A MULTIVARIABLE FORM OF THE FUNDAMENTAL THEOREM OF ALGEBRA

BY
PABLO M. SALZBERG*

$$
\begin{aligned}
& \text { ABSTRACT. Let } H(\mathbf{x}) \text { be a homogeneous polynomial in } n \\
& \text { indeterminates over an algebraically closed field } K \text {. A necesssary } \\
& \text { and sufficient condition is given for } H(\mathbf{x}) \text { to admit a factorization of } \\
& \text { the form } \\
& \prod_{i=1}^{k}\left[\alpha_{i}(\mathbf{a} \circ \mathbf{x})+\beta_{i}(\mathbf{b} \circ \mathbf{x})\right]^{m_{i}} \text {, where } \alpha_{i}, \beta_{i} \in K, m_{i} \in N, \\
& \text { for } i=1, \ldots k
\end{aligned}
$$

$\mathbf{a}, \mathbf{b} \in K^{n}$, and " \circ " is the usual inner product. This condition involves the linear derivatives of $H(\mathbf{x})$.

Let $H(\mathbf{x})$ be a homogeneous polynomial in $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$ of degree m over an algebraically closed field K. Denote by G_{H} the vector space (over K) generated by the set of all the derivatives of order $m-1$ of H .

The aim of this note is to prove the following result:
Theorem. $H(\mathbf{x})$ admits a factorization of the form

$$
\begin{equation*}
\prod_{i=1}^{k}\left[\alpha_{i}(\mathbf{a} \circ \mathbf{x})+\beta_{i}(\mathbf{b} \circ \mathbf{x})\right]^{m_{i}}, \tag{1}
\end{equation*}
$$

where $\mathbf{a}, \mathbf{b} \in K^{n} ; \alpha_{i}, \beta_{i} \in K, m_{i} \in N$ for $i=1, \ldots, k$ and $\sum m_{i}=m$, if and only if $\operatorname{dim} G_{H} \leq 2$.

Proof. First assume $H(\mathbf{x})$ admits a factorization as shown in (1). Then $\operatorname{dim} G_{H} \leq 2$ follows from explicitly differentiating (1).

Conversely, let $\operatorname{dim} G_{H} \leq 2$. Then we can find $\mathbf{a}, \mathbf{b} \in K^{n}$ such that G_{H} is generated as a vector space over K by $y_{1}=\mathbf{a} \circ \mathbf{x}$ and $y_{2}=\mathbf{b} \circ \mathbf{x}$. Since every polynomial can be written as a polynomial of its linear derivatives (cf. [2], Theorem 1), then $H(\mathbf{x})=H^{*}\left(y_{1}, y_{2}\right)$. The Fundamental Theorem of Algebra ([1]) asserts that $H^{*}\left(y_{1}, y_{2}\right)=\prod_{i=1}^{k}\left(\alpha_{i} y_{i}+\beta_{i} y_{2}\right)^{m_{i}}$ for some $\alpha_{i}, \beta_{i} \in k, m_{i} \in \mathbb{N}$

[^0]$\left(i=1, \ldots, k\right.$ and $\left.\sum m_{i}=m_{i}\right)$, which yields (1) by substituting (y_{1}, y_{2}) by $(\mathbf{a} \circ \mathbf{x}, \mathbf{b} \circ \mathbf{x})$. This concludes the proof.

When applied to quadratic forms this theorem yields the following wellknown result.

Corollary. Let $\mathbf{x}^{\mathrm{T}} A \mathbf{x} \neq 0$ be a quadratic form over K. Then $\mathbf{x}^{\mathrm{T}} A \mathbf{x}=$ $(\mathbf{a} \circ \mathbf{x})(\mathbf{b} \circ \mathbf{x})$, where $\mathbf{a}, \mathbf{b} \in K^{n}$, if and only if rank $A \leq 2$.

Acknowledgement. I am indebted to Professor D. Solitar for his valuable suggestions.

References

1. G. Birkhoff and S. MacLane, A Survey of Modern Algebra, third edition, N.Y.: Macmillan, 1965.
2. P. M. Salzberg, The Minimal Generating Space of a Polynomial, Linear Algebra and its Applications, 36 (1981), 89-96.

Departamento de Matemáticas
Universidad Simón Bolívar
Caracas, Venezuela

[^0]: Received by the editors May 26, 1981 and, in revised form, February 5, 1982.

 * I would like to thank York University, Ontario, Canada for the hospitality extended to me during my sabbatical leave.

 AMS Subject Classification (1980): 12D05, 12E05
 (C) 1983 Canadian Mathematical Society

