Canad. Math. Bull. Vol. 26 (3), 1983

A MULTIVARIABLE FORM OF THE FUNDAMENTAL THEOREM OF ALGEBRA

BY

PABLO M. SALZBERG*

ABSTRACT. Let $H(\mathbf{x})$ be a homogeneous polynomial in *n* indeterminates over an algebraically closed field *K*. A necessary and sufficient condition is given for $H(\mathbf{x})$ to admit a factorization of the form

$$\prod_{i=1}^{\kappa} [\alpha_i (\mathbf{a} \circ \mathbf{x}) + \beta_i (\mathbf{b} \circ \mathbf{x})]^{m_i}, \text{ where } \alpha_i, \beta_i \in K, m_i \in N,$$
for $i = 1, \dots, k$

a, $\mathbf{b} \in K^n$, and " \circ " is the usual inner product. This condition involves the linear derivatives of $H(\mathbf{x})$.

Let $H(\mathbf{x})$ be a homogeneous polynomial in $\mathbf{x} = (x_1, \ldots, x_n)$ of degree *m* over an algebraically closed field *K*. Denote by G_H the vector space (over *K*) generated by the set of all the derivatives of order m-1 of *H*.

The aim of this note is to prove the following result:

THEOREM. $H(\mathbf{x})$ admits a factorization of the form

(1)
$$\prod_{i=1}^{k} \left[\alpha_i (\mathbf{a} \circ \mathbf{x}) + \beta_i (\mathbf{b} \circ \mathbf{x}) \right]^{m_i},$$

where $\mathbf{a}, \mathbf{b} \in K^n$; $\alpha_i, \beta_i \in K$, $m_i \in N$ for i = 1, ..., k and $\sum m_i = m$, if and only if dim $G_H \leq 2$.

Proof. First assume $H(\mathbf{x})$ admits a factorization as shown in (1). Then dim $G_H \leq 2$ follows from explicitly differentiating (1).

Conversely, let dim $G_H \le 2$. Then we can find $\mathbf{a}, \mathbf{b} \in K^n$ such that G_H is generated as a vector space over K by $y_1 = \mathbf{a} \circ \mathbf{x}$ and $y_2 = \mathbf{b} \circ \mathbf{x}$. Since every polynomial can be written as a polynomial of its linear derivatives (cf. [2], Theorem 1), then $H(\mathbf{x}) = H^*(y_1, y_2)$. The Fundamental Theorem of Algebra ([1]) asserts that $H^*(y_1, y_2) = \prod_{i=1}^k (\alpha_i y_i + \beta_i y_2)^{m_i}$ for some $\alpha_i, \beta_i \in k, m_i \in \mathbb{N}$

Received by the editors May 26, 1981 and, in revised form, February 5, 1982.

^{*} I would like to thank York University, Ontario, Canada for the hospitality extended to me during my sabbatical leave.

AMS Subject Classification (1980): 12D05, 12E05

^{© 1983} Canadian Mathematical Society

²⁷¹

 $(i = 1, ..., k \text{ and } \sum m_i = m_i)$, which yields (1) by substituting (y_1, y_2) by $(\mathbf{a} \circ \mathbf{x}, \mathbf{b} \circ \mathbf{x})$. This concludes the proof.

When applied to quadratic forms this theorem yields the following well-known result.

COROLLARY. Let $\mathbf{x}^T A \mathbf{x} \neq 0$ be a quadratic form over K. Then $\mathbf{x}^T A \mathbf{x} = (\mathbf{a} \circ \mathbf{x})(\mathbf{b} \circ \mathbf{x})$, where $\mathbf{a}, \mathbf{b} \in K^n$, if and only if rank $A \leq 2$.

ACKNOWLEDGEMENT. I am indebted to Professor D. Solitar for his valuable suggestions.

References

1. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, third edition, N.Y.: Macmillan, 1965.

2. P. M. Salzberg, The Minimal Generating Space of a Polynomial, Linear Algebra and its Applications, **36** (1981), 89–96.

DEPARTAMENTO DE MATEMÁTICAS UNIVERSIDAD SIMÓN BOLÍVAR CARACAS, VENEZUELA

272