
ZERO TRACTS OF BLASCHKE PRODUCTS 

C. N. L I N D E N AND H. SOMADASA 

1. Introduction. Let {an} be a sequence of complex numbers such that 

0 < \an\ < 1 (w = 1 , 2 , 3 , . . . ) 
and 

oo 

YJ (i - Kl) < ». 

Then [an) is called a Blaschke sequence. For each Blaschke sequence [an] a 
Blaschke product is defined as 

oo I 

5(2) = 5(Z,{ani)=n^r?L-r;-
n=l #w I — anZ 

Thus a Blaschke product B(z, {an}) is a function regular in the open unit disk 
D = {s: |z| < 1} and having a zero at each point of the sequence {an}. 

Let Ê be the family of all continuous curves in D each of whose members is 
defined in the form 

z = z(t), 0 < t < 1, 

where z(0 is a continuous function of /, 

\z(t)\ < 1, lim \z(t)\ < 1, and lim \z{t)\ = 1. 
^ 0 + 0 ^ 1 - 0 

Clearly, each member of Ê has at least one limit point on the circumference 
C = {z: \z\ = 1}. Now suppose that J3(;s, {an}) is a given Blaschke product. 
Then we define a zero tract of 5 (z, {aw} ) as a curve T belonging to (S such that 

lim B(z(t), \an}) 
«_>i-o 

exists and is zero. 
It is well known that there exist Blaschke products that do not have any zero 

tracts. In particular, any Blaschke product for which \an) is a finite set of 
points has this property. Moreover, the number of zero tracts is limited by 
the fact that for almost all values 6 in [0, 2w) a Blaschke product B(z, {an}) 
must tend to a limit of modulus 1 as z tends to eie in any Stolz angle 

{z: \dirg(eid - z)\ < Ô < JTT, 0 < \eie - z\ < ex}. 
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However, Frostman (2) has shown that the Blaschke product B(z, \a„}), 
where 

an~1~ {n + l)2 

for each positive integer n, has the curve {z: z = /, 0 < t < 1} as a zero tract. 
Other Blaschke products are known to have a much greater set of zero tracts 
of a more complicated nature; cf. (3). 

In this paper we concern ourselves with the family S of continuous curves 
in D and pose the following question. Given any arbitrary curve T of Ê, is 
there a Blaschke product for which T is a zero tract? 

If T has more than one limit point on C, the answer to this question is 
known. For Blaschke products are analytic and bounded in D and functions 
of this type do not tend to any limit along T unless they are constant in D. 
Thus in this case the answer to the above question is in the negative. On the 
other hand, we shall prove below that if Y has only one limit point on C, then 
the answer is in the affirmative. Stated precisely, our result takes the following 
form: 

THEOREM 1. Let Y be a curve defined by the equation 

z = z(t), 0 < t < 1, 

where z(t) is a continuous function of t, 

\z(t)\ < 1, lim |s(/)| < 1, and lim z(t) = eie. 

Then there exists a Blaschke product B (z) such that 

lim B(z(t)) 

exists and is zero. 

The rest of this paper will be concerned with the proof of Theorem 1 and an 
extension which states that, if £ ' is the subset of Ê consisting of those curves Y 
which have just one limit point on C, then for each countable subset { Yn} of 6 ' 
there is a Blaschke product B{z) which tends to zero, as |z| —» 1 along any 
given member of { Yn}. 

2. Preliminaries. For the proof of Theorem 1 we may, without any 
essential loss of generality, take the only limit point of Y on C to be the point 
2 = 1. Then using the standard polar representation of the complex plane, we 
define a function f(6) as follows. Let 

!

max(sup{|*|: arg z > 6) z G r } , 1 - 0) when 0 < 6 < \T, 
1 when 6 = 0, 

max(sup{|s|: arg 2 < 6; z € T}, 1+6) when - JTT < 6 < 0, 
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where in accordance with the s tandard notat ion we take the supremum of the 

empty set to be — °°. As an immediate consequence of this definition we have 

0 < / ( 0 ) < 1 when 0 < |0| < \TC. 

Now let a region A be defined by 

(2) A = U {z:z = reid; 0<r<f(d)}. 

Then there exists a fixed real number t0 such t h a t 0 < t0 < 1 and for which 
the set 

T0 = {z: z = z(t);t0 < t < 1} 

is a subset of A. We define sets L(0) such t h a t 

m T(ft) = / { * - a r g s = 0 , / (0 + O) <\z\ < / ( 0 - O ) } when 0 < 0 < \T, 
{6) W \ { s : a r g s = 0 , / ( 0 - O ) < \z\ < / ( 0 + O)} when - } T T < 0 < 0, 

and we form the sets 

T i = U L(0), T 2 = U L(0). 
O<0<|TT _ I 1 r < 0 < o 

I t follows from the definitions t h a t I \ and T2 are in the closed upper and 
lower half-planes respectively and t h a t Ti^J {1} W T2 includes t h a t pa r t of 
the boundary of A for which |0| < \T. 

We shall prove Theorem 1 by constructing Blaschke products which tend to 
zero along each of Ti and T2 respectively. I t will suffice to make the con
struction for Ti and then deduce the corresponding result for T2 by analogy. 
Thus , al though Lemmas 1, 2, and 3 refer to Ti, these lemmas have obvious 
counterpar ts which can be applied to T2. 

3 . T w o l e m m a s . In this section we describe the na ture of Ti by means 
of two lemmas. 

L E M M A 1. Let c be any non-zero complex number belonging to Ti and p a real 
number such that 0 < p < |1 — c\. Then if C(c, p) = {z: \z — c\ = p}, there 
exists one and only one complex number k belonging to C(c, p) H Yx such that 
arg k < arg c and \k\ > |c|. 

Proof. Let 

(4) 4> = inf{0: z = re" G I \ ; z G K(c, p)} 

where K(c, p) = {z: \z — c\ < p}. Then the point / ( # + 0)ei* belongs to 
K(c, p) since it is a limit point of points contained in the compact set K(c, p). 
W e also remark here t h a t if f(<t> + 0)e** lies on the boundary of K(c, p), there 
would appear to be two possible positions for this point . However, since f(6) 
is a monotonie decreasing function of 0, \f(<j> + 0 ) | > c and a simple geometric 
a rgument shows t h a t /(<£ + 0)ei<f> mus t be located a t t h a t position which is 
farther from the origin. 
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On the other hand, if 0 < 6 < <f> and z = reie 6 Tu then z Q K(c, p). 
Therefore f(<j> — 0)ei<f>, being a limit point of points outside K(c, p), is itself 
outside K(c, p) or on its boundary. Thus L(<t>) has one and only one point of 
contact with C(c, p) and hence C(c, p) C\ I \ contains at least one point k such 
that arg k < arg c and \k\ > \c\. 

Finally we must show that k is unique. The definition (4) of <j> and the 
proof above shows that any point ki} other than k, which satisfies the require
ments of Lemma 1 must also satisfy the inequalities 

(5) arg c > arg kx > arg k. 

But, since ki G C(c, p) and \ki\ > \c\, the inequality (5) implies that \ki\ > \k\. 
Further, since k± 6 Ti, the inequality (5) implies that \ki\ < \k\. Hence we 
have a contradiction and the proof of Lemma 1 is complete. 

LEMMA 2. Let z0 = r0e
i9° be any non-zero point belonging to IY Then the 

set 

Yi = [z: \z\ > |s0|, arg z < arg z0, z 6 I\} 

is the image of the interval [0, |1 — z0\) by a continuous mapping z = z(s) 
where \z(s)\ < 1 and 

lim z(s) = 1. 
S-*| 1—20 1 — 0 

Proof. For any number 5 in [0, 11 — z0\) let z(s) denote that point on 71 
which satisfies \zQ — z(s)\ = s, args(^) < arg z0, \z(s)\ > \z0\. The point z(s) 
exists and is unique by Lemma 1. Then z = z(s) maps the interval [0, |1 — z0\) 
onto 71 and satisfies the relations \z(s)\ < 1 and 

lim z(s) = 1. 
S->\ 1 - 2 0 1 - 0 

Now \z(s)\ is a monotonie increasing function of s and, since \z(s)\ = r 
always has a solution for each r in [|zo|, 1), it follows that \z(s)\ is continuous 
on [0, |1 — zo|). Similarly arg z(s) is also continuous on [0, |1 — z0\) and the 
continuity of z (s) itself follows immediately. This completes the proof of 
Lemma 2. 

4. Proof of Theorem 1. Before proving Theorem 1, we find that it is 
convenient to prove a special case of the theorem which is stated below as 
Lemma 3. First, however, we recall a known result (3) which will be required 
for the proof of the lemma. 

THEOREM A. Let {an} be a Blaschke sequence which contains a subsequence 
{am} tending to eie in such a manner that 

lim i ^ " ^ 1 1 = 0 
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and none of the closed disks 

Km = {z: \z — am\ < \am — aOT_i|}, m = 1, 2, 3, . . . , 

intersects C. Then the corresponding Blaschke product B(z, {an}) tends to 0 as z 
oo 

tends to eiB, z being confined to the set U Km. 

LEMMA 3. There exists a Blaschke sequence {an} lying on Ti such that the 
corresponding Blaschke product B(z, {an}) tends to 0 as z tends to 1 along IY 

Proof. The sequence {an} is obtained by a construction based on induction. 
Let 7 be a fixed real number in (0, 1) and let ax be an arbitrary point of IY 

Then if an has been determined, we select an+i to be the complex number that 
lies on Ti and on 

(6) Cn = {z: \z - an\ = (1 - |a»|)(arg an)t} 

and satisfies the inequalities arg an+i < arg an and |an+i | > \an\. Lemma 1 
shows that an+i is uniquely defined. It is immediate that {an} is an infinite 
sequence of points converging to the point 1 and satisfying 0 < \an\ < 1 for all 
positive integers n. Since 0 < arg an < \T, it is clear that none of the circles 
defined by (6) intersects the circle C. We must show further that {an} is a 
Blaschke sequence in order to justify an application of Theorem A. 

By definition of {an} we have that 

\an+! - an\ = (1 - \an\) (arg anp 

when n > 1. Let an = rn e
i0n for each n. Then we have 

(1 - rn)6n
y = {(rn+i - rny + 4rn rn+1 sin2 \{Bn - 6n+1)}* 

< {(rn+1-rny+ (dn -dn+ly}L> 
< Ovt-i - rn) + (0n - 0n+i). 

Now the definition (1) implies that 1 — \an\ < arg an when an G Ti. Hence 
from the last displayed inequalities we have that 

(7) 1 - rn < ( 1 _ rn)y + ^ . 

Since 1 — rn = 1 — \an\ and 6„ = arg an are both non-increasing functions of n, 
it follows by consideration of Riemann sums that 

f rn+l - rn f1 dt A Bn - 6n+1 CHdt 

H (1 - rnY
 < JTi (1 - 07 è l C Jo ? ' 

for all positive integral values of N. Since both of the right-hand integrals 
exist, we deduce from (7) that 

CO 

£ (i - Kl) 
n=l 

converges and that {an} is a Blaschke sequence. 
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Finally we note that Ti is contained in 

oo 

U KM where KM = {z: \z - an\ < \an - an.H\) 
n—1 

for each positive integer n and that, by definition of an+u 

lim ^ " ^ Y 1 = lim |arg an\
y = 0. 

Hence Lemma 3 follows immediately from Theorem A. 

In proving Theorem 1, we consider the curve T2 defined in §2 and its re
flection 

r ' = {z:zt r 2 }. 

By applying the proof of Lemma 3 to I1', we deduce the existence of a Blaschke 
product B(z, {bn} ) which tends to zero along V. Hence B(z, {bn} ) is a Blaschke 
product which tends to zero along T2. But we have constructed B(z, {an}) to 
tend to zero along Tx and, since all Blaschke products are bounded in D, it 
follows that 

B1{z) =B(zAan}).B{zAk}) 

is a Blaschke product which tends to zero along rx and T2. 
By Lemma 2, Ti and r 2 are continuous curves. Hence an extension of a 

Theorem of Lindelôf (1, p. 460) now asserts that B\(z) tends to zero uniformly 
as z tends to 1 in the region A which is defined by (2) and its union with 
Ti W [1} VJ r2. Since, by definition, r 0 C A and 

r = {z: z = z(t), o < t < h} \J r0, 

it follows that the function Bi(z) tends to zero as z tends to 1 along T. This 
completes the proof of Theorem 1. 

5. Generalizations of Theorem 1. In conclusion it seems to be worth 
while to mention two possible ways in which Theorem 1 may be generalized. 

Firstly we observe that the argument pursued above may be applied not 
only to prove Theorem 1 for a continuous set T but also for any set which is 
included in D and has one and only one limit point on C. 

Secondly we note that an application of the methods of Somadasa (3) 
yields the following generalization of Theorem 1. 

THEOREM 2. Let {Tn\ be any sequence of continuous curves contained in D 
each of which is defined by an equation 

z = zn(t), 0 < * < 1, 

where, for each n, zn(t) is a continuous function of t and Yn has one and only one 
limit point on C. Then there exists a Blaschke product for which each of the curves 
Yn is a zero tract. 
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We sketch the proof of Theorem 2 as follows. By Theorem 1, each curve 
Tm corresponds to a Blaschke product B(z, {an(m)\) which tends to zero as 
\z\ —» 1 on Tm. Let N(m) be chosen so that 

oo 

£ (l-K(w)|)<2-m . 
w=2V(ra) 

Then 
oo 

U \an+N(m)(m)} = {an} 
m=l 

is a Blaschke sequence and it can be proved (3) that B(z, {««}) is a Blaschke 
product with the required properties. 
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