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ON WEIGHTED ESTIMATES FOR STEIN'S MAXIMAL FUNCTION

HENDRA GUNAWAN

Let <f> denote the normalised surface measure on the unit sphere S""1. We shall be
interested in the weighted IP estimate for Stein's maximal function M$f, namely

where u is an A, weight, especially for 1 < p ^ 2. Using the Mellin transforma-
tion approach, we prove that the estimate holds for every weight ws where to 6 Ap

and 0 ̂  S < (p(n - 1) - n)/(n(p - 1)), for n ^ 3 and n/(n - 1) < p < 2.

INTRODUCTION

Let <f>T be the normalised surface measure on the sphere of radius r, centre 0 in
R n . Consider Stein's maximal function M$f, which is defined by

Mtf(x) = sup \4>r * f{x)\, x 6 R n ,
r>0

for any nice function / on Rn. Then we have the Lp inequality

for n ^ 2 and n/(n — 1) < p $J oo, which has been shown to be best possible [1, 4]. In
this paper, we are interested in the weighted Lp estimate for Stein's maximal function,

\mf\\LP{w) < Cp<w \\f\\LP{w), f £ L*(w),

where w £ Ap, especially for 1 < p ^ 2. (Consult [3] about Ap weights.) For n ^ 3,
a positive result can be found in [3]; here we shall reprove and extend it.
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36 H. Gunawan [2]

Using the Mellin transformation approach of Cowling and Mauceri [2], let Ky.(x) —

C{u)\x\~n+iu, where C(u) = n-W+iur(n - iu/2)/T(iu/2). (Ku is the distribution
on R n whose Fourier transform is Ku(£) = \£\~iu.) Then, formally, we have

<f>(x) = P1 (x) + / D{u)Ku(x) du, x e R n ,
JR

where Pi denotes the Poisson kernel at 1 and D(u) satisfies

2nC(u)D(u) = I («".Vi - Pi)(s)sn-1~iu ds, u G R,
J

with £i being the point mass at 1. One may observe that C(u) — O((l + \u\)n' ) and

D{u) = O((1 + |w|)~( n / 2 )) . Now, for every r > 0,

<j>T{x) = Pr{x) + f D{u)Ku{x)r-™ du, x £ R n ,
JTL

and accordingly, for every smooth function / on R n ,

4>T * f(x) = PT * f(x) + ( D{u)Ku * f(x)r~iu du, x e R n .
JR.

Hence

M+f(x) ^ MpJ(x) + j \D(u)\ \KU * f(x)\ du, x e Rn.
JR.

Here Mp1f(x) = sup \Pr * f(x)\ for x in R n . Since we know that Mp1f is majorised
r>0

by the Hardy-Littlewood maximal function M H L / , we obtain

\\MHLf\\LP{w)+ I \D{u)\ | | JT.*/!!„(„) du.
JR

Thus, to verify the estimate, we need to get a good weighted Lp estimate for Ku * f,
that is one that makes

/ 2>(«)| ||tf. * f\\LP{w) du < Cp,w \\f\\LP{w)
R

for 1 < p ^ 2.
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MAIN RESULTS

We obtain the following results. The first lemma below is standard.

LEMMA 1 . For \x\ > 2 |y| and for ail 7 6 (0,1),

\Ku(x - y) - Ku(x)\^ C( l + M ) ( n / 2 ) + ^ |yp | « | — ^ .

PROOF: For \x\ ^ 2 \y\, we have, as in [2], two estimates

\K,{x -y)- Ku(x)\ < C(l + |u|)n/2 \xfn

and

\Ku(x -y)~ Ku(x)\ ^ C{\ + |u|

Interpolating these estimates, we get

\K,{x -y)- Ku{x)\ < C(l + |«|)

for aU 7 6 (0,1).
Following the work of Watson [6], we have

LEMMA 2 . For 1 < p < 2 and for any 7 e (0,1),

f\\LP{w)

whenever w £ Ap.

PROOF: First note that = 1 for all £ £ R n . Next, we need to show that

the Lr -Hormander condition : for R > 2 \y\ > 0,

f] (2^)"/r' ( / \Ku(x - y ) - Ku

is satisfied for all r 6 (l ,oo). (Here r' denotes the dual exponent to r.) Having
done this, we can then choose r € (l,oo) sufficiently large such that wT £ Ap. Thus,
following [6], we obtain

II*. * /ll»(„) < C,,Wl7(l + |u|)(n /2)+^ \\f\\LHw), / £ LP{w),

as desired. Indeed, using Lemma 1, we observe that for all r £ (l ,oo),

/ \K4x-y)-Ku(x)\rdx
J2'R<\x\<2i+lR

^ cr(i + \u\){nr/2)+^r \yr f
J2iR<\x\

^ cr{\ + H)(nr/2)+7rii'irr /
J2iR<t<2J+1R

CT{\ + | i t | )
( " r / 2 ) +

[(7(1 + |«|)(n /
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Therefore the condition is satisfied and the lemma is proved. (We have actually proved

that the estimate holds whenever w £ Ap, for 1 < p < oo.) U

We are aware that the estimate in Lemma 2 is not good enough. We have, however,

the following result of Cowling and Mauceri [2] for the unweighted case.

LEMMA 3 . (Cowling and Mauceri.) For 1 < p ^ 2 and tor any 7 G (0,1),

I I*. * /lip < <7Pt7(i + M)(»/*>-<"/2)+7 | | / | | p , / e L?.

Now we have a better estimate for Ku * f, namely

THEOREM 4 . For 1 < p < 2 and tor any 7 £ (0,1),

IIA» */HLJ>(™*) ^ °p,w,-tAl + \u\) WJ\\ TP( w

wienever w S Av and 0 ^ S ^ 1.

PROOF: The proof follows directly from Lemma 2 and Lemma 3 by the Stein-Weiss
interpolation theorem [5]. U

Theorem 4 leads us to the weighted Lp estimate for Stein's maximal function.

THEOREM 5 . Forn^S and n/(n - 1) < p ^ 2, tie weighted Lp estimate

I I^ / I ILP( .«) < < W \\f\\LP{wl), f e L"(ws),

holds whenever w £ Ap and 0 ^ 6 < (p(n — 1) — n)/(n(p — 1)).

PROOF: Choose 7 G (0,1) sufficiently small such that

0 < 6 < (p(n - 1 - 7) - n)/(n(p - 1)).

Then, by Theorem 4, we have

Z?(«)| \\K, * f\\Lp{wf) du < CPlW,s \\f\\Lp{wS)

and so the theorem follows immediately. U

For power weights w(x) = \x\a, we know that w 6 Ap for some p > 1 if and only if

—n < a < n(p — 1). So, Theorem 5 implies that the estimate holds for w(x) = \x\a with

—(p(n — 1) — n)/(p — 1) < o < p(n — 1) — n. Stating it in another way, the estimate

with respect to w(x) = \x\ holds for (n + o,)/(n — 1) < p ^ 2 when a ^ 0, or for

(n + a)/(n + a — l ) < p ^ 2 when a < 0. Thus, for p ^ 2, our result agrees with the

one stated in [3, p.571] for the special case where w(x) = \x\a with o ^ 0.
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C O N C L U D I N G R E M A R K S

We suspect that the same estimate also holds for p > 2 , but we encounter difficul-

ties in verifying it. Duality arguments will not work since the endpoints of the range of

allowable p's are not symmetric. The Stein-Weiss interpolation theorem only gives the

estimate for 2 ^ p ^ oo provided tha t w £ Ai and 0 ^ 6 < (n — 2 ) / n . Also, since the

estimate holds only for some but not all w 6 Ap when n/(n — l ) < p ^ 2 , w e cannot

use the existing extrapolation theorem of Rubio de Francia and Garcia-Cuerva. Some

novel technique seems to be needed here and we are still working on it.
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