ON PRIMITIVE SOLVABLE LINEAR GROUPS

C. R. B. WRIGHT

1. Introduction. Let V be a vector space over the field K. A group G of K-linear transformations of V onto itself is primitive in case no proper nontrivial subspace of V is G-invariant and V cannot be written as a direct sum of proper subspaces permuted among themselves by G. Equivalently, G is primitive on V in case G is irreducible and is not induced from a proper subgroup.

Suprunenko showed [3, Theorem 12, p. 28] that the n-dimensional general linear group GL (n, K) has a solvable primitive subgroup only if
(1) there is a divisor, m, of n such that K has an extension field of degree m containing a primitive p-th root of 1 for each prime p dividing n / m.

The main result of this note is the converse fact.
Theorem 1. If the field K and positive integer n satisfy (1), then $\operatorname{GL}(n, K)$ contains a solvable primitive subgroup.

In [3, Chapter 1, p. 28], Suprunenko states that in Chapter 2 he will prove Theorem 1 in case K is algebraically closed and n is odd. The argument given in [3, Section II.4] is somewhat mysterious, but does apparently lead to the result claimed. The restriction on n is never specifically imposed, although it is tacitly used in the construction of the group Γ [3, p. 48], since for even n it is not enough to find symplectic groups; they must be orthogonal as well. It seems easier to produce a direct argument for general K and n than to try to disentangle the cross references and notation of [3] and build upon the special case it handles.

The outline of this argument is based on the treatment in [3] and consists of dealing with one prime-power factor of n at a time, using facts about finite symplectic and orthogonal groups and then pasting the results for the factors together. The prime 2 causes a certain amount of trouble at various stages and must sometimes be handled separately. (It appears that Suprunenko, in considering only symplectic groups, has overlooked one of the points at which 2 behaves differently from the odd primes.)

Notation is fairly standard. If K is a field, K^{n} is the direct sum of n copies of K and $\mathrm{M}(n, K)$ is the ring of $n \times n$ matrices over K. If $S \subseteq \mathrm{M}(n, K)$, then $[S]$ is the subspace of $\mathrm{M}(n, K)$ spanned by S. For every choice of n and K we denote the centre of $\mathrm{GL}(n, K)$ by Z and the identity by I.

Received November 17, 1970 and in revised form, April 1, 1971.
2. Some finite solvable irreducible linear groups. The proof of Theorem 3 in the next section hinges upon the existence of solvable irreducible subgroups of the symplectic groups $\mathrm{Sp}_{2 n}(q)$ for q an odd prime-power and certain orthogonal groups $\mathrm{O}_{2 n}(q)$ for q a power of 2 . In this section we establish this existence by a method which handles both cases at once. For q odd or a power of 4 there is a somewhat more transparent construction (see [3, p. 48]) which consists of taking the wreath product of a 2 -dimensional group with an n-cycle. The construction below, however, has the virtue of providing groups for all cases. (For background on symplectic and orthogonal groups see [2, sections II. 9 and II.10].)

Theorem 2. Let q be a prime-power and let n be a natural number. If $q^{n} \geqq 3$, then GL $(2 n, q)$ contains an irreducible solvable subgroup which is symplectic if q is odd and preserves the form $x_{1} y_{1}+\ldots+x_{n} y_{n}$ if q is even. If $q^{n} \geqq 5$, the subgroup can be chosen to be metacyclic.

Proof. Since $\mathrm{Sp}_{2}(3)=\mathrm{SL}(2,3)$, a solvable group, the result is correct if $q^{n}=3$. If $n=1$ and $q=4$, a subgroup of order 5 in $\operatorname{SL}(2,4)$ is irreducible and leaves $x_{1} y_{1}$ invariant.

Suppose that $q=n=2$. Let

$$
B=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right], \quad N=\left[\begin{array}{llll}
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0
\end{array}\right], \quad J=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

in $\mathrm{GL}(4,2)$. One can check that $J^{2}=I, B^{-1} N B=N^{-1}, J B J=B^{-1}$ and $J N J=N^{-1}$, and that the group $\langle B, N, J\rangle$ is an irreducible subgroup of GL $(4,2)$ of order 36 leaving $x_{1} y_{1}+x_{2} y_{2}$ invariant.

From now on suppose that $q^{n} \geqq 5$. Let V be GF $\left(q^{n}\right)$ viewed as an n-dimensional space over GF (q). Let Z be a Singer cycle of GF $\left(q^{n}\right)$ over GF (q) (see [2, p. 187]). For X in $\operatorname{GL}(n, q)$ let $X^{*}=\left(X^{t}\right)^{-1}$. Let

$$
W=\left[\begin{array}{ll}
Z & 0 \\
0 & Z^{*}
\end{array}\right]
$$

in $\mathrm{GL}(2 n, q)$ acting on $V \oplus V$. One can check that

$$
W^{t} \cdot\left[\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right] \cdot W=\left[\begin{array}{rr}
0 & I \\
-I & 0
\end{array}\right],
$$

so that W is symplectic, and

$$
W \cdot\left[\begin{array}{l}
X \\
Y
\end{array}\right]=\left[\begin{array}{c}
Z X \\
Z * Y
\end{array}\right],
$$

so that, since $\left(Z^{*} Y\right)^{t} \cdot(Z X)=Y^{t} \cdot X, W$ preserves $x_{1} y_{1}+\ldots+x_{n} y_{n}$.
Now Z has order $q^{n}-1$ and acts irreducibly on V. Since Z and its transpose Z^{t} have the same invariant factor, $Z^{t}=P^{-1} Z P$ for some P in GL (n, q). Let

$$
R=\left[\begin{array}{cc}
0 & P \\
-P^{*} & 0
\end{array}\right]
$$

A routine check shows that $R^{-1} W R=W^{-1}$ and that R is symplectic and sends $x_{1} y_{1}+\ldots+x_{n} y_{n}$ to its negative. Let $G=\langle W, R\rangle$. Then G is metacyclic and is symplectic or orthogonal accordingly as q is odd or even.

Suppose that $Z^{-1}=Q^{-1} Z Q$ for some Q in $\operatorname{GL}(n, q)$. Then

$$
Q \in N(\langle Z\rangle)=\langle Z\rangle \cdot\langle B\rangle,
$$

where $B^{-1} Z B=Z^{q}$ (see [2, p. 187]). So $Z^{-1}=B^{-i} Z B^{i}$ for some i with $0 \leqq i<n$, and thus $q^{n}-1$, the order of Z, divides $q^{i}+1$. Easy calculation shows that $q^{n} \leqq 4$, contrary to assumption. Hence Z^{-1} and Z are not conjugate in GL (n, q), so that Z^{*} and Z are not either.

Viewed as a $\langle W\rangle$-module, $V \oplus V$ has the obvious irreducible submodules $V \oplus 0$ and $0 \oplus V$, which we have just shown are inequivalent. By the Jordan-Hölder Theorem these must be the only two W-submodules. Since R interchanges them, G acts irreducibly on $V \oplus V$, as desired.
3. The case $n=p^{e}$. This section uses the groups just constructed to help produce primitive solvable subgroups of $\operatorname{GL}(q, K)$ for $q=p^{e}$ a prime-power.

Theorem 3. Let p be a prime and let $q=p^{e}$. Let K be a field which contains a primitive p-th root of 1 . If $q=2$, suppose that -1 is a sum of two squares. Then $\mathrm{GL}(q, K)$ contains solvable subgroups B and W such that
(a) $Z<B \triangleleft W$,
(b) $[B]=M(q, K)$,
(c) B / Z is a chief factor of W of order q^{2},
(d) $B=C_{W}(B / Z)$.

Proof. Suppose first that $q>2$. Let ϵ be a primitive p-th root of 1 in K. Let E be the subgroup of $\operatorname{GL}(p, K)$ generated by the matrices a and b, where

$$
a=\left[\begin{array}{ccccc}
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
& & & . & \\
& & & . & \\
0 & 0 & 0 & . . & 1 \\
1 & 0 & 0 & \ldots & 0
\end{array}\right] \text { and } \quad b=\left[\begin{array}{lllllll}
1 & & & & & \\
& \epsilon & & & & \\
& & \epsilon^{2} & & & \\
& & & . & & \\
& 0 & & & . & \\
& & & & . & \\
& & & . & . & \epsilon^{p-1}
\end{array}\right] .
$$

Then E is extraspecial of order p^{3} generated by elements of order p, with $[a, b]=\epsilon I$. Let X be the Kronecker product $X=E \otimes \ldots \otimes E \leqq \operatorname{GL}(q, K)$.

Then X is extraspecial of order $p^{2 e+1}=q^{2} \cdot p$ with derived group $\langle\epsilon I\rangle=$ $X \cap Z$. Let $B=X Z$. Then $[B]=[X]$.

We now show that $[X]=M(q, K)$, from which (b) will follow. Suppose that $0=\sum_{i=1}^{m} x_{i} k_{i}$ is a K-dependence relation among elements x_{1}, \ldots, x_{m} of X lying in different cosets of X^{\prime}. Then $m \geqq 2$ and $x_{1} x_{2}^{-1} \notin Z(X)$, so that $1 \neq\left[x_{1} x_{2}^{-1}, y\right]$ for some y in X and hence $\left[x_{1}, y\right] \neq\left[x_{2}, y\right]$. Then

$$
0=y^{-1}\left(\sum_{i=1}^{m} x_{i} k_{i}\right) y-\sum_{i=1}^{m} x_{i} k_{i}\left[x_{1}, y\right]
$$

yields a shorter dependence relation than the given one. It follows that $\operatorname{dim}_{K}([X]) \geqq\left[X: X^{\prime}\right]=p^{2 e}=q^{2}$, so $[X]=M(q, K)$.

Using [2, Sätze III.13.7 and III.13.8 and Bemerkungen 13.9], it is not hard to see that the group of automorphisms of X fixing $X \cap Z$ is isomorphic to the group of GF (p)-linear transformations of X / X^{\prime} leaving invariant the bilinear form f and quadratic form g defined by

$$
[x, y]=\epsilon^{f(x, y)} \quad \text { and } \quad x^{p}=\epsilon^{g(x)} .
$$

This group is $\mathrm{Sp}_{2 e}(p)$ if p is odd and is the orthogonal group of degree $2 e$ leaving invariant $x_{1} y_{1}+\ldots+x_{e} y_{e}$ if $p=2$. In either case, by Theorem 2 , X has a solvable group G of automorphisms acting irreducibly on X / X^{\prime} and centralizing X^{\prime}. By linearity, G extends to a group (which we also call G) of K-algebra automorphisms of [X].

Now $[X]=[B]=M(q, K)$, a central simple K-algebra. By [1, Theorem $7.2 \mathrm{c}]$, every automorphism of $[B]$ is inner. Hence G is a group of inner automorphisms of $M(q, K)$ normalizing B and acting irreducibly on B / Z. Let $H / Z=G$, with $H \leqq \operatorname{GL}(q, K)$, and let $W=H B$. Then B / Z is a chief factor of W of order q^{2}, as claimed in (c), and W is solvable. Moreover, $C_{W}(B / Z)=$ $B \cdot C_{H}(B / Z)=B \cdot Z=B$. This completes the proof in case $q>2$.

Now suppose that $q=2$ and that $-1=\alpha^{2}+\beta^{2}$ for some α and β in K.
Let

$$
\begin{array}{ll}
a=\left[\begin{array}{cc}
\alpha & \beta \\
\beta & -\alpha
\end{array}\right] & b=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right], \\
x=\left[\begin{array}{lr}
\alpha & \beta+1 \\
\beta-1 & -\alpha
\end{array}\right] \text { and } y=\left[\begin{array}{cc}
-\beta & \alpha+1 \\
\alpha-1 & \beta
\end{array}\right] .
\end{array}
$$

Then $a^{2}=b^{2}=(a b)^{2}=-I$, so that $\langle a, b\rangle$ is quaternion of order $8, x^{2}=-2 I$, $y^{2}=-2 I,(x y)^{3}=8 I$ and $x^{-1} a x=b, x^{-1} b x=-a, y^{-1} a x=-a, y^{-1} b x=a b$. Let $B=\langle a, b\rangle Z$ and $W=B\langle x, y\rangle$. Then $W / Z \cong S_{4}$ and the conditions (a) $-(\mathrm{d})$ are easy to verify. The proof of Theorem 3 is complete.

Some condition on K is needed if $q=2$. To see this, let K be an arbitrary ordered field and suppose that G is a primitive solvable subgroup of GL $(2, K)$
for which Z is a maximal abelian normal subgroup. Let B / Z be a chief factor of G. (Since G / Z is finite, such a factor certainly exists.) It is not hard to see that $|B / Z|$ divides 4 , and since B is non-abelian, B / Z is a 4 -group. Say $B=\langle a, b\rangle Z$ with $a^{2}=\alpha I, b^{2}=\beta I$ and $(a b)^{2}=\gamma I$, with α, β, γ in K. Since $[a, b] \neq I,[a, b]=-I$, and $\gamma=-\alpha \beta$. At least one of α, β and γ is negative. Unless all three are, B / Z contains a proper normal subgroup of G / Z. Thus each of α, β and γ is negative. Easy calculation shows that for some x, y, z, u, v and w in K

$$
a=\left[\begin{array}{rr}
x & y \\
z & -x
\end{array}\right] \text { and } b=\left[\begin{array}{rr}
u & v \\
w & -u
\end{array}\right],
$$

with $x^{2}+y z=\alpha, u^{2}+v w=\beta$. Then

$$
a b=\left[\begin{array}{cc}
x u+y w & * \\
* & z v+x u
\end{array}\right],
$$

and so $x u+y w=-z v-x u$. Then

$$
\begin{aligned}
0 & =2 x u y v+y^{2} v w+y z v^{2} \\
& =2 x u y v+y^{2}\left(\beta-u^{2}\right)+v^{2}\left(\alpha-x^{2}\right) \\
& =-(y u-v x)^{2}+y^{2} \beta+v^{2} \alpha,
\end{aligned}
$$

a non-positive element since α and β are negative. Thus $v=y=(y u-v x)=0$, a contradiction to $x^{2}+y z=\alpha<0$.
4. General n and the proof of Theorem 1. This section puts together primitive subgroups of GL (q, K) for the prime-powers q dividing n to get a primitive subgroup of $\mathrm{GL}(n, K)$ which is the direct product of the pieces.

It is not true in general that if G and H are primitive subgroups of GL (n, K) and $\mathrm{GL}(m, K)$, respectively, then $G \otimes H$ is a primitive subgroup of GL $(n m, K)$. For example, if K is the real field and both G and H are the multiplicative complex field viewed as embedded in GL $(2, K)$, then G and H are primitive (see Theorem 6) but $G \otimes H$ is not irreducible, let alone primitive. So the proof of Theorem 4 must make use not only of the primitivity of the factors but also of some of the special properties noted in Theorem 3.

Theorem 4. Let q_{1}, \ldots, q_{t} be powers of distinct primes and let $n=q_{1} \ldots q_{t}$. Suppose that for $i=1, \ldots, t$, GL $\left(q_{i}, K\right)$ contains subgroups B_{i} and W_{i} satisfying
(a) $Z<B_{i} \triangleleft W_{i}$,
(b) $\left[B_{i}\right]=M\left(q_{i}, K\right)$, and
(c) B_{i} / Z is a chief factor of W_{i} of order $q_{i}{ }^{2}$.

Then $W=W_{1} \otimes \ldots \otimes W_{t}$ is a primitive subgroup of $\operatorname{GL}(u, K)$.
If $B_{i}=C_{W_{i}}\left(B_{i} / Z\right)$ for each i, then $B=C_{W}(B / Z)$ and Z is a maximal abelian normal subgroup of W.

Proof. Let $B=B_{1} \otimes \ldots \otimes B_{t}$. By (a) and (b), $Z<B \triangleleft W$ and $[B]=M(n, K)$. Moreover, by (c), B / Z is abelian and has $B_{1} / Z, \ldots, B_{t} / Z$ as its W-chief factors. Since $q_{1}, \ldots, q_{\imath}$ are relatively prime, by the JordanHölder Theorem the only W-normal subgroups between Z and B are of form $B_{i} \otimes \ldots \otimes B_{j}$.

Let $V=K^{n}$ viewed naturally as a $K W$-module. Since $[W]=M(n, K), W$ is irreducible on V. Suppose that $V=V_{1} \oplus \ldots \oplus V_{k}$ is a decomposition of V into blocks of imprimitivity for W with $k \geqq 2$. Let Y be the kernel of the permutation representation of W on the set of blocks. Then $Z \leqq B \cap Y<W$. Since $V=B V_{1}, B$ is transitive. Thus $B / B \cap Y$ is a transitive abelian group and so $[B: B \cap Y]=k$. But $[B: B \cap Y]$ is a product of factors $q_{i}{ }^{2}$, by the paragraph above. Since $n=k \cdot \operatorname{dim} V_{1}$ and n is not divisible by $q_{i}{ }^{2}$, we have a contradiction. It follows that W is primitive on V.

Now suppose that $B_{i}=C_{W_{i}}\left(B_{i} / Z\right)$ for each i. Then

$$
C_{W}(B / Z)=C_{W_{1}}\left(B_{1} / Z\right) \otimes \ldots \otimes C_{W_{t}}\left(B_{t} / Z\right)=B
$$

If U is an abelian normal subgroup of W with $Z \leqq U$, then since each nontrivial group $B_{i} \otimes \ldots \otimes B_{j}$ is non-abelian, $U \cap B=Z$ and

$$
U \leqq C_{W}(B / Z)=B
$$

so $U=Z$.
Theorem 5. Let n be a positive integer. Suppose that the field K contains a primitive p-th root of 1 for each prime divisor p of n and that -1 is a sum of two squares in K if $n \equiv 2(\bmod 4)$. Then $\mathrm{GL}(n, K)$ contains a primitive solvable subgroup with Z as a maximal abelian normal subgroup.

Proof. This follows from the last two theorems.
Although Theorem 1 loses its content if K is finite, Theorem 5 does not, and we get the following fact.

Corollary. Let q be a prime-power and n a positive integer. Suppose that n divides some power of $q-1$. Then $\mathrm{GL}(n, q)$ contains a primitive solvable subgroup with Z as maximal abelian normal subgroup.

To prove Theorem 1 we need an elementary fact which seems to have been repeatedly used without mention in [3].

Theorem 6. Let K be a field and let K^{\prime} be an extension of K of finite degree m. View $\mathrm{GL}\left(n / m, K^{\prime}\right)$ as a subgroup of $\mathrm{GL}(n, K)$. If G is a primitive subgroup of $\mathrm{GL}\left(n / m, K^{\prime}\right)$ which contains its centre, Z^{\prime}, then G is a primitive subgroup of GL (n, K).

Proof. Let $V=\left(K^{\prime}\right)^{n / m}=K^{n}$. Suppose that $V=V_{1} \oplus \ldots \oplus V_{t}$ is a decomposition into K-subspaces permuted by G. Then Z^{\prime} also permutes V_{1}, \ldots, V_{t}, and for each $s, K^{\prime} V_{s}$ has the form $V_{i} \oplus \ldots \oplus V_{j}$. Since the K^{\prime}-subspaces $K^{\prime} V_{s}$ are permuted by G and G acts primitively on $V, V=K^{\prime} V_{1}$.

For $0 \neq a \in K^{\prime}, a V_{1} \in\left\{V_{1}, \ldots, V_{t}\right\}$. Thus

$$
V=K^{\prime} V_{1}=\sum_{a \in K^{\prime}} a V_{1}=\bigoplus_{i=1}^{i} a_{i} V_{1}
$$

for some a_{1}, \ldots, a_{t} independent in K^{\prime} over K, with $a_{1}=1$. Let

$$
b=a_{1}+\ldots+a_{t} .
$$

Then $b \neq 0$, and $b V_{1}=a_{j} V_{1}$ for some j. Hence,

$$
\left(b-a_{j}\right) V_{1} \subseteq a_{j} V_{1} \cap \sum_{i \neq j} a_{i} V_{1}=0
$$

and so $b=a_{j}$ and $t=1$, as desired.
We can now prove Theorem 1.
Proof of Theorem 1. By Theorem 6 we need only find a divisor, m, of n and an extension K^{\prime} of degree m over K such that $\mathrm{GL}\left(n / m, K^{\prime}\right)$ contains a primitive solvable group. By hypothesis there exist m and K^{\prime} such that K^{\prime} contains a primitive p-th root of 1 for each prime p dividing n / m. By Theorem 5, $\mathrm{GL}\left(n / m, K^{\prime}\right)$ contains a primitive solvable group except perhaps if $n / m \equiv 2(\bmod 4)$ and -1 is not a sum of two squares in K^{\prime}. But in that case K^{\prime} has an extension $K^{\prime \prime}$ of degree 2 obtained by adjoining a root of $x^{2}+1$, and $\mathrm{GL}\left(n / 2 m, K^{\prime \prime}\right)$ contains a primitive solvable group, as desired.

As a final note, the primitive groups produced above are absolutely irreducible. This follows from the fact that they are generated by certain fixed finite sets of matrices in a finite extension of the prime field of K. If K^{\prime} is an extension of K and G is one of our primitive subgroups of $G L(n, K)$, then G is an irreducible subgroup of $\mathrm{GL}\left(n, K^{\prime}\right)$ and, moreover, $G \cdot Z^{\prime}$ is primitive.

References

1. E. Artin, C. J. Nesbitt and R. M. Thrall, Rings with minimum condition (University of Michigan Press, Ann Arbor, 1946).
2. B. Huppert, Endliche Gruppen I (Springer Verlag, Berlin-Heidelberg-New York, 1967).
3. D. Suprunenko, Soluble and nilpotent linear groups, Translations of Mathematical Monographs No. 9 (Amer. Math. Soc., Providence, 1963).

University of Oregon, Eugene, Oregon

