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ON PRIMITIVE SOLVABLE LINEAR GROUPS 

C. R. B. WRIGHT 

1. Introduction. Let F be a vector space over the field K. A group G of 
i£-linear transformations of V onto itself is primitive in case no proper non-
trivial subspace of V is G-invariant and V cannot be written as a direct sum 
of proper subspaces permuted among themselves by G. Equivalently, G is 
primitive on V in case G is irreducible and is not induced from a proper 
subgroup. 

Suprunenko showed [3, Theorem 12, p. 28] that the ^-dimensional general 
linear group GL(n, K) has a solvable primitive subgroup only if 

(1) there is a divisor, m, of n such that K has an extension field of degree m 
containing a primitive p-th root of 1 for each prime p dividing n/m. 

The main result of this note is the converse fact. 

THEOREM 1. If the field K and positive integer n satisfy (1), then GL(n, K) 
contains a solvable primitive subgroup. 

In [3, Chapter 1, p. 28], Suprunenko states that in Chapter 2 he will prove 
Theorem 1 in case K is algebraically closed and n is odd. The argument 
given in [3, Section 11.4] is somewhat mysterious, but does apparently lead 
to the result claimed. The restriction on n is never specifically imposed, 
although it is tacitly used in the construction of the group T [3, p. 48], since 
for even n it is not enough to find symplectic groups; they must be orthogonal 
as well. It seems easier to produce a direct argument for general K and n than 
to try to disentangle the cross references and notation of [3] and build upon 
the special case it handles. 

The outline of this argument is based on the treatment in [3] and consists 
of dealing with one prime-power factor of n at a time, using facts about 
finite symplectic and orthogonal groups and then pasting the results for the 
factors together. The prime 2 causes a certain amount of trouble at various 
stages and must sometimes be handled separately. (It appears that Supru
nenko, in considering only symplectic groups, has overlooked one of the points 
at which 2 behaves differently from the odd primes.) 

Notation is fairly standard. If K is a field, Kn is the direct sum of n copies 
of K and M(n, K) is the ring of n X n matrices over K. If 5 C M(n, K), 
then [S] is the subspace of M (n, K) spanned by S. For every choice of n and K 
we denote the centre of GL(w, K) by Z and the identity by I . 
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2. Some finite solvable irreducible linear groups. The proof of Theorem 3 
in the next section hinges upon the existence of solvable irreducible subgroups 
of the symplectic groups Sp2w(g) for q an odd prime-power and certain ortho
gonal groups 02n(q) for q a power of 2. In this section we establish this existence 
by a method which handles both cases at once. For q odd or a power of 4 there 
is a somewhat more transparent construction (see [3, p. 48]) which consists 
of taking the wreath product of a 2-dimensional group with an w-cycle. The 
construction below, however, has the virtue of providing groups for all cases. 
(For background on symplectic and orthogonal groups see [2, sections 11.9 
and 11.10].) 

THEOREM 2. Let qbe a prime-power and let n be a natural number. If qn ^ 3, 
then GL(2?z, q) contains an irreducible solvable subgroup which is symplectic if 
q is odd and preserves the form Xiyi + . . . + ocnyn if q is even. If qn ^ 5, the 
subgroup can be chosen to be metacyclic. 

Proof. Since Sp2(3) = SL(2, 3), a solvable group, the result is correct if 
qn — 3. If n = 1 and q = 4, a subgroup of order 5 in SL(2, 4) is irreducible 
and leaves Xiyi invariant. 

Suppose that q = n = 2. Let 

B = 
0 0 1 o" 
0 0 1 1 , N=\ 
1 1 0 0 
0 1 0 0 

1 0 0 r 0 1 1 0 > J=\ 
0 1 0 0 
1 0 0 0 

0 0 1 0 
0 0 0 1 
1 0 0 0 
0 1 0 0 

in GL(4, 2). One can check that J2 = J, B^NB = N'1, JBJ = B'1 and 
JNJ = N-1, and that the group (B, N, J) is an irreducible subgroup of 
GL(4, 2) of order 36 leaving Xiyt + xiy2 invariant. 

From now on suppose that qn ^ 5. Let V be GF(g") viewed as an «-dimen
sional space over GF(g). Let Z be a Singer cycle of GF(g") over GF(g) (see 
[2, p. 187]). For X in GL(», q) let X* = (X')'1. Let 

W = 
Z 0 

0 Z*_ 

in GL(2w, q) acting on 7 © V, One can check that 

W 
r o i" 

• w = 
0 I~\ 

\_-I 0_ _-i oj 
so that W is symplectic, and 

W'• 

X 

Y 

ZX 

Z*Y 

https://doi.org/10.4153/CJM-1971-075-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1971-075-6


LINEAR GROUPS 681 

so that, since (Z*Y)1 • (ZX) = Yl - X, W preserves xiyi + . . . + xnyn. 
Now Z has order qn — 1 and acts irreducibly on V. Since Z and its transpose 

Zl have the same invariant factor, Zl — P~lZP for some P in GL(«, g). Let 

i? = 
0 P 

-P* 0 

A routine check shows that R~lWR = W~l and that R is symplectic and 
sends %iyi + . . . + xnyn to its negative. Let G = (W, R). Then G is meta-
cyclic and is symplectic or orthogonal accordingly as q is odd or even. 

Suppose that Z~l = Q~XZQ for some Q in GL(n, g). Then 

Ç € N((Z)) = <Z> • <J3>f 

where B~lZB = Z« (see [2, p. 187]). So Z ' 1 = B~iZBi for some i with 
0 S i < n, and thus qn — 1, the order of Z, divides g* + 1. Easy calculation 
shows that qn :§ 4, contrary to assumption. Hence Z - 1 and Z are not con
jugate in GL(w, g), so that Z* and Z are not either. 

Viewed as a (TF)-module, V © V has the obvious irreducible submodules 
V © 0 and 0 © F, which we have just shown are inequivalent. By the 
Jordan-Holder Theorem these must be the only two "W^-submodules. Since R 
interchanges them, G acts irreducibly on F © F, as desired. 

3. The case n = pe. This section uses the groups just constructed to help 
produce primitive solvable subgroups of GL(g, K) for q = pe a prime-power. 

THEOREM 3. Let p be a prime and let q — pe. Let K be afield which contains a 
primitive p-th root of 1. If q = 2, suppose that —lis a sum of two squares. Then 
GL(g, K) contains solvable subgroups B and W such that 

(a) Z < B <3 W, 
(b) [B] = M (a, K), 
(c) B/Z is a chief factor of W of order q2

} 

(d) B = CW(B/Z). 

Proof. Suppose first that q > 2. Let e be a primitive p-th root of 1 in K. 
Let E be the subgroup of GL(£, K) generated by the matrices a and ô, where 

0 
0 1 0 . . o" 
0 0 1 . . 0 

and b = 

0 0 0 . . 1 
1 0 0 . • o_ 

TherTiï is extraspecial of order pz generated by elements of order p, with 
[a, b] = el. Let X be the Kronecker product X = E ® . . . ® E S GLfo, K). 
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Then X is extraspecial of order p2e+1 = q2 • p with derived group (el) = 
XnZ.LetB = XZ. Then [B] = [X], 

We now show that [X] = M(q, K), from which (b) will follow. Suppose 
that 0 = 2X=ixtki is a independence relation among elements Xi, . . . , xm of 
X lying in different cosets of X'. Then m ^ 2 and Xi^"1 $ Z(X) , so that 
1 ^ [xix2

_1, y] for some y in X and hence [xi, 3;] ?̂  [x2, y]. Then 

( w \ m 

yields a shorter dependence relation than the given one. It follows that 
d i i M [ Z ] ) ^ [X : X'] = p*' = ff»f so [X] = M(2> X) . 

Using [2, Sâtze III.13.7 and III.13.8 and Bemerkungen 13.9], it is not hard 
to see that the group of automorphisms of X fixing X P\ Z is isomorphic to 
the group of GF(£)-linear transformations of X/Xr leaving invariant the 
bilinear form / and quadratic form g defined by 

[x,y] enx.V) a n d xp = C.QW 

This group is Sp2e(^) if p is odd and is the orthogonal group of degree 2e 
leaving invariant x ^ i + . . . + xeye if p = 2. In either case, by Theorem 2, 
X has a solvable group G of automorphisms acting irreducibly on X/Xf and 
centralizing X'. By linearity, G extends to a group (which we also call G) 
of i^-algebra automorphisms of [X]. 

Now [X] = [B] = M(q, K), a central simple i£-algebra. By [1, Theorem 
7.2c], every automorphism of [B] is inner. Hence G is a group of inner auto
morphisms of M(q, K) normalizing B and acting irreducibly on B/Z. Let 
H/Z = G, with H ^ GL(q, K), and let W = HB. Then B/Z is a chief factor 
of W oi order q2, as claimed in (c), and W is solvable. Moreover, CW(B/Z) — 
B • CH(B/Z) = B • Z = B. This completes the proof in case q > 2. 

Now suppose that q = 2 and that —1 = a2 + /32 for some a and /3 in X. 

Let 
a P~ 

a = 
j — a__ 

a 0 + 1 ] 
x = 

j - 1 — « j 

and 3> 

Then a2 = b2 = (ab)2 = —i", so that (a, &) is quaternion of order 8, x2 = —27, 

[0 - 1 

[i o_ » 

["-/? a + 1*1 

[« - 1 0 J 

— 27, (xj*)3 = 8 / and x~ lax &, x~lbx — —a, y~lax = -a, y~lbx = a&. 
Let 5 = <a, 6)Z and W = 5(x, 3/). Then TF/Z ^ 5 4 and the conditions 
(a)-(d) are easy to verify. The proof of Theorem 3 is complete. 

Some condition on K is needed if q = 2. To see this, let K be an arbitrary 
ordered field and suppose that G is a primitive solvable subgroup of GL(2, K) 
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for which Z is a maximal abelian normal subgroup. Let B/Z be a chief factor 
of G. (Since G/Z is finite, such a factor certainly exists.) It is not hard to see 
that \B/Z\ divides 4, and since B is non-abelian, B/Z is a 4-group. Say 
B = (a, b)Z with a2 = a/, 62 = 01 and (a&)2 = 7I , with a, 0, 7 in K. Since 
[a, &] 7^ 7, [a, 6] = — 7, and 7 = —a/3. At least one of a, /? and 7 is negative. 
Unless all three are, B/Z contains a proper normal subgroup of G/Z. Thus 
each of a, 0 and 7 is negative. Easy calculation shows that for some x, y, 2, u, v 
and w in K 

z —x 

and Z> = 

w —u 

with x2 + yz = a, w2 + vw = /3. Then 

xu + yw 
afr = 

zv + x^ 

and so xu + 3>w -2W #«. Then 

0 = 2xuyv + y2vw + 3>ZZJ2 

= 2x^y + 3>2(/3 — -w2) + z>2(a — x2) 
= — {yu — vx)2 + 3̂ 2/3 + v2ay 

a non-positive element since a and 0 are negative. Thus v = y = (yw — iw) = 0, 
a contradiction to x2 + yz = a < 0. 

4. General « and the proof of Theorem 1. This section puts together 
primitive subgroups of GL(g, K) for the prime-powers q dividing n to get a 
primitive subgroup of GL(n, K) which is the direct product of the pieces. 

It is not true in general that if G and H are primitive subgroups of GL («, K) 
and GL(w, K) , respectively, then G®H is a primitive subgroup of 
GL(nm, K). For example, if K is the real field and both G and H are the 
multiplicative complex field viewed as embedded in GL(2, K), then G and H 
are primitive (see Theorem 6) but G ® H is not irreducible, let alone primitive. 
So the proof of Theorem 4 must make use not only of the primitivity of the 
factors but also of some of the special properties noted in Theorem 3. 

THEOREM 4. Let #i, . . . , qt be powers of distinct primes and letn = qi. . . qt. 
Suppose that for i = 1, . . . , /, GL(qu K) contains subgroups Bt and Wi 
satisfying 

(a) Z < Bt < Wt, 
(b) [ 5 J = M(quK),and 
(c) Bi/Z is a chief factor of Wt of order qt

2. 
Then W = W\ ® . . . ® Wt is a primitive subgroup of GL(u, K). 

If Bt — CWi(Bi/Z) for each i, then B = CW(B/Z) and Z is a maximal 
abelian normal subgroup of W. 
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Proof. Let B = Bx ® . . . ® Bt. By (a) and (b), Z < B <\ W and 
[B] = M{n, K). Moreover, by (c), B/Z is abelian and has Bx/Z, . . . , Bt/Z 
as its W-chief factors. Since gi, . . . , qt are relatively prime, by the Jordan-
Holder Theorem the only W-normal subgroups between Z and B are of form 
Bt ® . . . ® Bj. 

Let V = Kn viewed naturally as a KW-module. Since [W] = ikf(n, K), W is 
irreducible on V. Suppose that V = Vi 0 . . . 0 Vk is a decomposition of V 
into blocks of imprimitivity for W with & ̂  2. Let F be the kernel of the per
mutation representation of W on the set of blocks. Then Z g B C\ Y < W. 
Since V = BVi, B is transitive. Thus B/B C\ Y is a transitive abelian group 
and so [B ; B C\ Y] = k. But [B : B C\ Y] is a product of factors g*2, by the 
paragraph above. Since n = k - dim Fi and n is not divisible by qt

2, we have 
a contradiction. It follows that W is primitive on V. 

Now suppose that Bt = CWi (Bf/Z) for each i. Then 

CW(B/Z) = CWl(B!/Z) ® . . . ® CWl(Bt/Z) = B. 

If C7 is an abelian normal subgroup of W with Z S Uy then since each non-
trivial group J5* ® . . . ® 5y is non-abelian, UC\ B = Z and 

[/ g ^ ( 5 / Z ) = B, 
so U = Z. 

THEOREM 5. Let n be a positive integer. Suppose that the field K contains a 
primitive p-th root of 1 for each prime divisor p of n and that — 1 is a sum of 
two squares in K if n = 2 (mod 4). Then GL (n,K) contains a primitive solvable 
subgroup with Z as a maximal abelian normal subgroup. 

Proof. This follows from the last two theorems. 

Although Theorem 1 loses its content if K is finite, Theorem 5 does not, 
and we get the following fact. 

COROLLARY. Let q be a prime-power and n a positive integer. Suppose that n 
divides some power of q — 1. Then GL(w, q) contains a primitive solvable sub
group with Z as maximal abelian normal subgroup. 

To prove Theorem 1 we need an elementary fact which seems to have been 
repeatedly used without mention in [3]. 

THEOREM 6. Let K be afield and let Kr be an extension of K of finite degree m. 
View GL(n/m, K') as a subgroup of GL(^, K). If G is a primitive subgroup 
of GL(n/m, K') which contains its centre, Z!, then G is a primitive subgroup of 
GL (n,K). 

Proof. Let V = {K')n'm = Kn. Suppose that V = 7i © . . . 0 Vt is a 
decomposition into X-subspaces permuted by G. Then Zr also permutes 
Vi, . . . f Vu and for each s, K'VS has the form Vt 0 . . . 0 Vj. Since the 
if'-subspaces Kr Vs are permuted by G and G acts primitively on V, V = Kf V\. 
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For 0 3* a 6 K', aVx 6 {Vi, . . . , 7 ,}. Thus 

for some ai, . . . , at independent in K! over K, with ai = 1. Let 

b = ai + . . . + at. 

Then b j£ 0, and 6Fi = a^Fi for some j . Hence, 

(6 - aj)Vi C a ,7 i H E a ^ i = 0, 

and sob = dj and J = 1, as desired. 

We can now prove Theorem 1. 

Proof of Theorem 1. By Theorem 6 we need only find a divisor, m, of n and 
an extension K! of degree m over K such that GL(«/w, K') contains a primi
tive solvable group. By hypothesis there exist m and K! such that K! contains 
a primitive p-\h root of 1 for each prime p dividing n/m. By Theorem 5, 
GL (n/m, Kf) contains a primitive solvable group except perhaps if 
n/m = 2 (mod 4) and — 1 is not a sum of two squares in Kf. But in that case K' 
has an extension K" of degree 2 obtained by adjoining a root of x2 + 1, and 
GL(«/2w, JK7 ') contains a primitive solvable group, as desired. 

As a final note, the primitive groups produced above are absolutely irre
ducible. This follows from the fact that they are generated by certain fixed 
finite sets of matrices in a finite extension of the prime field of K. If K' is 
an extension of K and G is one of our primitive subgroups of GL(n, K), then 
G is an irreducible subgroup of GL(n, K') and, moreover, G • Z' is primitive. 
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