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AN ESTIMATE FOR THE TOTAL MEAN CURVATURE
IN NEGATIVELY CURVED SPACES

ALBERT BORBELY

Let Mn be a nonpositively curved complete simply connected manifold and D C
Mn be a convex compact subset with non-empty interior and smooth boundary. It
is shown that the total mean curvature of dD can be estimated in terms of volume
and curvature bound.

0. INTRODUCTION

Mean curvature estimates and the isoperimetric conjecture for nonpositively curved
manifolds are linked together by Kleiner's paper [3]. It was shown that the conjecture
would follow from the following estimate.

(*) f tf—
JdD
f
dD

where Mn is a nonpositively curved complete simply connected manifold,
D c M" is a convex compact subset with non-empty interior and smooth boundary, H
denotes the mean curvature of dD (the arithmetic mean of the principal curvatures)
and Vo^S""1) is the Euclidean volume of the unit sphere..

This estimate is a simple consequence of the Gauss-Bonnet theorem in dimension
three. The argument in [3] was carried out only in this case but it is not hard to see
that it would work in higher dimensions as well. This gives a powerful motivation to
prove (*) in higher dimensions. Unfortunately, in dimensions greater than three the
Gauss-Bonnet-Chern integral does not seem to help. So one must find an alternative
way.

The goal of the paper is to prove an estimate for the total mean curvature. Although
it is not as strong as to imply (*) but it may be interesting on its own right.

THEOREM. Let M" be a nonpositively curved complete simply connected mani-
fold with n ^ 3 and D c Mn be a convex compact subset with non-empty interior and
smooth boundary. Let p € D be an arbitrary point in the interior of D and denote by
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T the gradient vector field of the distance function from p. Then for the total mean
curvature we have

(n-l) f H > f -Ric(T) + 2 / V ^ - ,
JdD JD JD 7 ^

where Ric (T) is the Ricci tensor and Aj denotes the i th principal curvature of the
geodesic spheres around p.

The estimate is sharp when D is a geodesic ball and p 6 D is the centre. Otherwise
the right hand side will depend on the choice of p € D. If we have a negative upper
bound on the curvature, then the above estimate can be simplified as follows.

COROLLARY. Let Mn be a negatively curved complete simply connected mani-
fold with sectional curvatures < —k2 and n ^ 3. Let D C M " be a convex compact
subset with non-empty interior and smooth boundary. Then for the total mean curva-
ture we have

[
dD

An alternative approach to prove (*) would be to estimate the total curvature
of the boundary (the integral of the product of the mean curvatures) and use the
inequality between the arithmetic and geometric means. Such estimate is obtained for
the Hyperbolic space Hn in [1].

1. CONSTRUCTION OF A DIFFERENTIAL FORM

We start out with a general construction that is similar to that of Chern's ([2]).

Let en be a unit normal field defined on some open subset of Mn. At each point
extend this to an orthonormal frame e\,... , e n such that ei is a smooth vector field
for i = 1 , . . . , n . This is possible locally although we may not be able to extend the
frame smoothly over the whole of the open set. Denote by 6X the dual frame of 1-forms
and define the connection forms as

where (.,.) denotes the metric on Mn and X is a vector field. The curvature form is
defined as

where R(X,Y) denotes the curvature tensor defined as: R(X,Y)Z =
VYZ + VIX,Y)Z.

Then Cartan's equations read as
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where we use the usual summation convention, summing over repeated indices.

If we change the frame e i , . . . , en into the frame e~i,... , en-i,en = e n , then the
corresponding forms will transform according to the following rules.

(2) ei = o)eh ¥ = ^6*, u\ = c^<Jn, f2n = a}ft£,

where i,j — l,...,n—l and aj is an orthogonal matrix of smooth functions on Mn.

The differential form which is of interest to us is defined as:

where £i1...in_1 is the Kronecker index that is equal to +1 or —1 according to
whether the permutation i±... i n _ ! of the numbers 1,2,... , n — 1 is even or odd and
the summation is extended over all the indices H , . . . ,in-i subject to the condition

t2 < h < • • • < in-l •

The forms #*,wn and Cl^ are frame dependent but from the transformation for-
mulas (2) one can easily see that the (n — l)-form <& itself is independent of the choice
of the local frame. This also means that $ is defined globally (on the same open set
where the vector field en is defined) and depends only on the vector field en.

We defined $ as an (n — l)-form on M " depending on a vector field e n . But
we shall need to look at $ as a form in the unit tangent bundle SMn. The forms
9l,ujj and Q} can be regarded as forms in the unit tangent bundle SMn. They will,
of course, depend on how the frames e\,... , en-i were chosen. To be more precise, if
en € SMn and X, Y £ T&nSMn are tangent vectors of SMn at e n , then

(3) ^j{X,Y)^-{R(Xh,Yh)ehei),

where Xh, Yh denotes the horizontal parts. To interpret the connection form wj-(A') in
case X € TenSMn we think of A" as a map X : [0,e) -> SMn with X(Q) = en. Then
for any t € [0, e) there is a frame e i , . . . , en attached to X(t) = en. This gives rise to
a map X, : [0,e) -» SMn, where Xj(t) = e,. Then we set CJ)(X) = (d/dtXj{0),ei).
In particular

(4)

where Xv denotes the vertical part of X. For the form 6X we simply have

(5) h

With this in mind $ can be regarded as an (n - l)-form on SMn which is inde-
pendent of the choice of the frame ex,... , en-\ that was used to define the forms 6\ wj-
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and fi*-. The form <$ (viewed as a form on Mn) is the pull back of $ (viewed as a
form on SMn) from SMn via the map en : Mn ->• SMn. Since from the context it
will be clear how to regard <J> we shall use the same notation for both forms.

From the equations (1) one can derive that

(6) d$

where the first summation is extended over all the indices ii,... ,in-i subject to the
condition ii < 13 < • • • < in-i and the second summation is extended over all the
indices ii,... , in-i subject to the conditions i\ < i% and %$<•••< in-i •

2. P R O O F OF THEOREM 1.

Let p € D be an arbitrary point in the interior of D. Denote by T the gradient
vector field of the distance function from p. Then T is a smooth unit vector field on
Mn - {p}. We can think of T as a map T : Mn - {p} -> SMn. Denote by T{D) the
image of D under the map T, where we allow multiple values at p. More precisely,

T(D)=T(D-{p})uSpM
n,

where SpM
n denotes the set of unit tangent vectors at p. This is a smooth n-

dimensional submanifold of SMn with boundary SpM
n U T(dD).

Let us denote by N the outer unit normal field of 3D. Again we can consider it
as a map N : dD -> SMn. For a point q e dD denote by [T(q),N(q)] the geodesic
segment in SMn connecting the unit vectors T(q) and N(q). This is nothing but the
set traced out by the rotation carrying the vector T{q) into the vector N(q) in SgM

n.

Denote by Lq the unit speed parametrisation of [T(q),N(q)] and by lq the length
of this segment. Let £(en) £ TenSM" be the direction vector of Lq at those points of
en G [T(q), N(q)} where T{q) ± N(q). Then we define a map R : dD x [0,1] -¥ SMn

by R(q,t) — Lq{lqt). This is a smooth map and its image is denoted by E, which is
the union of all these segments, namely:

E= |J

Although E is not a smooth n-dimensional submanifold of SMn, for the map R
may not be one-to-one, we can integrate n-forms over E. Therefore Stokes' theorem
will apply to E with boundary T(dD)UN(dD). We orient T(D)UE in such a way that
the orientation on T(D) and E will induce the opposite orientation on the common
boundary T(dD). Then by Stokes' theorem we have

(7) / d* = /
JT(D)UE JSpMnUN(dD)

https://doi.org/10.1017/S0004972700040119 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040119
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where the boundary SpM
n U N(dD) is given the induced orientation.

Next, we are going to evaluate these integrals. Fix an orientation on Mn. The
map T : Mn — {p} —>• SMn induces an orientation on T(D). Since $ and therefore d<&
are independent of the choice of e\,... , e n _ i to simplify the computations we select a
special frame at each point.

Let q € D — {p} be an arbitrary point. Choose a positively oriented orthonormal
frame e i , . . . , en near q such that en = T and at the point q the vectors e i , . . . , en_i
are principal directions for the geodesic sphere through q centred around p . For the
other points of the sphere the vectors e i , . . . , en_i may no longer be principal directions.
From the definition of the wj, 's we have

(8) W;(eB)=0, ufa) = 5)\j, for K i . j ^ n - 1

at q € D - {p}, where \j denotes the principal curvature at q of the geodesic sphere
around p in the direction of ej and Sj is the Kronecker symbol.

We can now compute.

f d*= f £>1...il,_in;?0<2-...-0i»-Kei,...,eB
JT(D) JD
f

JT(D)

- / 23eU-»n-ie»l,n.»2,-.»n-lX'u.n + 2 (~1)n /

E-*u.»+2 £ AuA'2).

where KiltTl denotes the sectional curvature of the two-plane determined by e^, en and
ix,i2 = 1,... , n - 1.

Next, we integrate over the set E. Let en £ E C SMn be an arbitrary unit
vector. Then en € [T(g),AT(g)] for some 9 € 9.D. We choose the orientation for
dD x [0,1] determined by the frame f\,... , fn-i, d/dt, where the frame is chosen such
that / 1 , . . . , fn-i is tangent to dD and /1 , • •. , / n _ i , T is positively oriented in Mn.
Then E is given the orientation induced by the map R. It is easy to check that the
orientations given to E and T(D) will induce the opposite orientation on the common
boundary T{dD).

To simplify the computation we choose the frame / 1 , . . . , / n - i in a special way.
Denote by A^ and AT the 2nd fundamental forms of dD and the geodesic sphere
around p at the point q, respectively. These are positive definite endomorphisms of
Nx and TL. Since en € [T{q), N(q)} we can write en = aT + bN for some o, b > 0.
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Let / 2 , . . . , fn-i be a frame that diagonalises aA^ + bAr on the intersection
This will be true only at the point q € dD and at nearby points ji, •.. , / n - i may not
diagonalise aApf + bAr • Let / i be a unit vector tangent to dD which is orthogonal to

. / 2 , . . . , fn-i and (fi,T) < 0. Moreover, we assume that the frame / 2 , . . . , /n_i was
chosen in such a way that / i , . . . , fn-i, T is positively oriented in M". We now have

/ d* = /
E JdDx.[0,l]

a c x [0,1]

where dR{d/dt) = lq(,.
Recall again that d$ is independent of the choice e\,... ,en-i- Therefore to

evaluate the integrand we choose the frame e i , . . . , en in such a way that e< = fc for
i — 2 , . . . , n — 1 and (ei, T) ^ 0. Since e2,... , en_i diagonalise â 4iv + bAx we have

(11) utl(dR(fs))=Si
jl3i, for

where ^ ^ 0 for j = 2 , . . . ,n — 1 on account of the convexity of D. The tangent
vector £(en) 6 TenSM" represents an infinitesimal rotation of en in the direction of
ei therefore it is a vertical vector and we also have

(12) "£tt) = «S-

For the horizontal part of (dR(fi)) we have (diZ(/<)) = /j for i = 1,... ,n - 1
that implies 0* (di?(/,-)) = <Jj for t, j = 2,... , n - 1.

Since fijifl*2 • . . . • ^'n-1 is a horizontal form and the tangent vector £ is vertical
the integral in the second line of (10) is zero. Combining these observations with (11)
and (12) we get

d* = 2( - l

From the choice of / i and e\ one concludes that /i = ce\ —den with d ~2 0, where
c and d are functions of en € E. Therefore 0n(/i) = -d and we have

(13)
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Next, we compute the integrals on the boundary d(T(D) UE)- SPM" U N(dD).
For the first component we obviously have

(14) f $ = 0.
JSpMn

For the integration over N(dD) first we fix a point q € dD, then choose a positively
oriented (in Mn) frame e\,... , en_i , en at q such that e i , . . . ,en_x are the principal

n- l
directions for dD at q. Then we have $ ( e i , . . . , e n _ i ) = 53 7»> where 7* denotes

1
the principal curvature of dD in the direction of e* at q 6 91?. Since the induced
orientation of ei e^_i on N(dD) is £„ 1 »,_i = (—l)n~ we have
the principal curvature of dD in the direction of e* at q 6 91?. Sinc
orientation of e\,... , en_i on N(dD) is en,i,... ,n-i = ( ~ l ) n ~ w e have

(15) f
JN

Combining (7),(9),(13), (14) and (15) we get

f ( ) /
JN(8D) JdD

The last integral is non-negative since d, ft ^ 0. This completes the proof of the
Theorem.

If the sectional curvatures are bounded above by -A;2, we have —KiiTl > k2 and
Xi > k. Putting these into (16) will yield the proof of the Corollary.
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