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Abstract

Let d ≥ 3 be an integer and let P ∈Z[x] be a polynomial of degree d whose Galois group
is Sd. Let (an) be a non-degenerate linearly recursive sequence of integers which has P as
its characteristic polynomial. We prove, under the generalised Riemann hypothesis, that the
lower density of the set of primes which divide at least one non-zero element of the sequence
(an) is positive.

2020 Mathematics Subject Classification: 11B37, 11B50, 11R45 (Primary)

1. Introduction

Given a sequence of integers, it is natural to consider the set of primes which divide at least
one of its values (the prime divisors of the sequence). Here we consider the prime divisors
of linearly recursive sequences. We assume that the elements a1, a2, . . . of the sequence and
the coefficients ci in the defining recursion

an+d + cd−1an+d−1 + · · · + c0an = 0

are integers. The minimal d for which such coefficients exist is called the order of (an).
It is a well-known result often attributed to Pólya [17] that, excluding degenerate cases, a

linearly recursive sequence has infinitely many prime divisors. It is natural to ask how dense
the set of prime divisors of a linearly recursive sequence is with respect to the set of primes.
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For second order recurrences this has been studied in a number of works assuming the
generalised Riemann hypothesis (GRH), under which it is known that the density of prime
divisors exists, is positive (unless there are only finitely many prime divisors) and can, at
least in principle, be computed explicitly (see [1, 5, 7, 8, 10, 12–14, 22, 23] and [11, section
8·4]). Unconditional results are much more modest: in [15] it is proved that the number of
primes p ≤ x which are prime divisors of such a sequence is at least of magnitude log x.

Higher order sequences have received considerably less attention. Roskam [19] states that
“Essentially nothing is known for sequences of order larger than 2”, and it is mentioned that
some very non-generic cases can be handled (see Ballot [1]). Roskam proceeds by proving
that, under a certain generalisation of Artin’s conjecture on primitive roots, “generic” linear
recurrences have a positive lower density of prime divisors. However, we note that a much
stronger result under a significantly weaker assumption follows directly from the work of
Niederreiter [16, theorem 4·1]. Nevertheless, while the regular version of Artin’s conjecture
has been proven by Hooley [6] under GRH (see [11] for a survey), establising this weaker
assumption seems very difficult even under GRH. See Section 8 for more details.

Here we prove, under GRH, that the set of prime divisors of a “generic” linear recur-
rences has positive lower density. This seems to be the first such result which is applicable
to “almost all” sequences and which assumes only standard conjectures.

THEOREM 1·1. Assume GRH. Let d ≥ 3 be an integer and let P ∈Z[x] be a polynomial
whose Galois group is the symmetric group Sd and such that the quotient of any two distinct
roots of P is not a root of unity. Let (an) be a linearly recursive sequence of integers whose
characteristic polynomial is P. The set of primes which divide some non-zero element of the
sequence (an) has a lower density of at least 1/(d − 1). In particular, this lower density is
strictly positive.

The assumption on the quotients of the roots of P (the non-degeneracy) follows from the
assumption on the Galois group when d ≥ 4. (Indeed, if (αi/αj)m = 1 for some distinct roots
αi, αj of P and m ∈Z+, then by considering suitable elements of the Galois group this holds
for any distinct roots αi, αj of P, so P must be a binomial, and hence the Galois group is of
size at most d(d − 1).)

It is well known that almost all polynomials of degree d have Galois group isomorphic
to Sd, so the result applies to “100%” of linear recurrences. The proof actually works for
a slightly larger class of recurrences, and proves that almost all primes p such that P has
suitable factorisation modulo p are prime divisors of the sequence.

THEOREM 1·2. Assume GRH. Let P ∈Z[x] be a polynomial which has the following
properties:

(i) d := deg (P) ≥ 3;

(ii) P is irreducible;

(iii) there are infinitely many primes p such that P factorises as the product of a lin-
ear polynomial and an irreducible polynomial of degree d − 1 modulo p, that is, the
Galois group of P contains an element whose cycle type is (1, d − 1);

(iv) if |P(0)| > 1, the roots of P are multiplicatively independent, and if |P(0)| = 1, some
(or, equivalently, any) d − 1 roots of P are multiplicatively independent.
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Prime divisors of linear recurrences 469

Let (an) be a linearly recursive sequence of integers whose characteristic polynomial is P.
Then almost all primes p such that P factorises as the product of irreducibles of degree 1
and d − 1 modulo p divide some element of the sequence (an). In particular, the set of primes
which divide some element of the sequence (an) has a strictly positive lower density.

Here and in what follows “almost all primes” means “for a set of primes of relative natural
density 1 in the set of primes”.

We note that there exist non-trivial examples of polynomials P which do not satisfy
condition (iv) above [2].

The proof can be adapted so that it also works for reducible characteristic polynomials in
certain special cases, but as such cases are rare, we do not discuss them in detail.

The GRH we use in the proofs states that the non-trivial zeros of the Dedekind zeta-
function of any number field lie on the line Re(s) = 1/2. (For details, see Lemma 3·2 below
and [9, theorem 3·1].)

We first provide a proof sketch, after which we give a detailed argument. We conclude by
discussing challenges arising in the study of prime divisors of linear recurrences.

2. Overview of the method

For concreteness we consider the sequence an defined by

an = 5n + (3 + √
2)n + (3 − √

2)n, n = 1, 2, . . .

The characteristic polynomial (x − 5)(x − (3 + √
2))(x − (3 − √

2)) is reducible and thus not
of the form of Theorem 1·1, but we only use this example to demonstrate the idea. (The proof
of Theorem 1·1 can be adapted to this sequence, though.)

In the case when 2 is a quadratic residue modulo p the period of the sequence (an) modulo
p divides p − 1. We are unable to say anything nontrivial about whether such primes are
prime divisors of (an) or not.

The case when 2 is a quadratic nonresidue modulo p, however, turns out to be accessible.
Write n = (p + 1)k + r, k, r ∈Z. We may view the numbers 3 ± √

2 as elements of Fp2 , and

by norms we have (3 ± √
2)p+1 = 7 in this finite field. Hence

a(p+1)k+r ≡ 52k+r + 7k
(

(3 + √
2)r + (3 − √

2)r
)

(mod p). (2·1)

The equation a(p+1)k+r ≡ 0 (mod p) may thus be written, for p > 7, as

(
52

7

)k

≡ −
(

3 + √
2

5

)r

−
(

3 − √
2

5

)r

(mod p). (2·2)

Artin’s primitive root conjecture states that a given rational number a is a primitive root
modulo p for infinitely many primes p as long as a is not −1 or a square. Under GRH one
can prove this in a quantative form: the set of such primes has a positive density (as long
as its infinite) [6]. This density is often quite large. For example, for a = 2 the density is
roughly 37 percent.

It turns out that the order of a rational number a modulo primes is almost always almost
maximal assuming a �∈ {−1, 0, 1} (under GRH). More precisely, the density of primes p with
ordp(a) ≥ (p − 1)/C goes to 1 as C → ∞. (See [24, section 5] or Lemma 3·2 below.)
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Note also that if ordp(a) = (p − 1)/h, then the function sending integers x to ax (mod p)
attains all non-zero hth powers modulo p as its values.

In this light, to prove that (2·2) is solvable for almost any prime p it suffices to show that
the equation

xh ≡ −
(

3 + √
2

5

)r

−
(

3 − √
2

5

)r

(mod p) (2·3)

has a solution (x, r) with x �= 0 for almost any prime p.
Note the right-hand side of (2·3) satisfies a linear recurrence (br). We aim to prove that

the sequence b1, b2, . . . almost always attains a hth power as its value modulo p.
By using results from Galois theory and the Chebotarev density theorem, it is not very

hard to show that this is true, for example, if there is an infinite subsequence of (br) whose
elements are distinct primes.

Of course, we cannot guarantee that a linear recurrence has infinitely many prime values.
However, there are only a very few cases where such an idea does not work. To name one,
if br is always three times a square, then if 3 is a quadratic nonresidue modulo p (which
happens for a positive density of primes), the sequence br may avoid all squares modulo p.

In general, the only obstructions arise when the values of the linear recurrence are almost
perfect powers. By applying Zannier’s result on Pisot’s dth root conjecture [25] we reduce
our problem to determining whether or not a linearly recursive sequence arising in the proof
is the power of another recurrence. From here on only elementary observations are needed.

As we already mentioned, the sequence an considered here does not satisfy the conditions
of Theorem 1·1, and the general case is more complicated. There are two notable differences.

To perform the “norm-trick” and to arrive to an equation of the form (2·2) we need to
control the norms of the roots of the characteristic polynomial in finite fields. To do so, in
the situation of Theorem 1·1 we consider those primes p for which P factorises modulo p as
the product of two irreducibles of degree 1, respectively d − 1.

From here we are able to reduce to an equation similar to (2·3), though this time the right
hand side is not necessarily a linear recurrence of integers but of algebraic numbers. By
taking norms we reduce to the integer case, the same idea can be implemented and we are
able to show that the reduction of at least one term of the sequence of algebraic numbers to
Fp is almost always an hth power.

In Section 3 we state the GRH-conditonal result mentioned earlier. In Section 4 we reduce
the problem to a polynomial equation of type (2·3) in a similar manner as above. We note
that the equation is solvable for a set of primes of density 1 if certain field extensions are
linearly disjoint. We present the tool to handle such questions in Section 5. In order to apply
it we have to check that no subsequence (xAn+B) of a linear recurrence (xn) appearing in our
proof consists only of perfect powers, which we do in Section 6. We wrap up the proof in
Section 7.

3. Orders of reductions of algebraic numbers

The following lemma is used when transforming our problem into a polynomial equation.
This lemma is the only part of the proof that relies on GRH.

LEMMA 3·1. Assume GRH. Let P ∈Z[x] be non-constant and irreducible. Assume P is
not a cyclotomic polynomial, i.e. at least one root of P is not a root of unity, and that P is
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not the identity. Let S denote the set of primes such that the equation P(x) ≡ 0 (mod p) has
at least one solution f(p) for p ∈ S. For C > 0 let SC denote the set of primes p ∈ S for which
the order of f(p) modulo p is at least (p − 1)/C. The (lower) density of SC with respect to S
approaches 1 as C → ∞.

Note that we do not say anything about which root f (p) of P modulo p we choose if there
are several of them. The result is true no matter how the choices are made.

This result is equivalent to the following algebraic number theoretic formulation.

LEMMA 3·2. Assume GRH. Let α be a non-zero algebraic number which is not a root
of unity. Let K =Q(α) and let OK denote the ring of integers of K. Let T denote the set of
prime ideals of OK whose norm is a prime. For C > 0 let TC denote the set of primes p of T
such that the reduction of α in OK/p∼= Fp has order at least (p − 1)/C, where p is the norm
of p. The (lower) density of TC with respect to T approaches 1 as C → ∞ (where ideals are
ordered by norm).

Proof. (Cf. [24, section 5].) Note that almost all prime ideals of OK belong to T . For
k ∈Z+ let T ′

k = Tk \ Tk−1. The results of Lenstra [9] imply that T ′
k has a density for all k.

This density is given by

d(T ′
k) =

∞∑
t=1

μ(t)

[K(ζkt, α1/kt) : K]
,

where the sum is absolutely convergent. Let f (n) = 1/[K(ζn, α1/n) : K]. Now rearranging
gives

∞∑
k=1

∞∑
t=1

μ(t)f (kt) =
∞∑

K=1

f (K)
∑
d|K

μ(d) = f (1) = 1,

from which the result follows.

4. Reduction to a polynomial equation

We consider the setup of Theorem 1·1. The proof also works in the situation of
Theorem 1·2.

Let P and (an) be as in Theorem 1·1. Assume an �= 0 for all n, as otherwise we are done.
Let S denote the set of primes p such that P factorises as the product of polynomials of
degree 1 and d − 1 modulo p. By the assumption and the Chebotarev density theorem, the
relative density of S is 1/(d − 1). We prove that the density of primes of S which are prime
divisors of (an) is one (relative to S).

We write

an = γ1α
n
1 + · · · + γdα

n
d ,

where α1, . . . , αn are the roots of P and γ1, . . . , γd are constants. For further purposes we
define additionally

bn = bh, n := αhn
1

(
− an

γ1α
n
1

+ 1

)
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and

cn = ch, n := NF/Q(bn) = (−1)dNhn
d∏

i=1

∑
j �=i

γjα
n
j

γiα
n
i

,

where F is the splitting field of P, N := NF/Q(α1) and h ∈Z+ is a parameter fixed later. For
an algebraic number field K we let OK denote its ring of integers.

Note that γi ∈Q(αi) \ {0} (see e.g. [19, section 2]).
For each (unramified) prime p ∈ S there exists a homomorphism ϕ : OF → Fpd−1 mapping

one of the roots αi, say α1, to an element of Fp, and the other roots to elements of Fpd−1

whose degrees over Fp are d − 1. Let K =Q(α1).
Note that for n = k(pd−1 − 1)/(p − 1) + r one has

ϕ(α1)n = ϕ(α1)kd+r,

ϕ(αi)
n = NFpd−1/Fp(ϕ(αi))

kϕ(αi)
r, 2 ≤ i ≤ d

and

NFpd−1/Fp(αi) = ϕ(α2) · · · ϕ(αd) = N

ϕ(α1)
, 2 ≤ i ≤ d.

(Clearly ϕ(α1) �= 0 for all but finitely many p.) Hence

ϕ(an) = ϕ(γ1)ϕ(α1)kd+r +
(

N

ϕ(α1)

)k (
ϕ(γ2)ϕ(α2)r + · · · + ϕ(γd)ϕ(αd)r) (4·1)

so ϕ(an) = 0 if and only if

ϕ(αd+1
1 /N)k = −ϕ(γ2)ϕ(α2)r + · · · + ϕ(γd)ϕ(αd)r

ϕ(γ1)ϕ(α1)r
.

We then note that αd+1
1 /N is not a root of unity, for otherwise the conjugates αd+1

i /N are
roots of unity as well. Hence the product∏

1≤i≤d

αd+1
i /N = N

is a root of unity. Hence N = ±1, and thus the numbers αi are roots of unity. This contradicts
the non-degeneracy of P.

We may hence apply Lemma 3·1 to αd+1
1 /N. It suffices to show that for any h ∈Z+ the

equation

xh = br

is solvable in Fp \ {0} for almost all primes p ≡ 1 (mod h). This may be reformulated as

follows: almost all prime ideals of OK(ζh) split in at least one of the fields Kr := K(ζh, b1/h
r ),

r = 1, 2, . . .
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5. A linear disjointness result

We use the following basic result from Galois theory [4].

LEMMA 5·1. Let h be a positive integer, let K be a number field containing a hth root of
unity, and let a1, a2, . . . , ak be a sequence of integers. Assume that for any integers 0 ≤ ei <

h, not all zero, one has ae1/h
1 · · · aek/h

k �∈ K. Then[
K
(

a1/h
1 , . . . , a1/h

k

)
: K
]
= hk.

LEMMA 5·2. Let (xn) be a linearly recursive sequence of integers. Assume that there do
not exist a number field K and integers A, B ≥ 1, D ≥ 2 such that xAn+B is always a Dth
power of an element of K. Then there exist a subsequence xn1 , xn2 , . . . of (xn) and primes
p1, q1, p2, q2, . . . such that:

(i) gcd (vpi(xni), vqi(xni)) = 1 for all i;

(ii) the primes p1, q1, p2, q2, . . . are pairwise distinct.

Proof. Note that the condition implies that (xn) has infinitely many prime divisors – oth-
erwise choose A = 1, B = 0, D = 2 and K to be Q(

√
p1,

√
p2, . . . ,

√
pn), where p1, . . . , pn

are the prime divisors of (xn). Note also that for all except finitely many primes p, say for all
p not belonging to T , the sequence (xn) is periodic modulo pk for all k ∈Z+.

We will inductively choose the indices ni and the primes pi, qi, additionally requiring
that pi, qi �∈ T . Assume we have already choosen some n1, . . . , nk, p1, . . . , pk, q1, . . . , qk

satisfying the conditions. We now pick nk+1, pk+1, qk+1. Let S = {p1, q1, . . . , pk, qk} ∪ T .
Pick some prime divisor pk+1 �∈ S, let vpk+1(xn0) = t > 0 for some n0 such that xn0 �= 0. By

periodicity modulo pt+1
k+1, there exists an arithmetic progression An + B, n = 1, 2, . . . such

that vpk+1(xAn+B) = t for all n
If there exist some prime qk+1 �∈ S ∪ {pk+1} and n ∈Z+ such that gcd (vqk+1(xAn+B), t) = 1,

then we are done. Assume this is not the case.
If for any prime qk+1 �∈ S and any n we had gcd (vqk+1(xAn+B), t) = t, then we could write

|xAn+B| = f (n)t
∏
s∈S

sfs(n),

for some functions f , fs : Z+ →Z≥0. Then xAn+B would always be a perfect tth power in a
number field containing the tth roots of all primes of S and a 2tth root of unity, contrary to
the assumption.

Hence there exist a prime qk+1 �∈ S and n ∈Z+ such that t′ := gcd (vqk+1(xAn+B), t) < t.
Repeat the above argument with qk+1 in place of pk+1 and t′ in place of t. The value of
t decreases. It must happen that for some value of pk+1 and t we find a prime qk+1 with
gcd (vqk+1(xAn+B), t) = 1.

LEMMA 5·3. Let h ∈Z+ and let F be a number field containing a hth root of unity. Let
(xn) be a linearly recursive sequence of integers satisfying the assumption of Lemma 5·2.
Then there exists a subsequence xn1 , xn2 , . . . of (xn) such that the extensions

F
(

x1/h
n1

)
/F, F

(
x1/h

n2

)
/F, . . .

are linearly disjoint and of degree h.
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Proof. Note first that there exists a constant c (depending on F) such that if x is an integer
with x1/h ∈ F, then all prime divisors of x which are greater than c have multiplicity divisible
by h. (Indeed: If p is a prime with for which h does not divide vp(x), then p is ramified in
the Q(x1/h). If Q(x1/h) ⊂ F, then p is ramified in F, and only finitely many primes ramify
in F.)

Let (xni) be a subsequence constructed in Lemma 5·2. We may assume that the corre-
sponding primes pi, qi are larger than c. We prove that this subsequence works by showing
that [

F
(

x1/h
n1

, x1/h
n2

, . . . , x1/h
nk

)
: F
]
= hk

for all k. Apply Lemma 5·1. Assume that

xe1/h
n1

· · · xek/h
nk

∈ F, 0 ≤ ei < h. (5·1)

By the choice of c, (5·1) implies that the prime divisors of xe1
n1 · · · xek

nk which are larger than
c have multiplicity divisible by h. By the choice of the primes pi, qi this implies h | ei for
all i.

6. Linear recurrences and perfect powers

In this section we show that Lemma 5·3 may be applied to the sequence (cn). Assume not,
so cAn+B is always a Dth power of an element in a fixed number field.

By a result of Zannier [25], the only case when a linear recurrence is always a Dth power
is when it is the Dth power of a linear recurrence. We may hence write

cAn+B = dD
n ,

where d is a linearly recursive sequence (whose elements are not necessarily integers). Write
d as an exponential polynomial

dn =
t∑

m=0

(
nt

um∑
k=1

em,kσ
n
m,k

)
,

where the coefficients em,k are non-zero, σm,1, σm,2, . . . , σm,um are non-zero and pairwise
distinct, and im > 0 for all m ≤ t.

We first show that t = 0, i.e. that the characteristic polynomial of (dn) has no repeated
roots. Assume not. Now one sees that dD

n may be written as

nDt

( ut∑
k=1

et,kσ
n
t,k

)D

+ fn,

where fn is an exponential polynomial whose polynomial terms have degree less than Dt.
Since the representation of a linear recurrence as an exponential polynomial is unique, one
sees that cAn+B = dD

n cannot hold for all n ∈Z.
We may thus write

dn = e1σ
n
1 + · · · + euσ

n
u .
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Every σi can be written in the form α
xi,1
1 α

xi,2
2 · · · αxi,d

d , where the xi,j are rational numbers
[18]. Let M be a positive integer such that xi,jM is an integer for all i, j. Write the equation
cAMn+B = dD

Mn as

(−1)dNh(AMn+B)
d∏

i=1

∑
j �=i

γjα
B
j αAMn

j

γiα
B
i αAMn

i

=
⎛
⎝ u∑

i=1

ei

d∏
j=1

αxi,jMn

⎞
⎠

D

Note then that if
∏d

i=1 α
fi
i ∈Q for some integers fi, then fi = fj for all i, j. Indeed: since the

Galois group of P is Sd, we have
∏d

i=1 α
fi
′

i =∏d
i=1 α

fi
i for any permutation fi′ of fi. Hence

α
fi
i α

fj
j = α

fj
i α

fi
j , so (αi/αj)fi−fj = 1, which by non-degeneracy of P implies fi = fj.

Hence, if N �= ±1, one has
∏d

i=1 α
fi
i = 1 only if fi = 0 for all i. By basic results on linear

recurrences, this implies that for any Q ∈C[X±1
1 , . . . , X±1

d ] in d variables we have

Q(αn
1, αn

2, . . . , αn
d) = 0

for all integers n if and only if Q is identically zero. Hence

(−1)dNhB(X1 · · · Xd)hAM
d∏

i=1

∑
j �=i

γjα
B
j XAM

j

γiα
B
i XAM

i

=
⎛
⎝ u∑

i=1

ei

d∏
j=1

X
xi,jM
j

⎞
⎠

D

identically as elements of C[X±1
1 , . . . , X±1

d ].
In particular, the left hand side is a perfect Dth power in C[X±1

1 , . . . , X±1
d ]. Perform a

suitable transformation of the form Xi → ciXi, clear out constants and simplify. One obtains
that

(X1 · · · Xd)(h−1)A′ d∏
i=1

(
XA′

1 + · · · + XA′
d − XA′

i

)
(6·1)

is a Dth power of a polynomial, where A′ := AM. This is clearly impossible if D does

not divide (h − 1)A′. Otherwise we may drop the term (X1 · · · Xd)(h−1)A′
. One sees that the

polynomials

XA′
1 + · · · + XA′

d − XA′
i

are pairwise coprime, and hence each of them must be a Dth power. This is not the case,

as can be seen, for example, by considering the partial derivative of XA′
2 + · · · + XA′

d with

respect to X2 at (X2, X3, . . . , Xd) = (x0, 1, . . . , 1), where xA′
0 + (d − 2) = 0.

The case N = ±1 is handled similarly: For any polynomial Q ∈C[X±1
1 , . . . , X±1

d−1] we
have

Q(αn
1, αn

2, . . . , αn
d−1) = 0

for all integers n only if Q is zero. Proceeding as before, we have that

d∏
i=1

(XA′
1 + · · · + XA′

d − XA′
i )
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is a Dth power of a polynomial in the variables X1, . . . , Xd−1 (with possibly negative
exponents in the monomials), where Xd is shorthand for N/X1 · · · Xd−1. Note that the term

XA′
1 + · · · + XA′

d−1

is coprime with all the other terms of the product, and, as before, this is not a Dth power of
a polynomial.

7. Concluding the proof

We aim to prove that almost all primes of K(ζh) split in at least one of the fields K(ζh, b1/h
n ).

By the Chebotarev density theorem it suffices to construct a subsequence bn1 , bn2 , . . . of (bn)
such that the fields

K
(
ζh, b1/h

n1

)
/K(ζh), K

(
ζh, b1/h

n2

)
/K(ζh), . . .

are linearly disjoint
In Section 6 we checked that we may apply Lemma 5·3 to the norm sequence (cn). Let

cn1 , cn2 , . . . denote a subsequence given by the lemma with the base field F(ζh), so

F
(
ζh, c1/h

ni

)
/F(ζh), i = 1, 2, . . .

are of degree h and linearly disjoint. We claim that this implies that

F
(
ζh, b1/h

ni

)
/F(ζh), i = 1, 2, . . .

are of degree h and linearly disjoint, too.
By Lemma 5·1 it suffices to show that

be1/h
n1

· · · bek/h
nk

∈ F(ζh), 0 ≤ ei < h

implies ei = 0 for all i. But if be1
n1 · · · bek

nk is an hth power in F(ζh), the norm ce
n1

· · · cek
nk is a

hth power in F(ζh), too. By the choice of cni this happens only if ei = 0 for all i.
Finally, note that linear disjointness over F(ζh) implies linear disjointness over K(ζh), so

K(ζh, b1/h
n1 )/K(ζh), K(ζh, b1/h

n2 )/K(ζh), . . . are linearly disjoint, as desired.

8. Discussion

The presented proof considers the primes p such that P has factorisation type (1, d − 1)
modulo p. Naturally one wonders whether other factorisation types could be handled as well.
Unfortunately, we are not able to do this.

There are two main limitations. First, performing the “norm trick” as in Section 4 requires
that P has just two factors modulo p. Second, to reduce the exponential equation to a poly-
nomial equation one needs a result similar to Lemma 3·1. The analogue of Lemma 3·1 is,
however, not known when one considers the roots of P in Fpk for k ≥ 2.

By an approach also based on reduction to a polynomial equation, Roskam has settled
the case where P remains irreducible modulo p, assuming an analogue of Lemma 3·1 holds
for roots of P of degree d over Fp (namely that the multiplicative orders of the roots are
of magnitude pd almost always). Note that given a linear recurrence (an) with a squarefree
characteristic polynomial P, the period of (an) modulo p is, for large enough primes p, equal
to the least common multiple of the multiplicative orders of the roots of P in extensions of
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Fp. Hence Roskam’s assumption is equivalent to the period of (an) modulo p being of order
pd for almost all primes p for which P is irreducible modulo p.

A theorem of Niederreiter [16, theorem 4·1] gives a stronger result under a weaker
assumption: as long as the period of the sequence modulo p is at least of magnitude pd/2+1,
the sequence does not only attain the value 0 (mod p), but the sequence is approximately
equidistributed modulo p, see [21, theorem 3] for a similar result. While we have man-
aged to avoid the consideration of the period of an modulo p, our approach does not yield
equidistribution results or even non-trivial lower bounds for the number of values attained
by an modulo p.

We hence see that analogies of Lemma 3·1 to roots of P in extensions of Fp are central
to understanding the behavior of linear recurrences modulo primes. While it seems likely
that such variants of Lemma 3·1 hold (one can present a similar heuristic as for Artin’s
conjecture), our understanding is very limited. Unconditionally, we only know that given
an integer a with |a| > 1, the order of a modulo p is almost always > p1/2 [3]. Under GRH
one has Lemma 3·1, and an involved variant of Hooley’s classical (conditional) solution
of Artin’s conjecture yields an analogue of Lemma 3·1 in the case where P is of degree 2
and remains irreducible modulo p, as shown by Roskam [20]. (Roskam only considers the
case where the order is equal to exactly p2 − 1 in [20], but the argument may be modified for
order (p2 − 1)/C to give Lemma 3·1.) It seems that all other cases are open, and as explained
in [20], Hooley’s argument does not adapt to higher degrees without new ideas.

We conclude by remarking that the case where P splits into d linear factors modulo p
seems to be the most difficult to analyse. In these cases the period of the linear recurrence
modulo p divides p − 1, and heuristically there is a positive density of split primes which are
not prime divisors of the sequence (see [19]). For example, we are not able to say essentially
anything about the prime divisors of 3n + 2n + 3 other than that there are infinitely many
of them. In contrast, heuristics suggest that if P is irreducible and deg (P) ≥ 3, then almost
all non-split primes are prime divisors of the corresponding sequence (excluding degenerate
cases). This suggests that the lower bound 1/(d − 1) in Theorem 1·1 could be replaced with
1 − 1/d!.
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