hn ⊕ Hn onto K̂.

If in addition dim H < ∞, then statement (i) is equivalent to the following:

(iii) the operator L0 has maximal deficiency indices n+(L0) = n−(L0) = 2n dim H,
H′

0 = H′
1 =: H′ (i.e. Π = {Hn ⊕ H′, Γ0, Γ1} is a decomposing boundary triplet for

L), dim H′ = n dim H and the collection P can be represented as the holomorphic
Nevanlinna pair (see Remark 2.4 (2)) C(λ) = (C0(λ), C1(λ)), λ ∈ C \ R,

C0(λ) = (N0, C
′
0(λ)) : Hn ⊕ H′ → K̂, C1(λ) = (N1, C

′
1(λ)) : Hn ⊕ H′ → K̂,

(3.62)
where dim K̂ = 2n dim H and the operator N = (N0, N1) : Hn ⊕ Hn → K̂ is an
isomorphism.

Proof. It follows from (3.54) that the Nevanlinna function Ωτ (·) is uniformly strict
if and only if θ⊥ = {0}. Moreover, by (3.50), one has θ⊥ = {0} ⇐⇒ Ker N (= KerN ′) =
{0}. This yields the equivalence (i) ⇐⇒ (ii).

Next assume that dim H < ∞ and prove the equivalence (ii) ⇐⇒ (iii). If 0 ∈ ρ(N),
then dim K̂ = dim(Hn ⊕ Hn) = 2n dim H and by (3.12) n−(L0) = n+(L0) = 2n dim H.
This and the second relation in (2.25) imply that dimH1 = dimH0 = 2n dim H, and
hence H0 = H1 =: H. Therefore, H′

0 = H′
1 and Π = {Hn ⊕ H′, Γ0, Γ1} is a decomposing

boundary triplet for L. Moreover, by (2.15), the Hilbert spaces K̂ ⊕ K′
j in (3.2)–(3.5)

satisfy the equalities dim(K̂ ⊕ K′
j) = dimH = 2n dim H = dim K̂. Hence, K′

j = {0}, j ∈
{0, 1}, and the equalities (3.2)–(3.5) take the form (3.62), which yields the implication
(ii) =⇒ (iii). The inverse implication (iii) =⇒ (ii) is obvious. Thus, in the case
dim H < ∞, the equivalences (i) ⇐⇒ (ii) ⇐⇒ (iii) hold. �
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Remark 3.16.

1. It follows from Corollary 3.15 that in the case dimH < ∞ and n−(L0) < 2n dim H

the characteristic matrix Ωτ (·) corresponding to the boundary operators (3.2)–(3.5)
is not a uniformly strict Nevanlinna function. In particular, by Proposition 3.2,
this statement holds for each canonical characteristic matrix corresponding to the
constant Nevanlinna collection (2.10).

2. Let P0 ∈ TR(H0,H1) be the collection (3.2)–(3.5) with K̂ = Hn, K′
j = H′

j ,
j ∈ {0, 1}, and C0(λ) = IH0 , C1(λ) = 0H1,H0 , D0 = P1 and D1 = 0H1 . Then the
corresponding m-function mP0(·) coincides with the operator function m(·) defined
by (2.29) and (2.30). Note in this connection that the statements of Theorem 3.11
and Proposition 3.14 for m(λ) (= mP0(λ)) were obtained in [27].

3. One can prove that, in the case of a decomposing boundary triplet Π = {H, Γ0, Γ1},
each canonical m-function mP(·) is the Weyl function of some symmetric exten-
sion Ã ⊃ L0, while a uniformly strict canonical characteristic matrix Ωτ (·) is the
Weyl function of the minimal operator L0. More precisely, this means that one
can construct the boundary triplet for Ã∗ (respectively, for L) such that mP(·)
(respectively, Ωτ (·)) is the Weyl function for this triplet in the sense of [4].

4. Spectral functions of differential operators

4.1. The space L2(Σ; H)

Let H be a separable Hilbert space.

Definition 4.1. A non-decreasing operator function Σ : R → [H] is called a distribu-
tion function if it is strongly left continuous and satisfies the equality Σ(0) = 0.

Let Σ : R → [H] be a distribution function and let f(·), g(·) be vector functions defined
on the segment [α, β] with values in H. Consider the Riemann–Stieltjes integral [1]

∫ β

α

(dΣ(t)f(t), g(t)) = lim
dπ→0

n∑
k=1

((Σ(tk) − Σ(tk−1))f(ξk), g(ξk)), (4.1)

where π = {α = t0 < t1 < · · · < tn = β} is a partition of [α, β], ξk ∈ [tk−1, tk] and dπ

is the diameter of π. As is known (see, for example, [22]), in the case dim H = ∞ there
exist a distribution function Σ(·) and continuous functions f(·) and g(·) for which the
integral (4.1) does not exist. At the same time, the holomorphy of f(·) and g(·) on [α, β]
is a sufficient condition for the existence of such an integral [34].

Definition 4.2. A function f : [α, β) → H will be called piecewise holomorphic if
there is a partition α = t0 < t1 < · · · < tn = β such that each restriction f � [tk−1, tk)
admits a holomorphic continuation f̃k(·) on some interval (t̃k−1, t̃k) ⊃ [tk−1, tk].

A function f : R → H will be called piecewise holomorphic if it is piecewise holomorphic
on each finite half-interval [α, β).
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It follows from Definition 4.2 that a piecewise holomorphic function is strongly right
continuous.

Let Σ : R → [H] be a distribution function and let f, g : [α, β) → H be a pair of
piecewise holomorphic functions. It is clear that there exists a partition of [α, β] satisfying
the conditions of Definition 4.2 for both functions f(·) and g(·). By using such a partition,
we introduce the integral

∫
[α,β)

(dΣ(t)f(t), g(t)) =
n∑

k=1

∫ tk

tk−1

(dΣ(t)f̃k(t), g̃k(t)). (4.2)

Note that for a pair of continuous functions f, g : [α, β] → H piecewise holomorphic on
[α, β) there exists the integral (4.1) which coincides with that of (4.2).

For a given distribution function Σ : R → [H] denote by Hol(Σ,H) the set of all
piecewise holomorphic functions f : R → H such that∫

R

(dΣ(t)f(t), f(t)) := lim
[α,β)→R

∫
[α,β)

(dΣ(t)f(t), f(t)) < ∞.

One can easily prove that for each pair f, g ∈ Hol(Σ,H) there exists the integral

(f, g)Hol(Σ,H) =
∫

R

(dΣ(t)f(t), g(t)) := lim
[α,β)→R

∫
[α,β)

(dΣ(t)f(t), g(t)). (4.3)

This implies that Hol(Σ,H) is a linear space with the semi-definite scalar product (4.3).
Next recall the definition of the space L2(Σ; H) as given in [1].
A function f : R → H is called finite dimensional if there is a subspace Hf ⊂ H such

that dimHf < ∞ and f(t) ∈ Hf , t ∈ R. For a given distribution function Σ : R → [H]
denote by C00(H) the linear space of all strongly continuous finite-dimensional functions
f : R → H with compact support supp f . Clearly, the equality

(f, g)L2(Σ;H) =
∫

R

(dΣ(t)f(t), g(t)) :=
∫ β

α

(dΣ(t)f(t), g(t)), f, g ∈ C00(H), (4.4)

with [α, β] ⊃ (supp f ∪ supp g) defines the semi-definite scalar product on C00(H). The
completion of C00(H) with respect to this product is a semi-Hilbert space L̃2(Σ; H). The
quotient of L̃2(Σ; H) over the kernel {f ∈ L̃2(Σ; H) : (f, f)L2(Σ;H) = 0} is the Hilbert
space L2(Σ; H).

Denote by Hol0(Σ,H) the set of all strongly continuous, piecewise holomorphic
and finite-dimensional functions f : R → H with a compact support. It is clear that
Hol0(Σ,H) = Hol(Σ,H) ∩ C00(H) and, consequently, Hol0(Σ,H) is a linear manifold
both in Hol(Σ,H) and C00(H). Moreover, the semi-scalar products (4.3) and (4.4) coin-
cide on Hol0(Σ,H).

By using the Taylor expansions of the function f ∈ Hol(Σ,H) one can prove the
following proposition.
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Proposition 4.3. The set Hol0(Σ,H) is a dense linear manifold both in Hol(Σ,H)
and C00(H), which implies that the closure of Hol(Σ,H) coincides with L̃2(Σ; H). In
other words, the semi-Hilbert space L̃2(Σ; H) can be considered as the completion of
Hol(Σ,H).

Remark 4.4. In connection with Proposition 4.3, note that the intrinsic functional
description of the spaces L̃2(Σ; H) and L2(Σ; H) in the case dim H < ∞ was obtained
in [15]. Moreover, in the case dimH = ∞, the description of these spaces in terms of the
direct integrals of Hilbert spaces can be found in [22].

4.2. Spectral functions

Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing D-triplet (2.22) for L and let τ =
{τ+, τ−} ∈ R̃(H0,H1) be a Nevanlinna collection defined by (2.13) and (2.36), (2.37). For
this collection consider the boundary problem (2.38)–(2.40). According to Remark 2.12,
this problem defines the spectral function Fτ (t) of the operator L0.

Next assume that K̃ is a separable Hilbert space and ϕ(·, λ) : ∆ → [K̃, H] is an operator
solution of the equation (2.20) with the constant initial data ϕ̃(0, λ) ≡ ϕ̃0(∈ [K̃, H2n]),
λ ∈ C, such that 0 ∈ ρ̂(ϕ̃0). Denote by H0 the set of all functions f ∈ H (= L2(∆; H))
with supp f ⊂ [0, β] (β < b depends on f) and consider the Fourier transform gf : R → K̃
of a function f ∈ H0 given by

gf (s) =
∫ b

0
ϕ∗(t, s)f(t) dt. (4.5)

Definition 4.5. A distribution function Σ(·) = Στ,ϕ(·) : R → [K̃] is called a spectral
function of the boundary problem (2.38)–(2.40) corresponding to the solution ϕ(·, λ) if,
for each function f ∈ H0, the Fourier transform (4.5) satisfies the equality

((Fτ (β) − Fτ (α))f, f)H =
∫

[α,β)
(dΣτ,ϕ(s)gf (s), gf (s)), [α, β) ⊂ R, (4.6)

where Fτ (·) is a spectral function of the operator L0 (see Remark 2.12).

Note that the integral on the right-hand side of (4.6) exists because the function gf (·)
is holomorphic on R. Moreover, by (4.6), gf (·) ∈ Hol(Στ,ϕ, K̃) and the following Parseval
equality holds:

(‖f‖2
H =)

∫ b

0
‖f(t)‖2

H dt =
∫

R

(dΣτ,ϕ(s)gf (s), gf (s)) (= ‖gf‖2
L2(Στ,ϕ;K̃)), f ∈ H0.

This implies that the linear operator V : H → L2(Στ,ϕ; K̃) defined on the dense linear
manifold H0 ⊂ H by (V f)(s) = gf (s) is an isometry.

Definition 4.6. A spectral function Στ,ϕ(·) is called orthogonal if V H = L2(Στ,ϕ; K̃)
or, equivalently, if the set of all Fourier transforms {gf (·) : f ∈ H0} is dense in L2(Στ,ϕ; K̃).
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Theorem 4.7. Let H̃ be a Hilbert space with dim H̃ = 2n · dim H, let W ∈ [H̃, H2n]
be an isomorphism and let YW (·, λ) : ∆ → [H̃, H] be an operator solution of (2.20) with
the initial data ỸW (0, λ) = W , λ ∈ C. Then, for each collection τ ∈ R̃(H0,H1), there
exists a unique spectral function Στ,W : R → [H̃] of the boundary problem (2.38)–(2.40)
corresponding to the solution YW (·, λ). This function is defined by the equality

Στ,W (s) = s − lim
δ→+0

w − lim
ε→+0

1
π

∫ s−δ

−δ

Im Ωτ,W (σ + iε) dσ, (4.7)

where Ωτ,W : C \ R → [H̃] is a Nevanlinna operator function given by

Ωτ,W (λ) = W−1Ωτ (λ)W−1∗, λ ∈ C \ R. (4.8)

Moreover, the spectral function Στ,W (·) is orthogonal if and only if τ ∈ R̃0(H0,H1).

One can prove Theorem 4.7 by using the Stieltjes–Livs̆ic formula [17,34] in the same
way as in [35] (the scalar case dim H = 1) and [3] (the case dim H � ∞). Moreover, in
the scalar case, other methods of proof can be found in [8,30].

Theorem 4.8. Assume that, under the conditions of Theorem 4.7, Στ,W (·) is a spec-
tral function of the boundary problem (2.38)–(2.40) and V : H → L2(Στ,W ; H̃) is the
corresponding isometry given by the Fourier transform (4.5) with ϕ(t, s) = YW (t, s).
Moreover, let Hol0(H̃) be the linear manifold of all piecewise holomorphic functions
g : R → H̃ with compact support. Then Hol0(H̃) is dense in L2(Στ,W ; H̃) and

(V ∗g)(t) =
∫

R

YW (t, s) dΣτ,W (s)g(s), g = g(s) ∈ Hol0(H̃), (4.9)

where V ∗ : L2(Στ,W ; H̃) → H is the adjoint operator and, similary to (4.2), the integral
is understood as the sum of integrals. In particular, (4.9) implies that the inverse Fourier
transform is

f(t) =
∫

R

YW (t, s) dΣτ,W (s)gf (s). (4.10)

In the case dim H < ∞, the proof of Theorem 4.8 can be found in [8,30,35]. In the case
dim H = ∞, a somewhat weaker result (only the inverse transform (4.10)) is contained
in [3] (without the detailed proof). In this connection, note that in the case dimH = ∞
the piecewise holomorphy of a function g(·) is essential, because otherwise the integral
in (4.9) may not exist. We omit the proof of Theorem 4.8 for the case dimH = ∞ because
it is very technical and tedious.

Our next goal is to obtain a description of all spectral functions Στ,W (·) imme-
diately in terms of a boundary parameter τ . Namely, using the block representa-
tions (2.29) and (2.30) of the Weyl functions M±(·), we introduce the operator functions
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Ωτ0(λ) (∈ [H2n]), S+(λ) (∈ [H0, H
2n]) and S−(z) (∈ [H1, H

2n]) by setting

Ωτ0(λ) =

(
m(λ) − 1

2IHn

− 1
2IHn 0

)
: Hn ⊕ Hn → Hn ⊕ Hn, λ ∈ C \ R, (4.11)

S+(λ) =

(
−m(λ) −M2+(λ)

IHn 0

)
: Hn ⊕ H′

0 → Hn ⊕ Hn, λ ∈ C+, (4.12)

S−(z) =

(
−m(z) −M2−(z)

IHn 0

)
: Hn ⊕ H′

1 → Hn ⊕ Hn, z ∈ C−. (4.13)

In the case of a decomposing boundary triplet {H, Γ0, Γ1} (i.e. if H′
0 = H′

1 =: H′), in
place of (4.12) and (4.13) we let

S(λ) =

(
−m(λ) −M2(λ)

IHn 0

)
: Hn ⊕ H′ → Hn ⊕ Hn, λ ∈ C \ R, (4.14)

where m(λ) and M2(λ) are taken from the block representation (2.32) of M(λ).
Note that Ωτ0(λ) is a characteristic matrix corresponding to the collection τ0 =

{τ0+, τ0−} ∈ R̃(H0,H1) with τ0+ = {0} ⊕ H1(∈ C̃(H0,H1)).

Theorem 4.9. Let the assumptions of Theorem 4.7 be satisfied. Let

Π = {H0 ⊕ H1, Γ0, Γ1}

be a decomposing D-triplet (2.22) for L and let Ωτ0,W (λ) (∈ [H̃]), SW,+(λ) (∈ [H0, H̃])
and ΣW,−(z) (∈ [H1, H̃]) be the operator functions given by

Ωτ0,W (λ) = W−1Ωτ0(λ)W−1∗, λ ∈ C \ R,

SW,+(λ) = W−1S+(λ), λ ∈ C+,

SW,−(z) = W−1S−(z), z ∈ C−.

Then, for each collection τ = {τ+, τ−} ∈ R̃(H0,H1), the equality

Ωτ,W (λ) = Ωτ0,W (λ) − SW,+(λ)(τ+(λ) + M+(λ))−1S∗
W,−(λ̄), λ ∈ C+, (4.15)

together with (4.7), defines a (unique) spectral function Στ,W (·) of the boundary prob-
lem (2.38)–(2.40) corresponding to the solution YW (·, λ). Moreover, a spectral function
Στ,W (·) is orthogonal if and only if τ ∈ R̃0(H0,H1).

If in addition H0 = H1 =: H (i.e. n+(L0) = n−(L0) and Π is a decomposing boundary
triplet), then (4.15) can be written in the simpler form:

Ωτ,W (λ) = Ωτ0,W (λ) − SW (λ)(τ(λ) + M(λ))−1S∗
W (λ̄), λ ∈ C \ R,

where τ(λ) ∈ R̃(H) and SW (λ) = W−1S(λ), λ ∈ C \ R.

Proof. According to [29], for each collection τ = {τ+, τ−} ∈ R̃(H0,H1), the corre-
sponding characteristic matrix Ωτ (·) is given by

Ωτ (λ) = Ωτ0(λ) − S+(λ)(τ+(λ) + M+(λ))−1S∗
−(λ̄), λ ∈ C+. (4.16)

This and Theorem 4.7 yield the desired statement. �
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4.3. Minimal spectral functions

We start the subsection with the following lemma, which is immediate from Theo-
rem 4.7.

Lemma 4.10. Let Στ,ϕ : R → [K̃] be a spectral function of the boundary prob-
lem (2.38)–(2.40), corresponding to the solution ϕ(t, λ) (∈ [K̃, H]) of (2.20) (see Defi-
nition 4.5). Assume also that H̃ ⊃ K̃, K̃⊥ = H̃ 
 K̃ and YW (·, λ) (∈ [H̃, H]) is a solution
of (2.20) satisfying the conditions of Theorem 4.7 and the equality YW (t, λ) � K̃ = ϕ(t, λ)
(such a solution exists because 0 ∈ ρ̂(ϕ̃(0, λ))). Then the (unique) spectral function of
the boundary problem (2.38)–(2.40) corresponding to YW (·, λ) is

Στ,W (s) =

(
Στ,ϕ(s) 0

0 0

)
: K̃ ⊕ K̃⊥ → K̃ ⊕ K̃⊥, (4.17)

which implies that the spectral function Στ,ϕ is unique.
Conversely, if a spectral function Στ,W is of the form (4.17), then Στ,ϕ(s) is a spectral

function corresponding to ϕ(·, λ).

Now, combining Theorems 4.7 and 4.8 with Lemma 4.10 and taking the equality (3.42)
into account, one may derive the following theorem.

Theorem 4.11. Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing D-triplet (2.22) for L,
let N = (N0, N1) be an admissible operator pair (3.1) and let ϕN (t, λ) (∈ [K̂, H]) be the
operator solution of the equation (2.20) with the initial data (3.29). Then the following
hold.

1. For each collection P = {C(·), D(·)} ∈ TR(H0,H1) of holomorphic pairs (3.2)–
(3.5) there exists a unique spectral function ΣP,N : R → [K̂] of the boundary prob-
lem (3.13)–(3.17) corresponding to ϕN (·, λ). This function is given by

ΣP,N (s) = s − lim
δ→+0

w − lim
ε→+0

1
π

∫ s−δ

−δ

Im mP(σ + iε) dσ, (4.18)

where mP(λ) is the m-function corresponding to the boundary problem (3.13)–
(3.17). Moreover, the spectral function ΣP,N is orthogonal if and only if P ∈
TR0(H0,H1).

2. Let ΣP,N (·) be a spectral function and let V : H → L2(ΣP,N ; K̂) be an isometry
given by the Fourier transform (4.5) with ϕ(t, s) = ϕN (t, s). Then

(V ∗g)(t) =
∫

R

ϕN (t, s) dΣP,N (s)g(s), g = g(s) ∈ Hol0(K̂).

In particular, the inverse Fourier transform is

f(t) =
∫

R

ϕN (t, s) dΣP,N (s)gf (s).
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In the next theorem we give a parametrization of all spectral functions ΣP,N (·) in
terms of a boundary parameter P ∈ TR(H0,H1).

Theorem 4.12. Let the assumptions of Theorem 4.11 be satisfied, let N̂ be the
operator (3.51) and let TN,0 : C \ R → [K̂], TN,+ : C+ → [H0, K̂] and TN,− : C− → [H1, K̂]
be the operator functions defined by

TN,0(λ) = N̂∗Ωτ0(λ)N̂ , λ ∈ C \ R, (4.19)

TN,+(λ) = N̂∗S+(λ), λ ∈ C+,

TN,−(z) = N̂∗S−(z), z ∈ C−.

Then, for each collection P ∈ TR(H0,H1) given by (3.2)–(3.5), the equality

mP(λ) = TN,0(λ) + TN,+(λ)(C0(λ) − C1(λ)M+(λ))−1C1(λ)T ∗
N,−(λ̄), λ ∈ C+, (4.20)

together with (4.18), defines a (unique) spectral function ΣP,N (·) of the boundary prob-
lem (3.13)–(3.17) corresponding to ϕN . Moreover, a spectral function ΣP,N (·) is orthog-
onal if and only if P ∈ TR0(H0,H1).

Proof. Let P ∈ TR(H0,H1) be defined by (3.2)–(3.5) and let τ+(λ) (∈ C̃(H0,H1))
be the corresponding linear relation (2.13). Then, by (4.16), (3.56) and the equality

−(τ+(λ) + M+(λ))−1 = (C0(λ) − C1(λ)M+(λ))−1C1(λ), λ ∈ C+,

the m-function mP(λ) can be represented via (4.20). This, together with Theorem 4.11,
yields the required statement. �

In the case of equal deficiency indices n+(L0) = n−(L0), (4.20) can be simplified.
Namely, the following corollary is immediate from Theorem 4.12.

Corollary 4.13. Assume that, under the conditions of Theorem 4.12, n+(L0) =
n−(L0) and H0 = H1 =: H, so that Π = {H, Γ0, Γ1} is a decomposing boundary triplet
(2.22) for L. Moreover, let M(λ) be the Weyl function for Π, let S(λ) be given by (4.14),
let TN,0(λ) be the operator function (4.19) and let TN (λ) = N̂S(λ). Then, for each oper-
ator pair P = {C0(·), C1(·)} ∈ TR(H) defined by (3.10) and (3.11), the statement of
Theorem 4.12 holds with the equality

mP(λ) = TN,0(λ) + TN (λ)(C0(λ) − C1(λ)M(λ))−1C1(λ)T ∗
N (λ̄), λ ∈ C \ R, (4.21)

in place of (4.20).

Next for a given collection τ = {τ+, τ−} ∈ R̃(H0,H1) defined by (2.13) and (2.36),
(2.37) consider the corresponding boundary problem (2.38)–(2.40). Denote by dmin the
minimal value of dim K̃ for the set of all spectral functions Στ,ϕ : R → [K̃] of this boundary
problem (recall that according to Definition 4.5 each Στ,ϕ corresponds to some operator
solution ϕ(t, λ) (∈ [K̃, H]) of (2.20)).
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Definition 4.14. A spectral function Σ(·) = Στ,ϕ(·) : R → [K̃] will be called minimal
if dim K̃ = dmin.

In the following theorem we give a description of all minimal spectral functions of the
‘triangular’ boundary problem (3.13)–(3.17).

Theorem 4.15. Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing D-triplet (2.22) for L,
let P = {C(·), D(·)} ∈ TR(H0,H1) be a collection of holomorphic pairs (3.2)–(3.5) and
let (3.13)–(3.17) be the corresponding boundary problem. Then the following hold.

1. dmin = dim K̂ and the set of all minimal spectral functions Σmin(·) is given by

Σmin(s) = X∗ΣP,N (s)X, (4.22)

where ΣP,N (s) is the (minimal) spectral function defined in Theorem 4.11 and X is
an automorphism of the space K̂. Moreover, the minimal spectral function Σmin(s)
given by (4.22) corresponds to the operator solution ϕmin(t, λ) := ϕN (t, λ)X−1∗

of (2.20).

2. If dim H = ∞, then dmin(= dim K̂) = ∞.

Proof. 1. Let Στ,ϕ : R → [K̃] be a spectral function of the problem (3.13)–(3.17)
corresponding to the solution ϕ(t, λ) (∈ [K̃, H]) with ϕ̃(0, λ) ≡ ϕ̃0(∈ [K̃, H2n]). Since
0 ∈ ρ̂(ϕ̃0), there are a Hilbert space K̃⊥ and an operator ψ̃0 ∈ [K̃⊥, H2n] such that the
operator W = (ϕ̃0, ψ̃0) is an isomorphism of the space H̃ := K̃ ⊕ K̃⊥ onto H2n.

Let Ωτ,W (λ) be the operator function (4.8) and let Στ,W (·) be the spectral func-
tion (4.7) corresponding to the solution YW (·, λ) (see Theorem 4.7). It follows from (2.43)
that s − limy→∞ Ωτ,W (iy)/y = 0. This and the integral representation of the Nevanlinna
function Ωτ,W (λ) [2,17] yield

Ker Im Ωτ,W (λ) = {h̃ ∈ H̃ : Στ,W (s)h̃ = 0, s ∈ R}, λ ∈ C \ R. (4.23)

Moreover, by Lemma 4.10, the function Στ,W (s) satisfies (4.17), which in view of (4.23)
gives the inclusion K̃⊥ ⊂ Ker Im Ωτ,W (λ), λ ∈ C \ R. Now, letting

H̃0 := H̃ 
 Ker Im Ωτ,W (λ),

one obtains dim H̃0 � dim K̃.
Next assume that W ′ ∈ [K̂ ⊕ K̂⊥, H2n] is the isomorphism (3.37) and Ωτ,W ′(λ) is the

operator function (3.40). It follows from (4.8) that there exists an isomorphism C ∈ [K̂⊕
K̂⊥, H̃] such that Ωτ,W ′(λ) = C∗Ωτ,W (λ)C. Moreover, by the block representation (3.42)
one has Ker Im Ωτ,W ′(λ) = K̂⊥. Hence, Ker Im Ωτ,W (λ) = CK̂⊥, and consequently K̂ =
C∗H̃0. Therefore, dim K̂ = dim H̃0 � dim K̃, which yields the equality dmin = dim K̂.

To prove the relation (4.22), note that for each automorphism X ∈ [K̂] this relation
defines the minimal spectral function Σmin(s) = Στ,ϕmin(s), corresponding to the solution
ϕmin(t, λ) : = ϕN (t, λ)X−1∗. Conversely, let Σmin(s) = Στ,ϕmin(s) be a minimal spec-
tral function corresponding to the solution ϕmin(t, λ) (∈ [K̂, H]). Since 0 ∈ ρ̂(ϕ̃(0, λ)) ∩
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ρ̂(ϕ̃N (0, λ)), there exists an automorphism X ∈ [K̂] such that ϕmin(t, λ) = ϕN (t, λ)X−1∗,
and hence the distribution function Σ(s) := X∗ΣP,N (s)X is a spectral function cor-
responding to ϕmin. Since by Lemma 4.10 such a function is unique, it follows that
Σmin(s) = Σ(s) = X∗ΣP,N (s)X.

2. This is implied by statement 1 and the inequality (3.12). �

Finally, by using the above results we can estimate the spectral multiplicity of an
exit-space extension Ã ⊃ L0. Namely, the following corollary is valid.

Corollary 4.16. Let the assumptions of Theorem 4.15 be satisfied and let RP(λ) =
PH(Ã − λ)−1 � H be a generalized resolvent generated by the boundary problem (3.13)–
(3.17). Then the spectral multiplicity of the extension Ã does nod exceed dmin(= dim K̂).

Proof. Let Σ = ΣP,N : R → [K̂] be a spectral function defined in Theorem 4.11 and
let χ′(s) be a bounded linear map in Hol(Σ, K̂) given for all s ∈ R by

(χ′(s)f)(σ) = χ(−∞,s)(σ)f(σ), f = f(σ) ∈ Hol(Σ, K̂)

(here χ(−∞,s)(·) is the indicator of the interval (−∞, s)). It is easily seen that the map
χ′(s) admits the continuous extension χ(s) ∈ [L2(Σ; K̂)], s ∈ R, such that χ(·) is an
orthogonal spectral function (resolution of identity) in L2(Σ; K̂).

Next assume that V ∈ [H, L2(Σ; K̂)] is an isometry given by the Fourier transform (4.5)
with ϕ = ϕN and let L := V H, L̃ = span{L, χ(s)L : s ∈ R}. As is known, the subspace
L̃ reduces the spectral function χ(s), and the equality χ̃(s) = χ(s) � L̃ defines the mini-
mal orthogonal spectral function χ̃(s) in L̃ (actually one can prove that L̃ = L2(Σ; K̂)).
Moreover, the relation (4.6) yields

FP(t) = V ∗χ(t)V = V ∗(PLχ̃(t) � L)V, t ∈ R, (4.24)

where FP(t) = PHẼ(t) � H and Ẽ(t) is the orthogonal spectral function of Ã. It follows
from (4.24) that the spectral functions FP(t) and PLχ̃(t) � L are unitary equivalent and,
consequently, so are the (minimal) orthogonal spectral functions Ẽ(t) and χ̃(t). This and
the fact that χ̃(t) is a part of χ(t) imply that the spectral multiplicity of Ẽ(t) does not
exceed the spectral multiplicity of χ(t), which in turn does not exceed dim K̂. This proves
the required statement. �

Remark 4.17. It follows from Proposition 3.2 that in the case nb+ < ∞ (in partic-
ular, dimH < ∞) the statements of Theorem 4.15 and Corollary 4.16 can naturally be
extended to the boundary problems (2.38)–(2.40) generated by a quasi-constant Nevan-
linna collection {C(·), D(·)}.

4.4. Example

To illustrate the results in this section consider the following example. Assume that

l[y] = −y′′ + q(t)y, t ∈ [0,∞), (4.25)
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is the Sturm–Liouville expression with the diagonal matrix potential

q(t) = diag(q1(t), q2(t), q3(t)) (∈ [C3]),

where qj(·), j ∈ {1, 2, 3}, is a continuous real function on [0,∞), and let L0 and L be the
corresponding minimal and maximal operators in H = L2((0,∞); C3). Denote by L0,j

(respectively, Lj) the minimal (respectively, maximal) operator generated by the scalar
expression

lj [y] = −y′′ + qj(t)y, t ∈ [0,∞), j ∈ {1, 2, 3}, (4.26)

and suppose that the deficiency indices are n±(L0,1) = 1, n±(L0,2) = n±(L0,3) = 2. Then
L0 = L0,1⊕L0,2⊕L0,3 and hence the operator L0 has equal intermediate deficiency indices
n±(L0) = 5.

Let y1,2(t, λ) and y2,2(t, λ) be solutions of the equation l2[y] = λy with the initial
data y

(k−1)
j,2 (0, λ) = δjk, let y1,3(t, λ) and y2,3(t, λ) be similar solutions of the equation

l3[y] = λy and let vj,2(t) = yj,2(t, 0), vj,3(t) = yj,3(t, 0), j ∈ {1, 2}. By using the results
of [5,18], one can easily prove the following assertions.

1. Let Γj : D → C
3 ⊕ C

2, j ∈ {0, 1}, be the operators defined for any function y =
{y1(t), y2(t), y3(t)} ∈ D by

Γ0y = {y′(0), Γ ′
0y} (∈ C

3 ⊕ C
2), Γ1y = {−y(0), Γ ′

1y} (∈ C
3 ⊕ C

2)

with Γ ′
0y = {[y2, v2,2](∞), [y3, v2,3](∞)} and Γ ′

1y = {[y2, v1,2](∞), [y3, v1,3](∞)}.
Then the collection Π = {C

5, Γ0, Γ1} is the decomposing boundary triplet for L.

2. The corresponding Weyl function (2.32) for the triplet Π is

M(λ) =

(
m(λ) M2(λ)

M3(λ) M4(λ)

)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

m1(λ) 0 0 0 0

0 m2(λ) 0 M22(λ) 0

0 0 m3(λ) 0 M23(λ)

0 M22(λ) 0 M42(λ) 0

0 0 M23(λ) 0 M43(λ)

⎞
⎟⎟⎟⎟⎟⎟⎠ : C

3 ⊕ C
2 → C

3 ⊕ C
2,

(4.27)

where m1(λ) is the Titchmarsh–Weyl function of the boundary problem

l1[y] = λy, y′(0) = 0,

mk(λ) is the similar function of the problem

lk[y] = λy, y′(0) = 0, [y, v2,k](∞) = 0,

and the other entries are

M2k(λ) = − 1
[y1,k, v2,k](∞)

, M4k(λ) =
[y1,k, v1,k](∞)
[y1,k, v2,k](∞)

, k = 2, 3.
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Next assume that N = (N0, N1) with

N0 =

⎛
⎜⎜⎜⎝

1 0 0
0 1 0
0 0 1
0 0 0

⎞
⎟⎟⎟⎠ : C

3 → C
4, N1 =

⎛
⎜⎜⎜⎝

0 0 0
0 0 0
0 0 0
1 0 0

⎞
⎟⎟⎟⎠ : C

3 → C
4

and let P = {C0, C1} ∈ TR(C5) be an N -triangular self-adjoint operator pair given by

C0 = I =

(
N0 C ′

01

0 C ′
02

)
, C1 =

(
N1 C ′

11

0 C ′
12

)
,

C ′
01 =

⎛
⎜⎜⎜⎝

0 0
0 0
0 0
1 0

⎞
⎟⎟⎟⎠ , C ′

02 = (01), C ′
11 =

⎛
⎜⎜⎜⎝

1 0
0 0
0 0
0 0

⎞
⎟⎟⎟⎠ , C ′

12 = (00).

Then the corresponding boundary problem (3.18), (3.19) is

l[y] − λy = f, (4.28)

N0y
′(0) + N1y(0) + C ′

01Γ
′
0y − C ′

11Γ
′
1y = 0,

C ′
02Γ

′
0y − C ′

12Γ
′
1y = 0.

}
(4.29)

To find the m-function mP(·) for the problem (4.28), (4.29) we make use of the equal-
ity (4.21). The immediate calculations show that in our case

TN,0(λ) =

⎛
⎜⎜⎜⎝

m1 0 0 1
2

0 m2 0 0
0 0 m3 0
1
2 0 0 0

⎞
⎟⎟⎟⎠ , TN (λ) =

⎛
⎜⎜⎜⎝

m1 0 0 0 0
0 m2 0 M22 0
0 0 m3 0 M23

1 0 0 0 0

⎞
⎟⎟⎟⎠ ,

where mj = mj(λ), M22 = M22(λ) and M23 = M23(λ) are taken from (4.27). Therefore,
by (4.21), one has

mP(λ) = TN,0(λ) + ΦP(λ), (4.30)

where

ΦP(λ) = TN (λ)(C0 − C1M(λ))−1C1T
∗
N (λ̄)

=
1

1 − m1(λ)M42(λ)
·

⎛
⎜⎜⎜⎝

m2
1(λ)M42(λ) m1(λ)M22(λ) 0 m1(λ)M42(λ)

m1(λ)M22(λ) m1(λ)M2
22(λ) 0 M22(λ)

0 0 0 0
m1(λ)M42(λ) M22(λ) 0 M42(λ)

⎞
⎟⎟⎟⎠ .

Let ϕ0(t, λ) (∈ [C3]) be the operator solution of the equation l[y] = λy with the initial
data ϕ0(0, λ) = −I, ϕ′

0(0, λ) = 0. It follows from (4.30) that the (minimal) orthogonal
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spectral function ΣP,N (s) is the sum

ΣP,N (s) =

(
Σ0(s) 0

0 0

)
+ Σ1(s), (4.31)

where Σ0(s) is the 3 × 3 spectral function of the decomposing boundary problem

l[y] − λy = f, y′(0) = 0, [y2, v2,2](∞) = [y3, v2,3](∞) = 0 (4.32)

corresponding to ϕ0(t, λ), and Σ1(s) is the 4 × 4 function obtained from ΦP(λ) by

Σ1(s) = lim
δ→+0

lim
ε→+0

1
π

∫ s−δ

−δ

Im ΦP(σ + iε) dσ.

Note that Σ0(s) corresponds to the decomposing boundary problem (4.32), and there-
fore its dimension 3×3 is less than the dimension 4×4 of ΣP,N (s). Formula (4.31) shows
that such a growth in the dimension of ΣP,N (s) is caused by the second term, Σ1(s).
At the same time, according to Theorem 4.15, the dimension of ΣP,N (s) is minimal
among all spectral functions of the boundary problem (4.28), (4.29). Observe also that,
by Corollary 4.16, the boundary conditions (4.29) define the self-adjoint extension Ã of
L0 with a spectral multiplicity of not more than 4.
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