ZERO TRACTS OF BLASCHKE PRODUGTS

C. N. LINDEN AND H. SOMADASA

1. Introduction. Let $\left\{a_{n}\right\}$ be a sequence of complex numbers such that

$$
0<\left|a_{n}\right|<1 \quad(n=1,2,3, \ldots)
$$

and

$$
\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)<\infty .
$$

Then $\left\{a_{n}\right\}$ is called a Blaschke sequence. For each Blaschke sequence $\left\{a_{n}\right\}$ a Blaschke product is defined as

$$
B(z)=B\left(z,\left\{a_{n}\right\}\right)=\prod_{n=1}^{\infty} \frac{\left|a_{n}\right|}{a_{n}} \frac{a_{n}-z}{1-\bar{a}_{n} z} .
$$

Thus a Blaschke product $B\left(z,\left\{a_{n}\right\}\right)$ is a function regular in the open unit disk $D=\{z:|z|<1\}$ and having a zero at each point of the sequence $\left\{a_{n}\right\}$.

Let \mathfrak{C} be the family of all continuous curves in D each of whose members is defined in the form

$$
z=z(t), \quad 0<t<1
$$

where $z(t)$ is a continuous function of t,

$$
|z(t)|<1, \quad \lim _{t \rightarrow 0+0}|z(t)|<1, \quad \text { and } \quad \lim _{t \rightarrow 1-0}|z(t)|=1 .
$$

Clearly, each member of \mathfrak{C} has at least one limit point on the circumference $C=\{z:|z|=1\}$. Now suppose that $B\left(z,\left\{a_{n}\right\}\right)$ is a given Blaschke product. Then we define a zero tract of $B\left(z,\left\{a_{n}\right\}\right)$ as a curve Γ belonging to \mathfrak{G} such that

$$
\lim _{t \rightarrow 1-0} B\left(z(t),\left\{a_{n}\right\}\right)
$$

exists and is zero.
It is well known that there exist Blaschke products that do not have any zero tracts. In particular, any Blaschke product for which $\left\{a_{n}\right\}$ is a finite set of points has this property. Moreover, the number of zero tracts is limited by the fact that for almost all values θ in $[0,2 \pi)$ a Blaschke product $B\left(z,\left\{a_{n}\right\}\right)$ must tend to a limit of modulus 1 as z tends to $e^{i \theta}$ in any Stolz angle

$$
\left\{z:\left|\arg \left(e^{i \theta}-z\right)\right|<\delta<\frac{1}{2} \pi, 0<\left|e^{i \theta}-z\right|<\sigma\right\} .
$$

Received October 26, 1965.

However, Frostman (2) has shown that the Blaschke product $B\left(z,\left\{a_{n}\right\}\right)$, where

$$
a_{n}=1-\frac{1}{(n+1)^{2}}
$$

for each positive integer n, has the curve $\{z: z=t, 0<t<1\}$ as a zero tract. Other Blaschke products are known to have a much greater set of zero tracts of a more complicated nature; cf. (3).

In this paper we concern ourselves with the family \mathfrak{C} of continuous curves in D and pose the following question. Given any arbitrary curve Γ of \mathfrak{C}, is there a Blaschke product for which Γ is a zero tract?

If Γ has more than one limit point on C, the answer to this question is known. For Blaschke products are analytic and bounded in D and functions of this type do not tend to any limit along Γ unless they are constant in D. Thus in this case the answer to the above question is in the negative. On the other hand, we shall prove below that if Γ has only one limit point on C, then the answer is in the affirmative. Stated precisely, our result takes the following form:

Theorem 1. Let Γ be a curve defined by the equation

$$
z=z(t), \quad 0<t<1,
$$

where $z(t)$ is a continuous function of t,

$$
|z(t)|<1, \quad \lim _{t \rightarrow 0+0}|z(t)|<1, \quad \text { and } \quad \lim _{t \rightarrow 1-0} z(t)=e^{i \theta} .
$$

Then there exists a Blaschke product $B(z)$ such that

$$
\lim _{t \rightarrow 1-0} B(z(t))
$$

exists and is zero.
The rest of this paper will be concerned with the proof of Theorem 1 and an extension which states that, if \mathbb{E}^{\prime} is the subset of \mathfrak{C} consisting of those curves Γ which have just one limit point on C, then for each countable subset $\left\{\Gamma_{n}\right\}$ of © ${ }^{\prime}$ there is a Blaschke product $B(z)$ which tends to zero, as $|z| \rightarrow 1$ along any given member of $\left\{\Gamma_{n}\right\}$.
2. Preliminaries. For the proof of Theorem 1 we may, without any essential loss of generality, take the only limit point of Γ on C to be the point $z=1$. Then using the standard polar representation of the complex plane, we define a function $f(\theta)$ as follows. Let
(1) $f(\theta)= \begin{cases}\max (\sup \{|z|: \arg z \geqslant \theta ; z \in \Gamma\}, 1-\theta) & \text { when } 0<\theta<\frac{1}{4} \pi, \\ 1 & \text { when } \theta=0, \\ \max (\sup \{|z|: \arg z \leqslant \theta ; z \in \Gamma\}, 1+\theta) & \text { when }-\frac{1}{4} \pi<\theta<0,\end{cases}$
where in accordance with the standard notation we take the supremum of the empty set to be $-\infty$. As an immediate consequence of this definition we have

$$
0<f(\theta)<1 \quad \text { when } 0<|\theta|<\frac{1}{4} \pi
$$

Now let a region A be defined by

$$
\begin{equation*}
A=\bigcup_{|\theta|<\frac{1}{2} \pi}\left\{z: z=r e^{i \theta} ; \quad 0 \leqslant r \leqslant f(\theta)\right\} . \tag{2}
\end{equation*}
$$

Then there exists a fixed real number t_{0} such that $0<t_{0}<1$ and for which the set

$$
\Gamma_{0}=\left\{z: z=z(t) ; t_{0} \leqslant t<1\right\}
$$

is a subset of A. We define sets $L(\theta)$ such that
(3) $L(\theta)=\left\{\begin{array}{l}\{z: \arg z=\theta, f(\theta+0) \leqslant|z| \leqslant f(\theta-0)\} \quad \text { when } 0<\theta<\frac{1}{4} \pi, \\ \{z: \arg z=\theta, f(\theta-0) \leqslant|z| \leqslant f(\theta+0)\}\end{array} \quad\right.$ when $-\frac{1}{4} \pi<\theta<0$, and we form the sets

$$
\Gamma_{1}=\bigcup_{0<\theta<\frac{1}{4} \pi} L(\theta), \quad \Gamma_{2}=\bigcup_{-\frac{1}{4} \pi<\theta<0} L(\theta) .
$$

It follows from the definitions that Γ_{1} and Γ_{2} are in the closed upper and lower half-planes respectively and that $\Gamma_{1} \cup\{1\} \cup \Gamma_{2}$ includes that part of the boundary of A for which $|\theta|<\frac{1}{4} \pi$.
We shall prove Theorem 1 by constructing Blaschke products which tend to zero along each of Γ_{1} and Γ_{2} respectively. It will suffice to make the construction for Γ_{1} and then deduce the corresponding result for Γ_{2} by analogy. Thus, although Lemmas 1, 2, and 3 refer to Γ_{1}, these lemmas have obvious counterparts which can be applied to Γ_{2}.
3. Two lemmas. In this section we describe the nature of Γ_{1} by means of two lemmas.

Lemma 1. Let c be any non-zero complex number belonging to Γ_{1} and ρ a real number such that $0<\rho<|1-c|$. Then if $C(c, \rho)=\{z:|z-c|=\rho\}$, there exists one and only one complex number k belonging to $C(c, \rho) \cap \Gamma_{1}$ such that $\arg k \leqslant \arg c$ and $|k| \geqslant|c|$.

Proof. Let

$$
\begin{equation*}
\phi=\inf \left\{\theta: z=r e^{i \theta} \in \Gamma_{1} ; z \in K(c, \rho)\right\} \tag{4}
\end{equation*}
$$

where $K(c, \rho)=\{z:|z-c| \leqslant \rho\}$. Then the point $f(\phi+0) e^{i \phi}$ belongs to $K(c, \rho)$ since it is a limit point of points contained in the compact set $K(c, \rho)$. We also remark here that if $f(\phi+0) e^{i \phi}$ lies on the boundary of $K(c, \rho)$, there would appear to be two possible positions for this point. However, since $f(\theta)$ is a monotonic decreasing function of $\theta,|f(\phi+0)| \geqslant c$ and a simple geometric argument shows that $f(\phi+0) e^{i \phi}$ must be located at that position which is farther from the origin.

On the other hand, if $0<\theta<\phi$ and $z=r e^{i \theta} \in \Gamma_{1}$, then $z \notin K(c, \rho)$. Therefore $f(\phi-0) e^{i \phi}$, being a limit point of points outside $K(\iota, \rho)$, is itself outside $K(c, \rho)$ or on its boundary. Thus $L(\phi)$ has one and only one point of contact with $C(c, \rho)$ and hence $C(c, \rho) \cap \Gamma_{1}$ contains at least one point k such that $\arg k \leqslant \arg c$ and $|k| \geqslant|c|$.

Finally we must show that k is unique. The definition (4) of ϕ and the proof above shows that any point k_{1}, other than k, which satisfies the requirements of Lemma 1 must also satisfy the inequalities

$$
\begin{equation*}
\arg c \geqslant \arg k_{1}>\arg k \tag{5}
\end{equation*}
$$

But, since $k_{1} \in C(c, \rho)$ and $\left|k_{1}\right| \geqslant|c|$, the inequality (5) implies that $\left|k_{1}\right|>|k|$. Further, since $k_{1} \in \Gamma_{1}$, the inequality (5) implies that $\left|k_{1}\right| \leqslant|k|$. Hence we have a contradiction and the proof of Lemma 1 is complete.

Lemma 2. Let $z_{0}=r_{0} e^{i \theta_{0}}$ be any non-zero point belonging to Γ_{1}. Then the set

$$
\gamma_{1}=\left\{z:|z| \geqslant\left|z_{0}\right|, \arg z \leqslant \arg z_{0}, z \in \Gamma_{1}\right\}
$$

is the image of the interval $\left[0,\left|1-z_{0}\right|\right)$ by a continuous mapping $z=z(s)$ where $|z(s)|<1$ and

$$
\lim _{s \rightarrow 11-z_{0} \mid-0} z(s)=1
$$

Proof. For any number s in $\left[0,\left|1-z_{0}\right|\right)$ let $z(s)$ denote that point on γ_{1} which satisfies $\left|z_{0}-z(s)\right|=s$, $\arg z(s) \leqslant \arg z_{0},|z(s)| \geqslant\left|z_{0}\right|$. The point $z(s)$ exists and is unique by Lemma 1 . Then $z=z(s)$ maps the interval $\left[0,\left|1-z_{0}\right|\right)$ onto γ_{1} and satisfies the relations $|z(s)|<1$ and

$$
\lim _{s \rightarrow|1-20|-0} z(s)=1
$$

Now $|z(s)|$ is a monotonic increasing function of s and, since $|z(s)|=r$ always has a solution for each r in $\left[\left|z_{0}\right|, 1\right)$, it follows that $|z(s)|$ is continuous on $\left[0,\left|1-z_{0}\right|\right)$. Similarly $\arg z(s)$ is also continuous on $\left[0,\left|1-z_{0}\right|\right)$ and the continuity of $z(s)$ itself follows immediately. This completes the proof of Lemma 2.
4. Proof of Theorem 1. Before proving Theorem 1, we find that it is convenient to prove a special case of the theorem which is stated below as Lemma 3. First, however, we recall a known result (3) which will be required for the proof of the lemma.

Theorem A. Let $\left\{a_{n}\right\}$ be a Blaschke sequence which contains a subsequence $\left\{\alpha_{m}\right\}$ tending to $e^{i \theta}$ in such a manner that

$$
\lim _{m \rightarrow \infty} \frac{\left|\alpha_{m}-\alpha_{m+1}\right|}{1-\left|\alpha_{m}\right|}=0
$$

and none of the closed disks

$$
K_{m}=\left\{z:\left|z-\alpha_{m}\right| \leqslant\left|\alpha_{m}-\alpha_{m-1}\right|\right\}, \quad m=1,2,3, \ldots,
$$

intersects C. Then the corresponding Blaschke product $B\left(z,\left\{a_{n}\right\}\right)$ tends to 0 as z tends to $e^{i \theta}, z$ being confined to the set $\bigcup^{\infty} K_{m}$.

Lemma 3. There exists a Blaschke sequence $\left\{a_{n}\right\}$ lying on Γ_{1} such that the corresponding Blaschke product $B\left(z,\left\{a_{n}\right\}\right)$ tends to 0 as z tends to 1 along Γ_{1}.

Proof. The sequence $\left\{a_{n}\right\}$ is obtained by a construction based on induction.
Let γ be a fixed real number in $(0,1)$ and let a_{1} be an arbitrary point of Γ_{1}. Then if a_{n} has been determined, we select a_{n+1} to be the complex number that lies on Γ_{1} and on

$$
\begin{equation*}
C_{n}=\left\{z:\left|z-a_{n}\right|=\left(1-\left|a_{n}\right|\right)\left(\arg a_{n}\right)^{\gamma}\right\} \tag{6}
\end{equation*}
$$

and satisfies the inequalities $\arg a_{n+1} \leqslant \arg a_{n}$ and $\left|a_{n+1}\right| \geqslant\left|a_{n}\right|$. Lemma 1 shows that a_{n+1} is uniquely defined. It is immediate that $\left\{a_{n}\right\}$ is an infinite sequence of points converging to the point 1 and satisfying $0<\left|a_{n}\right|<1$ for all positive integers n. Since $0<\arg a_{n}<\frac{1}{4} \pi$, it is clear that none of the circles defined by (6) intersects the circle C. We must show further that $\left\{a_{n}\right\}$ is a Blaschke sequence in order to justify an application of Theorem A.

By definition of $\left\{a_{n}\right\}$ we have that

$$
\left|a_{n+1}-a_{n}\right|=\left(1-\left|a_{n}\right|\right)\left(\arg a_{n}\right)^{\gamma}
$$

when $n \geqslant 1$. Let $a_{n}=r_{n} e^{i \theta_{n}}$ for each n. Then we have

$$
\begin{aligned}
\left(1-r_{n}\right) \theta_{n}^{\gamma} & =\left\{\left(r_{n+1}-r_{n}\right)^{2}+4 r_{n} r_{n+1} \sin ^{2} \frac{1}{2}\left(\theta_{n}-\theta_{n+1}\right)\right\}^{\frac{1}{2}} \\
& \leqslant\left\{\left(r_{n+1}-r_{n}\right)^{2}+\left(\theta_{n}-\theta_{n+1}\right)^{2}\right\}^{\frac{1}{2}} \\
& \leqslant\left(r_{n+1}-r_{n}\right)+\left(\theta_{n}-\theta_{n+1}\right) .
\end{aligned}
$$

Now the definition (1) implies that $1-\left|a_{n}\right| \leqslant \arg a_{n}$ when $a_{n} \in \Gamma_{1}$. Hence from the last displayed inequalities we have that

$$
\begin{equation*}
1-r_{n} \leqslant \frac{r_{n+1}-r_{n}}{\left(1-r_{n}\right)^{\gamma}}+\frac{\theta_{n}-\theta_{n+1}}{\theta_{n}{ }^{\gamma}} \tag{7}
\end{equation*}
$$

Since $1-r_{n}=1-\left|a_{n}\right|$ and $\theta_{n}=\arg a_{n}$ are both non-increasing functions of n, it follows by consideration of Riemann sums that

$$
\sum_{n=1}^{N} \frac{r_{n+1}-r_{n}}{\left(1-r_{n}\right)^{\gamma}}<\int_{r_{1}}^{1} \frac{d t}{(1-t)^{\gamma}} \text { and } \sum_{n=1}^{N} \frac{\theta_{n}-\frac{\theta_{n+1}}{\theta_{n}^{\gamma}}<\int_{0}^{\theta_{1}} \frac{d t}{t^{\gamma}}, ., ~}{\text { ren }}
$$

for all positive integral values of N. Since both of the right-hand integrals exist, we deduce from (7) that

$$
\sum_{n=1}^{\infty}\left(1-\left|a_{n}\right|\right)
$$

converges and that $\left\{a_{n}\right\}$ is a Blaschke sequence.

Finally we note that Γ_{1} is contained in

$$
\bigcup_{n=1}^{\infty} K^{(n)} \quad \text { where } \quad K^{(n)}=\left\{z:\left|z-a_{n}\right| \leqslant\left|a_{n}-a_{n+1}\right|\right\}
$$

for each positive integer n and that, by definition of a_{n+1},

$$
\lim _{n \rightarrow \infty} \frac{\left|a_{n}-a_{n+1}\right|}{1-\left|a_{n}\right|}=\lim _{n \rightarrow \infty}\left|\arg a_{n}\right|^{\gamma}=0
$$

Hence Lemma 3 follows immediately from Theorem A.
In proving Theorem 1, we consider the curve Γ_{2} defined in $\S 2$ and its reflection

$$
\Gamma^{\prime}=\left\{z: \bar{z} \in \Gamma_{2}\right\} .
$$

By applying the proof of Lemma 3 to Γ^{\prime}, we deduce the existence of a Blaschke product $B\left(z,\left\{b_{n}\right\}\right)$ which tends to zero along Γ^{\prime}. Hence $B\left(z,\left\{\bar{b}_{n}\right\}\right)$ is a Blaschke product which tends to zero along Γ_{2}. But we have constructed $B\left(z,\left\{a_{n}\right\}\right)$ to tend to zero along Γ_{1} and, since all Blaschke products are bounded in D, it follows that

$$
B_{1}(z)=B\left(z,\left\{a_{n}\right\}\right) \cdot B\left(z,\left\{\bar{b}_{n}\right\}\right)
$$

is a Blaschke product which tends to zero along Γ_{1} and Γ_{2}.
By Lemma 2, Γ_{1} and Γ_{2} are continuous curves. Hence an extension of a Theorem of Lindelöf ($1, \mathrm{p} .460$) now asserts that $B_{1}(z)$ tends to zero uniformly as z tends to 1 in the region A which is defined by (2) and its union with $\Gamma_{1} \cup\{1\} \cup \Gamma_{2}$. Since, by definition, $\Gamma_{0} \subset A$ and

$$
\Gamma=\left\{z: z=z(t), 0<t<t_{0}\right\} \cup \Gamma_{0}
$$

it follows that the function $B_{1}(z)$ tends to zero as z tends to 1 along Γ. This completes the proof of Theorem 1 .
5. Generalizations of Theorem 1. In conclusion it seems to be worth while to mention two possible ways in which Theorem 1 may be generalized.

Firstly we observe that the argument pursued above may be applied not only to prove Theorem 1 for a continuous set Γ but also for any set which is included in D and has one and only one limit point on C.

Secondly we note that an application of the methods of Somadasa (3) yields the following generalization of Theorem 1.

Theorem 2. Let $\left\{\Gamma_{n}\right\}$ be any sequence of continuous curves contained in D each of which is defined by an equation

$$
z=z_{n}(t), \quad 0<t<1,
$$

where, for each $n, z_{n}(t)$ is a continuous function of t and Γ_{n} has one and only one limit point on C. Then there exists a Blaschke product for which each of the curves Γ_{n} is a zero tract.

We sketch the proof of Theorem 2 as follows. By Theorem 1, each curve Γ_{m} corresponds to a Blaschke product $B\left(z,\left\{a_{n}(m)\right\}\right)$ which tends to zero as $|z| \rightarrow 1$ on Γ_{m}. Let $N(m)$ be chosen so that

$$
\sum_{n=N(m)}^{\infty}\left(1-\left|a_{n}(m)\right|\right)<2^{-m}
$$

Then

$$
\bigcup_{m=1}^{\infty}\left\{a_{n+N(m)}(m)\right\}=\left\{\alpha_{n}\right\}
$$

is a Blaschke sequence and it can be proved (3) that $B\left(z,\left\{\alpha_{n}\right\}\right)$ is a Blaschke product with the required properties.

References

1. P. Dienes, The Taylor series (New York, 1957).
2. O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions (Lund, 1935).
3. H. Somadasa, Blaschke products with zero tangential limits, J. Lond. Math. Soc., 41 (1965), 293-303.

University College of Swansea, Wales

