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We present a theory for the evolution of a one-dimensional, steady-state detonation
reaction zone to a two-dimensional reaction zone, when the explosive experiences a
sudden loss of side-on confinement as a boundary of the explosive is impulsively
withdrawn. Our focus is on condensed-phase explosives, which we describe as having
a constant adiabatic gamma equation of state and an irreversible, state-independent
reaction rate. We consider two detonation models: (i) the instantaneous reaction
heat release Chapman–Jouguet (CJ)-limit and (ii) the spatially resolved reaction
heat-release Zel’dovich–von Neumann–Döring (ZND) model, in the limit where only
a small fraction of the energy release is resolved (the SRHR-limit). Two competing
rarefaction waves are generated by this loss of confinement: (i) a smooth wave
coming off the full length of the withdrawn boundary and (ii) a singular fan spreading
out from the point where the detonation shock and the withdrawn boundary meet.
For the CJ-limit, in all cases the singular rarefaction fan eventually dominates the
competition to control the steady-state behaviour. For the SRHR-limit, the spatially
resolved heat release moderates this competition. When the withdrawal speed is fast,
the rarefaction fan dominates; when the withdrawal speed is slower, the smooth
rarefaction eventually dominates, although the flow features a fan at early times.
By examining the mathematical properties of the steady two-dimensional fan-based
solution, we set down a mechanism for this transition in behaviours.

Key words: detonation waves

1. Introduction

In its simplest, one-dimensional (1-D) idealized form, a free-running, high-explosive
(HE) detonation is a shock supported by the release of energy, initiated by the
passage of the detonation’s shock over fresh explosive. The structure of the flow in
the energy-release zone was first described by Zel’dovich, von Neumann and Döring
(ZND) (Fickett & Davis 1979, pp. 42–51), When measured in a reference frame
attached to the shock, the flow at the point where the shock crosses a particle of
fresh explosive, referred to as the von Neumann (N) point, is subsonic and becomes
choked or sonic at the point where the reaction in that particle is completed, referred
to as the Chapman–Jouguet (CJ) point. The pressure decreases from the shock to the
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FIGURE 1. The long-time, steady-state detonations that develop when an 1-D, ZND
detonation, with an initial angle of incidence with the confiner interface of ω=90◦, adjusts
to the rarefactions generated as the detonation deflects the confiner interface. (a,b) Display
the cases for a high-impedance and low-impedance inert material, respectively. A smooth
flow is observed for the high-impedance (confined) case, while a rarefaction fan is
observed at the edge for the low-impedance (unconfined) case (Bdzil & Stewart 2012).

sonic point, as it does for flow through a gas-dynamic nozzle. Such a detonation is
self-supporting and travels at the minimum allowed speed, DCJ .

This idealized picture must be modified when such a 1-D, ZND detonation
encounters the boundaries of the explosive. Depending on the angle of incidence,
ω, of the detonation with the HE’s boundary (see figure 1) and the properties of the
inert material against the HE providing confinement to the detonation, a number of
different situations can arise (Aslam, Bdzil & Stewart 1996; Bdzil & Stewart 2012;
Short & Quirk 2018).

Here, we focus on detonations for which ω = 90◦ initially; i.e. detonations whose
basic direction of propagation is parallel to the undisturbed interface between the
fresh explosive and the inert material serving as confinement for the HE. Since
the detonation pressures of high explosives are of the order of 200 000 atmospheres
(20 GPa), which is greater that the strength of all materials, the confinement yields and
is deflected by the passage of the detonation. As the confinement deflects in response
to the pressure in the explosive’s reaction zone, a steep rarefaction is able to propagate
into the explosive’s reaction zone, since the flow in the reaction zone and near the
detonation shock is initially subsonic in the detonation shock-attached reference frame.
With time, the rarefaction propagates deep into the subsonic detonation reaction zone,
which leads to far-reaching changes to the reaction zone, eventually leading to the
establishment of a fully multidimensional, steady-state detonation (see figure 1).
Given that the detonation speed exceeds 6000 m s−1, being greater than the acoustic
speed in the confiner material, a narrow layer of supersonic flow, pulled along by the
detonation, is induced into the confinement material.

As displayed in figure 1, the steady-state form that the detonation eventually
takes depends on the strength (shock impedance) of the confiner. A more rigid,
higher-impedance confiner leads to the two-dimensional (2-D) detonation shown in
figure 1(a), while a weaker, lower-impedance confiner leads to a detonation that
propagates as if it were a fully unconfined detonation, as shown in figure 1(b)
(Bdzil & Stewart 2012). The confined detonation, shown in figure 1(a), more nearly
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resembles a weakly perturbed 1-D detonation, with the HE /confiner interface showing
a relatively small deflection, and the related shock-edge angle, ω, being only slightly
smaller than the original 1-D value, ω= 90◦. When measured in the reference frame
moving along the undisturbed confiner interface with the intersection point of the
detonation shock and that interface, the flow immediately behind the detonation shock
is subsonic, as in a 1-D detonation. The speed of the intersection point, referred to
as the detonation phase velocity, D0, is given as

D0 =Dne/ sin(ωe), (1.1)

where ωe and Dne < DCJ are the shock angle and detonation velocity normal to the
shock at the HE edge. The detonation shock pressure at the edge, Pe, is Pe=O(ρ0D2

ne),
which is less than that of the 1-D detonation shock pressure, and where ρ0 is the
density of the un-shocked, fresh explosive.

The 2-D partial-differential equations (PDEs) that govern the flow in the subsonic
region of the reaction zone are of elliptic type (Carrier & Pearson 1976), and admit
only smooth solutions. This mathematics then argues for the absence of reflected
waves, such as shocks and rarefaction fans in multidimensional subsonic flows, such
as those of the detonation reaction zone. Instead, the detonation adjusts the shape
of the lead shock such that a reflected wave is not needed to turn the flow once a
steady state is established.

For the unconfined detonation displayed in figure 1(b), the HE /confiner interface
shows a much larger deflection, due to the weakness of the confiner and the ease with
which the confiner can be deformed. The shock angle at the edge, ωs, is now seen to
be considerably smaller than ω = 90◦. If we assume that D0 is the same here as in
figure 1(a), which is the case if both explosive charges are very wide, then Dne would
be considerably below the value it would have for the highly confined detonation
of figure 1(a). Then the pressure, which goes as O(ρ0D2

ne), would be much reduced
compared with that for the figure 1(a) case. This drop in pressure brings with it a
drop in the sound speed near the shock, and the sonic locus, which is far back in the
flow in figure 1(a), now moves up and intersects the shock. As we have argued before
(Bdzil 1981; Bdzil & Stewart 1986; Aslam et al. 1996), once the sonic locus contacts
the detonation shock at the edge, that then limits any further decrease of the shock
pressure near the edge, Pe, and thus limits the strength of the rarefaction propagating
into the reaction zone. Now, a large region of supersonic flow separates the subsonic
region of the reaction zone from much of the rarefaction. This region is governed by
the mathematics of hyperbolic PDEs and can support non-smooth, singular rarefactions
of any strength, down to a zero pressure at the furthest expansion of the rarefaction
outwards.

The classical method for studying the interaction between an oblique detonation
and the explosive confinement layer is the local, shock-polar analysis carried out at
the point of intersection of the detonation and transmitted inert shocks (Courant &
Friedrichs 1948; Anderson 1990; Bdzil & Stewart 2012). Carried out in the detonation
shock /confiner interface intersection reference frame, this analysis constructs the
pressure, P, versus streamline turning angle, Θ , curves both for all shocks and all
rarefactions. Plotted in the P versus Θ-plane, the crossing points of these polars
correspond to the possible solutions for pressure, streamline turning angle match
across the HE /confiner interface. Since for the steady-detonation problems described
above the phase velocity is only known after the complete problem is solved, D0 is
set by the user as an available free parameter.
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FIGURE 2. The fresh explosive’s Prandtl-Meyer (PM) rarefaction fan and shock polar,
for the case of no reflected wave are both displayed as solid curves and drawn for
the case of a phase velocity of D0 = 7.755 mm µs−1. The PM rarefaction leaves the
explosive’s shock polar at the sonic point on the polar, which is marked with a square. The
example shown is for the solid-phase, plastic-bonded explosive, PBX 9502. Also shown
are the shock polars for the confinement materials, copper (short-dashed curve) and Lexan
plastic (long-dashed curve). The solution points are marked with circles. All materials are
represented with the Mie–Grüneisen equation of state form Dn = c0 + sup, where Dn is
the shock velocity in the shock-normal direction and up is the laboratory-frame particle
velocity at the shock. The parameter values are: (i) PBX 9502, ρ0 = 1.891 gm cc−1,
c0 = 2.938 mm µs−1, s = 1.77 and Γ = 1.5; (ii) copper, ρ0 = 8.930 gm cc−1, c0 =

3.940 mm µs−1, s = 1.489; and (iii) Lexan ρ0 = 1.193 gm cc−1, c0 = 2.10 mm µs−1,
s= 1.41.

For the detonation shocks displayed in figure 1, the equation of state (EOS) of the
unreacted, plastic-bonded explosive (PBX), PBX 9502, can be described with a Mie–
Grüneisen EOS form, based off of the principal Hugoniot as a reference curve, Dn=

c0+ sup, with a constant Grüneisen gamma, Γ , where Dn is the normal shock velocity
and up is the particle velocity, both in the laboratory reference frame (Bdzil & Stewart
2012). The shock pressure and streamline turning angle are parametrized by ω and
given by Aslam, Bdzil & Hill (2004) as

P=ρ0D0 sin(ω)
(

D0 sin(ω)− c0

s

)
and Θ= arctan

(
D0 sin(ω) cos(ω)− c0 cos(ω)
sD0 −D0 sin2(ω)+ c0 sin(ω)

)
.

(1.2a,b)
The expression for the HE rarefaction fan, referred to as a PM fan, can be obtained
using the expressions given in Bdzil & Stewart (2012).

Displayed in figure 2 are the shock polars for Lexan plastic and copper inert
confinement materials, in addition to both the shock and rarefaction polars for PBX
9502. We find that the stiff confinement provided by copper gives a small streamline
deflection of Θ = 4.9◦ and a pressure of P= 38.7 GPa, only slightly less than the 1-D
detonation shock pressure at Θ = 0◦. As we see in figure 1(a), the flow is subsonic
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FIGURE 3. A 1-D ZND detonation propagating to the right, suddenly loses some
confinement as the detonation passes into a region where the side-on confinement is
compliant. This results in the propagation of a rarefaction into the reaction zone, which
lowers the detonation pressure, that causes the shock to curve and the detonation’s speed
to decrease. The solution points of the shock-polar diagrams, displayed in figure 2, give
the possible solution states at the encircled point where the detonation shock meets the
deflected HE /inert material interface.

behind the shock at the detonation shock /confinement boundary intersection point.
On the other hand, the weak confinement provided by Lexan plastic gives a larger
streamline deflection of Θ = 11.9◦, where the Lexan polar crosses the PM fan. The
shock pressure is much reduced, with P= 18.7 GPa, which corresponds to the point
where the head of the rarefaction meets the HE shock polar. In the supersonic flow
of the PM fan, the streamline angle increases from Θ = 9.5◦ at the sonic point to
Θ = 11.9◦ and a pressure of P= 9.9 GPa, where the Lexan shock polar crosses the
HE’s PM fan. What we see as the differences between figure 1(a,b), is the classical
result for how differences in confinement affect the edge flow for a steady-state,
multidimensional detonation (Sichel 1966; Bdzil and Stewart 2007; Li, Mi & Higgins
2015; Short & Quirk 2018).

The question we ask in this paper is as follows: Given an initially 1-D, steady-state
ZND detonation with ω= 90◦, what are the transients that move this 1-D detonation
to the steady states shown in figure 1, when the rigid confinement necessary to
support a 1-D detonation is suddenly reduced? This transition in confinement, as
depicted in figure 3, introduces the rarefaction that propagates into the reaction zone.
The variables appearing in figure 3, are φ, the shock angle, ψs( y, t), the shock locus
in the laboratory frame,

ψs( y, t)=DCJt+ ψ̃s( y, t), (1.3)

where ψ̃s( y, t) is the shock locus measured relative to x0=DCJt, and where the normal
shock velocity, Dn, is given by

Dn =

(
DCJ +

∂ψ̃s( y, t)
∂t

)
cos φ =D0( y, t) cos φ. (1.4)

Specifically, we study the transients that move the 1-D detonation to a 2-D, steady-
state detonation, when the bottom boundary is impulsively accelerated to a constant
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negative value (Vbbc < 0), as the detonation passes over the boundary (see figure 3).
Since rarefactions move off both the entire confinement boundary, as in figure 1(a), as
well as out of the shock /edge corner, as in figure 1(b), we study the interplay between
these two effects.

Here we use the small-resolved heat-release (SRHR) model, given its simplicity
and ability to describe real detonating HEs (see figure 5 and Bdzil & Davis (1975)).
Insensitive HEs of interest exhibit a 2-step heat-release rate. Although the majority
of the energy is released quickly, the slower reaction-completion step controls the
late-time, reaction-zone dynamics. The SRHR model takes the two asymptotic limits:
(i) the first reaction is instantaneous and (ii) the fraction of the energy released by
the second reaction, δ2, is small. As a consistent asymptotic reduction of the Euler
equations, the SRHR-limit yields the unsteady transonic small disturbance (UTSD)
equations, for which there exists significant literature.

Beginning with an analysis of the shock conditions for the SRHR model and the
2-D Euler equations, we briefly retrace the development of the UTSD equations that
we presented in our previous detonation Mach-reflection study (Bdzil & Short 2017).
Here the shock condition analysis on the SRHR model shows that the sonic angle is
small, and as a consequence, the streamline deflection angle can be restricted to small
values, while at the same time allowing both the shock and rarefaction solutions, as
displayed in figure 1, to be accessed. We then argue that: (i) the compliant inert
material/HE boundary streamline will be straight, (ii) the speed of the boundary
withdrawal will be constant and (iii) the transition from rigid to compliant boundary
conditions will occur instantaneously. That leads to our replacing the compliant inert
material with a boundary condition. Starting at t > 0, the bottom boundary of the
explosive suddenly moves downward at a constant speed, Vbbc< 0, with the magnitude
of Vbbc being inversely proportional to the strength of the confinement.

We begin by examining this interplay for the instantaneous reaction, CJ-limit
detonation where, due to the shrinking of the reaction-zone scale to zero, the flow is
self-similar, depending only on the scaled variables (x/t) and ( y/t). In this limit, the
detonation shock remains undisturbed. Given the importance of having a sonic flow
at the detonation shock and explosive edge intersection point for an unconfined, 2-D,
steady-state resolved reaction-zone detonation, we next examine the transient flow at
that point. We first examine the short-time rarefaction dynamics of the flow in the
vicinity of the shock /confiner intersection point. We previously conjectured that the
flow should be locally sonic at that point for all unconfined detonation flows (Bdzil
& Stewart 1986). Recast in terms of the shock-state variables given in figure 3, the
sonic parameter along the shock, as measured in the shock-attached reference frame,
is

c2
+
− ũ2

x+ − ũ2
y+ =D2

n

(
−(γ + 1)

(
P+
ρ0D2

n

)2

+ (γ + 2)
(

P+
ρ0D2

n

)
−

1
cos2 φ

)
, (1.5)

where a ‘+’ subscript denotes the state immediately behind the shock and γ is the
adiabatic gamma, γ = −(∂ ln(P)/∂ ln(v))S for unreacted explosive and where v and
S are the specific volume and entropy, respectively. Equation (1.5) can be written to
yield a constraint on the scaled pressure at the sonic point, (P+/ρ0D2

n), in the limit
of a constant-γ EOS(

P+
ρ0D2

n

)
=
(γ + 2)±

√
γ 2 − 4(γ + 1) tan2 φ

2(γ + 1)
, (1.6)
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and where the shock angle, φ, must satisfy tan2 φ < γ 2/(4(γ + 1)). Since the
impulsive withdrawal dominates the reactivity at early times, the short-time limit
flow is essentially self-similar, although of a different character than for the CJ-limit.
Now, the shock becomes disturbed, leading to an O(1) jump in the edge value of the
shock angle, going from φe = 0 for the 1-D detonation to φe < 0 for the perturbed
shock. During this rapid and self-similar transition, a sonic locus can be defined in
the vicinity of the shock /confiner intersection point and in the similarity coordinate
frame, (x/t) and ( y/t), which is consistent with (1.6).

With the passage of time, the effects of the heat-release rate are felt, and we
continue by following the progress of the rarefaction wavehead’s movement further
into the reaction zone, as it leaves in its wake a disturbed reaction zone and detonation
shock. This wavehead eventually reflects off of the explosive’s centreline, returning to
the explosive’s edge etc., which sets the dynamics of the detonation shock’s evolution.
We monitor this evolution with the detonation phase velocity, both at the centreline
and the edge, until the two phase velocities become equal, signalling the achievement
of a steady state. Finally, we turn to an examination of how the 2-D, steady-state
detonations that develop, depend on the strength of the rarefaction (i.e. on the size
of Vbbc < 0). This includes: (i) measuring for a fixed width explosive charge, how the
detonation’s phase velocity depends on Vbbc and (ii) defining the necessary conditions
on the confinement so as to ensure that the detonation can be considered to be fully
unconfined.

In this study, much of our focus will be on the evolution of the multidimensional
detonation shock and the interaction of that shock with a possible, singular rarefaction
fan at the explosive’s edge. Thus, the need to solve our problem in a specialized,
shock-attached coordinate frame, free of shock-capturing errors, should be clear.
Romick & Aslam (2017) and Chiquete et al. (2018) used related, shock-fitted
strategies for obtaining solutions to 2-D, steady-state, detonation reaction-zone
flows. In those studies, their assumed straight confinement boundaries were moved
out gradually; over a time scale of 5 µs in Romick & Aslam (2017), which is a
significant fraction of the 20 µs over which the solution exhibited time dependence.
Additionally, our study will require a methodology that allows for the impulsive
removal of the confinement boundary.

2. Small-resolved heat-release (SRHR) detonation model
We adopt the simple, constant adiabatic gamma EOS model of condensed-phase

explosive for our study (Bdzil & Short 2017), for which the thermodynamics is given
by

E(P, ρ)=
P

(γ − 1)ρ
− qλ, (2.1)

where E(P, ρ) is the specific internal energy, P is pressure, ρ is the density, γ is the
constant adiabatic gamma, q is the specific energy release of the explosive and λ is
the mass fraction of reacted explosive. Here we take γ = 3, the initial density of the
unreacted explosive as ρ0 = 2 gm cc−1, a quiescent state for the unshocked explosive
and the CJ detonation velocity of DCJ = 8 mm µs−1. These values correspond to
those typically used to model condensed-phase detonation using (2.1) (see Aslam et al.
1996). The initial pressure, P0, of the unshocked explosive is set to zero, since the
detonation pressure is many orders of magnitude greater than P0, which with the
frozen sound speed given as c =

√
γP/ρ by thermodynamics, yields the CJ Mach

number, Mj, and q as
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FIGURE 4. The Hugoniot diagram showing partial reacted Hugoniots, equation (2.3), and
Rayleigh lines for various Dn, equation (2.4). The partially reacted Hugoniots for λ= 0,
λ= 0.8 and λ= 1 are displayed. Moving up along the Dn=DCJ Rayleigh line, starting at
the tangency point with the λ= 1 Hugoniot, one finds that the change in pressure between
the λ= 1 and λ= 0.8 Hugoniots is nearly that between the λ= 0.8 and λ= 0 Hugoniots.

Mj =
DCJ

√
γP0/ρ0

−→∞ and q=
D2

CJ

2(γ 2 − 1)
. (2.2a,b)

The conservation of energy and momentum for a 1-D, steady-state wave, moving
with the normal shock velocity of Dn, yields the Hugoniot curve and Rayleigh line
conditions for this condensed-phase HE (Fickett & Davis 1979, pp. 16–19), as

P
ρ0

(
1−

(
γ + 1
γ − 1

)
ρ0

ρ

)
+

D2
CJλ

(γ 2 − 1)
= 0 (2.3)

and
P
ρ0
=

(
1−

ρ0

ρ

)
D2

n. (2.4)

With Dn specified, we can solve (2.3) and (2.4) to get P(λ), ρ(λ), etc. through a
steady-state, 1-D, ZND reaction zone. Displayed in figure 4 is the P versus (ρ0/ρ)
– plane for a 1-D, steady-state, unsupported detonation wave, where (2.3) is plotted
for three values of λ, λ= 0.0, λ= 0.8 and λ= 1.0, for the generic, condensed-phase
HE parameters given earlier and set down here for future reference

ρ0 = 2 gm cc−1, γ = 3, DCJ = 8 mm µs−1, P0 = 0. (2.5a−d)

The detonation solution states lie along the Rayleigh line, equation (2.4). Here we
have drawn the CJ-detonation Rayleigh line, which is tangent to the λ= 1 Hugoniot.
Moving along the Rayleigh line, we find the change in pressure in going from the CJ
point on the λ= 1 Hugoniot to the solution point on the λ= 0.8 Hugoniot, is roughly
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FIGURE 5. The pressure, P, and reaction-progress variable, λ plotted versus distance for a
PBX 9502 ZND wave (Short et al. 2018). The rate of energy release for the last 10 % of
the energy is nearly ten times slower than is rate for the first 90 % of the energy release.

the change in pressure between the λ= 0.8 and λ= 0.0 Hugoniot solution points. This
is a consequence of the tangency of the Rayleigh line and the λ=1 Hugoniot for a CJ
detonation. Introducing λ= 1− δ2, where δ2

� 1 is the fraction of remaining energy
release, then it follows that the last O(δ2) of the energy release contributes to a much
larger O(δ) change in the pressure. Since the change in the detonation speed goes as
O(δ2), then we see that the change in pressure is the dominant effect of the last of
the energy release.

This effect is also shown in figure 5, where the 1-D, steady-state ZND profile for
an unsupported detonation, in the insensitive plastic-bonded explosive, PBX 9502 is
displayed. Two things are clear from figure 5: (i) the 2-step nature of the reaction
rate and (ii) the disproportionate effect on the pressure profile that the last 10 % of
the detonation’s heat release has. The 2-step nature of the heat-release rate, seen here
in PBX 9502, was previously observed in Composition B (60 %/40 % RDX/TNT)
and other carbon-rich explosives by Bdzil & Davis (1975). Carbon coagulation
was suggested as a likely candidate for the second step. Shaw & Johnson (1987)
proposed that the O(10 %) energy release and slow time scale were consistent with
a diffusion-limited growth of larger from smaller carbon clusters and atoms. In their
theory, the carbon clusters were assumed to be Brownian particles whose motion
was produced by the many collisions that the particles experience with the molecules
of the detonation product gases. Recently developed, small-angle, X-ray scattering
techniques have allowed researchers to observe the temporal growth of carbon clusters
in detonations. Experiments of Watkins et al. (2017) show that the growth of carbon
clusters from carbon atoms in detonating PBX 9502 occurs on a time scale of at least
0.2 µs. This corresponds to a distance of ≈1.2 mm in the reaction zone, comparable
to the distance for the slow step displayed in figure 5. The work of Watkins et al.
(2017) is consistent with the estimates in Shaw & Johnson (1987) on the reaction’s
time scale and weak state dependence. This slow, second reaction-zone step controls
the long-time dynamics of this reaction-zone flow and is the focus of our study.

Because of the disparity in these two reaction-zone time scales and the dispro-
portionate effect that the last 10 % of the energy release has on the pressure
in an unsupported detonation reaction zone, we introduced the SRHR model of
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Narrow charge

(centreline)

1-D
detonation

2-D wave head track

Wide charge(y)

DCJ

D0(y, t) = Dn/cos(ƒ)

ƒ

ƒe1 ƒe2 ƒe3

(UTSD)
x, ∂1/2y, ∂t

(UTSD)
x, ∂1/2y, ∂t

x/∂1/3, ∂1/3y

(DSD-limit)
x, ∂y, ∂2t

(x)

FIGURE 6. Spatial and time scale regions for the evolution of a SRHR detonation, when
the lower boundary is impulsively withdrawn at high speed, causing a rarefaction to
propagate into an originally, 1-D fully confined detonation. The normal angle to the shock
at the edge, φe, increases with distance of run until its steady-state value is achieved. The
ultimate value of φe is a function of the charge size, with the magnitude of φe increasing
with increasing charge size. The track of the edge rarefaction wavehead separates the
1-D, undisturbed detonation (above) from the 2-D, perturbed flow (below). The number
of asymptotic scaling regions required to span a charge is a function of the explosive’s
half-width size, with larger charges requiring more regions.

explosives. SRHR takes the asymptotic limit that the fast-reaction step can be taken
to be instantaneous (Bdzil & Davis 1975; Bdzil 1976; Bdzil & Short 2017). In this
limit, we have a small-resolved heat-release detonation resting atop a high-energy,
instantaneous reaction detonation, with an O(δ2) resolved energy release, contributing
to an O(δ) addition to the pressure and an O(δ2) change in the detonation speed
(see (3.15)). This is in contrast to the net small heat-release detonations studied in
Fickett (1979), Rosales & Majda (1983), Clavin & Williams (2002, 2009) and Faria,
Kasimov & Rosales (2015), where the changes in detonation speed are O(δ). As a
consequence, the acceleration of the shock, due to perturbations to the flow, does
not feedback directly into a SRHR flow, whereas in the small heat-release detonation
work listed above, those accelerations of the shock do feedback and can affect the
flow, possibly influencing detonation stability, Mach reflection and other aspects of
the flow evolution.

3. Loss of confinement: the unsteady transonic small-disturbance model
Unlike the Mach-reflection problem that we studied earlier with an unsteady

transonic small-disturbance (UTSD) model (Bdzil & Short 2017), here the scaled
transverse velocity, V , is not a direct input controlled by the user. As part of the
initial-value problem, the variable V begins as zero in the 1-D solution at the initial
value of the scaled time, τ = 0. However, its ultimate final value is determined by the
steady-detonation phase velocity, D0, that is achieved, which in turn depends on the
lateral dimension of the HE charge. Many small-δ asymptotic scalings are possible.
Some of the more interesting ones are displayed in figure 6. Here we seek an
asymptotic limit that is consistent with the following constraints: (i) the O(δ2) energy
release and O(δ) pressure variable of the 1-D, SRHR model (see § 2), (ii) maximum
streamline deflection and shock angles compatible with the multidimensional shock
conditions (see (3.5)) and all within (iii) a unified, single asymptotic description to
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Loss of detonation confinement 886 A27-11

include both steady 1-D and 2-D detonations along with the intervening transients (see
(3.31)–(3.32)). The UTSD scaling displayed in figure 6 satisfies all these constraints
when we limit consideration to narrow charges, those charges with half-width size of
the order of five reaction-zone lengths, as we now argue.

We begin with a refresher on the derivation of the UTSD equations for the SRHR
model, starting with an examination of the shock Hugoniot conditions. With δ2

� 1
representing the resolved heat release fraction, then λ = 1 − δ2 at the end of the
instantaneous heat release, so from (2.3)–(2.4) we have, with Dn the local, normal
detonation speed, (

Dn

DCJ

)2

> 1− δ2. (3.1)

With the angle between the x-direction and the normal to the shock being φ (see
figure 3), then the local phase velocity of the detonation is defined via (1.4) as

D0 =DCJ +
∂ψ̃( y, t)
∂t

=Dn/ cos(φ) (3.2)

and so (
D0

DCJ

)2

> 1− δ2. (3.3)

Here we define a scaled phase-velocity variable, n, and write(
D0

DCJ

)2

=
(
1− δ2

)
+ δ2(1− n), (3.4)

with 0 6 n 6 1. Then we can write (2.3) and (2.4) as the shock condition for the
SRHR model

P+(γ + 1)
ρ0D2

n

=
Un+(γ + 1)

Dn
= 1+

√
− tan2 φ + δ2(1− n)/(1− δ2)

1+ δ2(1− n)/(1− δ2)
, (3.5)

where the leading-order term, 1, corresponds to the full-energy CJ detonation state
and where here a ‘+’ subscript denotes the state immediately behind the point of
completion of the instantaneous reaction. This then immediately returns the constraint
that

tan2 φ 6 δ2(1− n)/(1− δ2), (3.6)

where n and φ are understood to be their local values, n( y, t) and φ( y, t) (see
figure 3). The shock values of the x and y components of the particle velocity in the
fully, shock-attached frame are given as (see figure 3 and Bdzil & Short (2017))

ũx+ =−DCJ −
∂ψ̃s(0, t)
∂t

+Un+ cos φ, (3.7)

ũy+ =Un+ sin φ, (3.8)

where we have used Dn as given in (1.4), which by definition has ∂ψ̃s( y, t)/∂t=O(δ2)

Dn =

(
DCJ +

∂ψ̃s(y, t)
∂t

)1+

(
∂ψ̃s

∂y

)2
−1/2

, (3.9)
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and where1+

(
∂ψ̃s

∂y

)2
−1/2

= cos φ = 1−
1
2

tan2 φ + · · · = 1−O(δ2(1− n)). (3.10)

Using (3.4)–(3.10), we can write (3.7) and (3.8) as(
ũx+ +

γDCJ

γ + 1

)
=

DCJ

γ + 1

√
− tan2 φ + δ2(1− n)/(1− δ2)+ · · · , (3.11)

ũy+ =
DCJ

γ + 1
sin φ + · · · =−

DCJ

γ + 1
∂ψ̃s

∂y
+ · · · (3.12)

and then combine these to read(
ũx+ +

γDCJ

γ + 1

)2

+ (ũy+)
2
=

(
DCJ

γ + 1

)2

δ2(1− n)/(1− δ2)+ · · · , (3.13)

and using (3.3), (3.4) and (3.9), to write

δ2(1− n)/(1− δ2)=−1+
1

(1− δ2)

(
1+

1
DCJ

∂ψ̃s

∂t

)2

= δ2
+

2
DCJ

∂ψ̃s

∂t
+ · · · , (3.14)

we then have that(
ũx+ +

γDCJ

γ + 1

)2

+ (ũy+)
2
=

(
DCJ

γ + 1

)2
(
δ2
+

2
DCJ

∂ψ̃s

∂t

)
. (3.15)

Differentiating (3.15) with respect to y, and then substituting from (3.12), yields the
composite shock condition

∂

∂y

((
ũx+ +

γDCJ

γ + 1

)2

+ (ũy+)
2

)
=−

2
γ + 1

∂
(
ũy+
)

∂t
+ · · · , (3.16)

which relates ũx+ to ũy+ along the shock. Here unlike for (6.9) in Bdzil & Short
(2017), we must include (ũy+)

2 because of the different structure of this problem.
For the problem of a freely propagating unconfined detonation, (ũx+ + γDCJ/(γ +

1))2 can become zero, as witnessed by the expression for the sonic parameter along
the shock and measured in the shock /edge-intersection reference frame

c2
+
− (ũx+)

2
− (ũy+)

2
= γDCJ (ũx+ + γDCJ/(γ + 1))+ · · · (3.17)

Thus, for a flow that can possibly become sonic at the shock /edge-intersection point,
we have (ũx+ + γDCJ/(γ + 1))= 0 there. In the steady-state limit, equation (3.16) can
be written as (

ũx+ +
γDCJ

γ + 1

)2

+ (ũy+)
2
= δ2

(
DCJ

γ + 1

)2

(1− n)CL + · · · , (3.18)
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Loss of detonation confinement 886 A27-13

where the subscript ‘CL’ denotes the steady-state value at the centreline (upper
boundary) of the HE. Therefore, for an unconfined steady detonation, we have at the
HE edge

(ũy+)e =−δ
DCJ

γ + 1

√
(1− n)CL =

DCJ

γ + 1
sin φe + · · · , (3.19)

where the subscript ‘e’ denotes the value at the edge, so we can write

(ũy+)
2
e = (ũx+ + γDCJ/(γ + 1))2CL , (3.20)

for a steady-state, unconfined detonation. Since ũy+ varies from zero on the centreline
to −δ(DCJ/(γ + 1))

√
(1− n)CL at the edge, we have an exchange of dominant terms,

with (ũx+)
2
= o(δ2) and (ũy+)

2
=O(δ2(1− n)). Thus, (3.16) must be what we use for

the shock condition.
From (3.20), we see how the magnitude of (ũy+)e is related to (ũx+ + γDCJ/(γ +

1))CL for an unconfined, steady-state detonation. Now, the value of (ũx++ γDCJ/(γ +
1))CL = δ(DCJ/(γ + 1))

√
(1− n)CL will be determined by the charge size and the

degree of confinement. Therefore, for an infinite-thickness HE charge, where (1 −
n)CL = 1, we have (ũx+ + γDCJ/(γ + 1))CL = O(δ), being the 1-D steady state, and
(ũy+)e =O(δ).

To the constraint provided by the shock conditions, we must add information on the
magnitude of the pressure, particle velocity and density, all of which must have O(δ)
values, as we argued in section (2). Past experience with weakly nonlinear transonic
detonation flows (Bdzil 1976; Bdzil & Stewart 1986; Clavin & Williams 2002; Bdzil
& Short 2017), and for weakly nonlinear transonic flows in general (Tabak & Rosales
1994), teaches which scalings extract the transonic richness of the UTSD equations
as an asymptotic limit of the Euler equations. With this richness comes the ability to
apply the full set of boundary and initial conditions of the Euler equations, although
in a reduced form. Those scalings and expansions, that when applied to the Euler
equations yield the UTSD equations, are (see also Bdzil & Short 2017)

ρ = ρCJ + δρ
(1)
+ · · · , (3.21)

ũx = ũCJ + δũ(1)x + · · · , (3.22)

P= PCJ + δP(1) + · · · , (3.23)
ũy = δ

3/2ũ(3/2)y + · · · , (3.24)

with

ρCJ =
γ + 1
γ

ρ0, ũCJ =−
γDCJ

γ + 1
, PCJ =

ρ0D2
CJ

γ + 1
(3.25a−c)

and

t̄= δt, (3.26)
x̄= x̃= (x−DCJt− ψ̃s( y, t)), (3.27)

ȳ= δ1/2ỹ= δ1/2y, (3.28)

and where with ∂ψ̃/∂t=O(δ2) then leads to

ρ(1) =− (ρCJ/ũCJ) ũ(1)x , (3.29)

P(1) =− (ρCJ ũCJ) ũ(1)x (3.30)
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and then finally to the UTSD equations

δ3/2

(
∂ ũ(1)x

∂ ȳ
−
∂ ũ(3/2)y

∂ x̄

)
= 0, (3.31)

δ2

(
∂ ũ(1)x

∂ t̄
+
γ + 1

2
ũ(1)x

∂ ũ(1)x

∂ x̄
−

1
2

ũCJ
∂ ũ(3/2)y

∂ ȳ

)
= δ2(γ − 1)qRate, (3.32)

where Rate is the rate term and q, which is given by (2.2), is the HE’s heat release.
As argued from (3.20) above, for a steady-state, unconfined detonation, the value

(ũx+ + γDCJ/(γ + 1))CL = δ (DCJ/(γ + 1))
√
(1− n)CL (3.33)

on the centreline is related to the edge value, (ũy+)e, so that

(ũy+)
2
e = δ

2 (DCJ/(γ + 1))2 (1− n)CL. (3.34)

Therefore, to have (ũy+)e be compatible with the UTSD scaling, of ũy =O(δ3/2), we
must restrict the ultimate steady value of

√
(1− n)CL with√

(1− n)CL = Aδ1/2, (3.35)

where A is an O(1) constant. Since we have no means of doing this directly, we
will pick the charge thickness to be small enough, such that the ultimate steady-state
detonation phase speed (

D0

DCJ

)2

= (1− δ2)+ A2δ3 (3.36)

is weakly above the square of the minimum phase speed, (D0/DCJ)
2
=1− δ2. This will

yield a single asymptotic description across the entire problem domain (see figure 6).
Finally, introducing identical scaled dependent and independent variables to those

in Bdzil & Short (2017),

U =
γ + 1
DCJ

ũ(1)x , V =
γ + 1

DCJ
√
α

ũ(3/2)y , α =
γ + 1
γ

, (3.37a−c)

τ =
αt̄
4
, x∗ =

αx̄
2DCJ

=
α(x−DCJt− ψ̃s( y, t))

2DCJ
, y∗ =

α3/2ȳ
2DCJ

=
α3/2δ1/2y

2DCJ
, (3.38a−c)

we get as our governing equations and shock conditions(
∂V
∂x∗

)
y∗,τ

−

(
∂U
∂y∗

)
x∗,τ

= 0, (3.39)(
∂U
∂τ

)
x∗,y∗
+ U

(
∂U
∂x∗

)
y∗,τ

+

(
∂V
∂y∗

)
x∗,τ

=Rate, (3.40)

where along the lead shock

∂

∂y∗
(
(U+)2 + δα (V+)2

)
=−

∂V+
∂τ

, (3.41)
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Symmetry boundary

Reflection-free boundary
Detonation

shock

Withdrawn wall, v = -const.x*

y*

vbbc

0

0

FIGURE 7. The problem geometry of figure 3 shown mapped into the scaled,
shock-attached coordinates of the UTSD equations, equations (3.37)–(3.41). The initial
state consists of a 1-D detonation, fully supported at the CJ-state, whose detonation shock
is initially perpendicular to the undisturbed bottom boundary. Here Vbbc< 0 is the constant,
downward wall velocity for τ > 0.

with

Rate=−
1
2

(
∂ λ̄

∂x∗

)
y∗,τ

= k
(
1− λ̄

)ν
, (3.42)

λ= 1− δ2
(
1− λ̄

)
(3.43)

and where 06 λ̄61 describes the progress of the last of the explosive’s energy release.
Work by Bdzil & Stewart (1986) and Li (1997) demonstrates that the steady-state
solutions of the SRHR model, equations (3.39)–(3.41), are hydrodynamically stable
to both linear and nonlinear perturbations.

The choice of the simple, state-independent rate we use here is consistent with
recent experiments (Watkins et al. 2017). In our work, we model the reaction-
completion step using (3.42), selecting k= 0.02 µs−1 and ν = 1/2 so as to have the
unsupported, steady-state reaction-zone length, x∗rz, be x∗rz= 50 units. We conclude this
section with a brief discussion of our numerical solver.

3.1. Numerical solver
As in our earlier work (Bdzil & Short 2017), we introduce the velocity potential,
Ξ(x∗, y∗, τ ), where U = (∂Ξ/∂x∗)=Ξx∗ and V = (∂Ξ/∂y∗)=Ξy∗ , and write (3.39)–
(3.40) as

Ξx∗,τ + 1/2
(
(Ξx∗)

2)
x∗ +Ξy∗,y∗ =Rate. (3.44)

With Ξ n(x∗, y∗)≈Ξ(x∗, y∗, n1τ) representing the discretized solution at time level n,
we use forward-Euler time integration in (3.44), to get(

Ξ n+1
−Ξ n

1τ
+

1
2

(
Ξ n

x∗
)2
)

x∗
+Ξ n+1

y∗,y∗ =Rate. (3.45)

We cover the problem domain, displayed in figure 7, with a uniform mesh, 16 i6 im
and 1 6 j 6 jm, where the lead shock is at i= im+ 1. On using a fully implicit time
discretization and central-difference approximation for the diffraction term, Ξ n+1

y∗,y∗ =
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(Ξ n+1
i,j+1 − 2Ξ n+1

i,j + Ξ
n+1
i,j−1)/(1y∗)2, and a forward-Euler difference for Ξ n

x∗ = (Ξ
n
i+1,j −

Ξ n
i,j)/1x∗, we get, on combining terms,

σ

(
Ξ n+1

i,j+1 −

(
2+

1
σ

)
Ξ n+1

i,j +Ξ
n+1
i,j−1

)
+Ξ n+1

i+1,j

=Ξ n
i+1,j −Ξ

n
i,j −1τ1x∗

1
2
((Ξ n

x∗)
2)x∗ +1τ1x∗ Rate, (3.46)

where σ = 1τ1x∗/(1y∗)2. Equation (3.46) represents our discretized first order in
space and time approximation to equation (3.44), and where the rate is given by

Rate= k(1+ 2(1− ν)kx∗)ν/(1−ν). (3.47)

Given the overall supersonic nature of the flow that can develop, we use an upwind
stencil for 1

2((Ξ
n
x∗)

2)x∗ , in place of (8.7) in Bdzil & Short (2017), with

1
2
((Ξ n

x∗)
2)x∗ =

1
2(1x∗)3

(
(max((Ξ n

i+1,j −Ξ
n
i,j), 0))2

+ (min((Ξ n
i+2,j −Ξ

n
i+1,j), 0))2

− (max((Ξ n
i,j −Ξ

n
i−1,j), 0))2

− (min((Ξ n
i+1,j −Ξ

n
i,j), 0))2

)
. (3.48)

Further, in place of (8.9) in Bdzil & Short (2017), we solve the modified shock
condition, equation (3.41), discretized as

Ξ n+1
i+1,j = Ξ n+1

i+1,j−1 +Ξ
n
i+1,j −Ξ

n
i+1,j−1

−
1τ

1x∗1y∗
((Ξ n

i+1,j −Ξ
n
i,j)

2
− (Ξ n

i+1,j−1 −Ξ
n
i,j−1)

2)

−
1τ

(1y∗)2
δα((Ξ n

i+1,j+1 −Ξ
n
i+1,j)

2
− (Ξ n

i+1,j −Ξ
n
i+1,j−1)

2), (3.49)

with 1x∗ = 1y∗. Here, our initial condition is the 1-D, steady SRHR detonation
supported at the CJ state. Finally, the left- and top-boundary conditions are applied
using

Ξ n
0,j = 2Ξ n

1,j −Ξ
n
2,j, Ξ n

i,jm+1 =Ξ
n
i,jm. (3.50a,b)

We leave the discussion of the confinement boundary conditions to the next section.
This solver is suitable for handling the strong PM fan, which we expect to find centred
at the shock /edge-intersection corner, when we impulsively withdraw the bottom
boundary. It returns nominally identical results for the Mach-reflection problems
studied in Bdzil & Short (2017).

4. Loss of confinement: flow along the HE /inert boundary
The SRHR detonation sits as a perturbation atop a high-pressure, condensed-phase,

1-D, CJ detonation, which serves as the base state for the SRHR flow. Since the
leading-order y∗-direction transverse flow velocity in our problem, δ3/2ũ(3/2)y , is the
SRHR velocity and thus limited to small values, while the x∗-direction, CJ-detonation
base flow is O(1), the net streamline deflection angle must be restricted to small

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
28

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1028


Loss of detonation confinement 886 A27-17

values. For (2.5) parameters, the base-state CJ pressure is high, being PCJ = 32 GPa,
which is typical of the values for condensed-phase explosives. It is this pressure that
is the O(1), leading-order pressure applied along the HE /inert confinement interface,
and is thus responsible for setting the interface streamline deflection angle. Therefore,
our inert material confinement must be of sufficiently high impedance so as to
limit the streamline deflection. Then, with the high detonation velocity associated
with condensed-phase detonation, and given that the base, CJ-detonation drives this
process, setting both the speed of the shock-attached reference frame, which is high,
and the flow speed in the confiner, which is low, then the driven flow in the inert
material will typically be highly supersonic. In many respects, the flow will be similar
to that found in the theory of thin-shock layers in the hypersonic flow past a thin
airfoil (Van Dyke 1975, pp. 106–109). Because of this, the flow in the confiner will
occupy a thin, triangular region near the HE /inert interface.

For our detonation confinement problem, we are only interested in this supersonic
confiner flow in the immediate neighbourhood of the reaction zone. Being supersonic,
this flow is not sensitive to the flow far downstream of the reaction zone. Consequently,
any non-uniformities in the flow downstream, arising from the nonlinearity of the
sound speed, will not reach the near reaction-zone flow in the confiner material.
Because this flow is supersonic it will evolve on the ordinary time scale associated
with the HE’s resolved reaction rate. Since, the SRHR flow in the reaction zone is
transonic, it will evolve on the slower, scaled-τ time scale. Therefore, for the purposes
of the confinement problem, we can assume that the flow in the confiner is steady
(i.e. evolves quasi-steadily). Taken altogether, this leads to a flow that is supersonic in
the confiner and that can be approximated as steady and linear, similar to that studied
by Van Dyke (1975, pp. 182–192), and specifically for our confinement problem in
appendix F of Bdzil (1981).

Such a flow is governed by the steady-state, 2-D linear wave equation

∂2r(1)

∂χ1∂χ2
= 0, (4.1)

whose solution is r(1) = f (χ1) + g(χ2), with f ( ) and g( ) available functions and
where χ1 and χ2 are the steady, 2-D characteristic coordinates. On applying the shock
conditions, we arrive at expressions for the y-direction, scaled particle velocity, û(1)r =

u(1)r /DCJ , and the scaled pressure, P̂(1) = P(1)/ρI0D2
CJ , in the inert material confiner

û(1)r = ρI0DCJ
(
D2

CJ/c
2
I0 − 1

)−1/2 dg(χ2)

dχ2
, (4.2)

P̂(1) = ρI0DCJ
(
D2

CJ/c
2
I0 − 1

)−1 dg(χ2)

dχ2
, (4.3)

and where ρI0 and cI0 are the zero pressure density and sound speed in the confiner
material, respectively. From (4.2) and (4.3) we have that

û(1)r (χ2)=
(
D2

CJ/c
2
I0 − 1

)1/2
P̂(1)(χ2). (4.4)

Applying the continuity of pressure at the interface, we arrive at the leading-order
result

u(1)r =DCJ
(
D2

CJ/c
2
I0 − 1

)1/2
PCJ/

(
ρI0D2

CJ

)
, (4.5)
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from which it follows that the tangent of the HE /inert interface streamline turning
angle is constant,

tanΘ = tanΘ+, (4.6)

along the entire interface separating the detonation reaction zone and confinement
material. Thus to leading order, the interface streamline is straight for a SRHR
detonation, in the limit of small, net streamline deflection. For a SRHR detonation, the
compliant confinement boundary condition can thus properly be applied by specifying
a constant, downward speed for that boundary, Vbbc < 0, which is impulsively applied
at y∗ = 0 for τ > 0. Further, in the shock-attached frame, the transition from rigid
to compliant confinement occurs at xtransition = −(2/δ)τ . Therefore, since this point
of transition is asymptotically far distant from the detonation shock, it is appropriate
to apply the boundary condition across the entire bottom boundary for τ > 0 (see
figure 7), with

Ξ n
i,0 =Ξ

n
i,1 −1y∗Vbbc. (4.7)

5. Loss of confinement: examples for a δ = 0, CJ detonation
We begin by first examining the loss of confinement for the fully instantaneous-

reaction, δ = 0, CJ-detonation with (2.5) parameters. As described in figure 3, we
consider that initially we have a 1-D detonation travelling in the direction tangent to
the rigid wall. Then, at time τ = 0+, the detonation passes into a region of reduced
confinement, which deforms on the passage of the detonation, causing a rarefaction
to propagate into the explosive.

5.1. Shock polars
The explosive’s polar diagram for this case consists solely of a rarefaction fan, as dis-
played in figure 8, along which the flow is supersonic in the reference frame attached
to the intersection point of the detonation shock with the explosive/confinement
interface. Here we have taken the phase velocity of the reference point to be D0=DCJ ,
and have included the shock polars for the confinement materials Lexan plastic and
tungsten as representative of very-weak and very-strong confinement cases. The edge
streamline deflection for tungsten is but a few degrees, while that for Lexan is a little
more than 10 degrees. Although these shock polars give the P, Θ match point for
the case of a δ= 0 and D0=DCJ detonation, we get no further information about the
flow in the explosive.

5.2. UTSD δ = 0 simulations
In the limit that the explosive’s heat release is fully instantaneous, the reactive-source
term, Rate, in (3.40) vanishes and all other δ-scalings in (3.37)–(3.41) can be replaced
with a different scaling parameter, ε� 1, that is unrelated to the resolved heat release,
but simply related to a 2-D perturbation of arbitrary smallness from the 1-D, CJ-
detonation state. This reasoning is analogous to the ‘degree of overdrive’ scaling used
in Bdzil & Short (2017) for the CJ Mach-reflection problem. With

ũx = ũCJ + εũ(1)x + · · · , (5.1)

ũy = ε
3/2ũ(3/2)y + · · · (5.2)

and (3.37)–(3.40) applying with Rate= 0, δ→ ε and where (3.41) becomes

∂U 2
+

∂y∗
=−

∂V+
∂τ

, (5.3)
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FIGURE 8. The shock-polar diagram for a δ = 0, instantaneous-reaction detonation that
is travelling at speed D0 =DCJ , with its shock perpendicular to the undisturbed boundary
wall, ω= 90◦. Here the CJ-fan is the only component of the HE polar. Shock polars for
the inert materials Lexan plastic (a weak confiner) and tungsten (a strong confiner) are
also shown.

then we again get (3.39)–(3.40) as governing equations. Now, we use the magnitude
of the boundary streamline’s turning angle

tanΘe =

(
ũy

ũx

)
e

≈−

√
αε3/2

γ
Vbbc (5.4)

to set the magnitude of the smallness parameter, ε. Then, for a particular reference
value, say (Θe)r� 1 and (Vbbc)r =−1, we have

ε ≈

(
γ
√
α
(Θe)r

)2/3

(5.5)

as the scaling, which is exactly the scaling for transonic similarity (Anderson 1990).
Then, as we change the magnitude of Vbbc by a factor of five, we change tan(Θe)≈Θe
by the same factor. Therefore, if the tungsten match point in figure 8 is approximately
2◦ and the Lexan match point is approximately 10◦, we set Vbbc=−2 and Vbbc=−10
to roughly duplicate those two cases, respectively.

To study the transients that develop for these flows, we performed simulations of the
UTSD equations for the two cases: (i) Vbbc =−2 and (ii) Vbbc =−10. Since both the
instantaneous reaction detonation and the impulsively withdrawn boundary condition
are scale free, the flow will be self-similar until the disturbances generated by the
withdrawal of the boundary reach the reflection plane at the symmetry axis. So as in
Bdzil & Short (2017), we continue by solving (3.37)–(3.40) and (3.41), with Rate= 0,
using the strategy we have described, and simply observe that when written in terms
of the similarity variables

η1 =
x∗

τ
, η2 =

y∗

τ
, (5.6a,b)
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we get the following reduced equation as our governing equation:

(U − η1)Uη1,η1 − η2Uη1,η2 + (Uη1 − 1)Uη1 = 0, (5.7)

and get as our reduced shock condition

∂U 2
+

∂η2
= η2

∂V+
∂η2

. (5.8)

The mathematical form of (5.7), being a second-order PDE in two independent
variables, allows us to define regions of subsonic and supersonic flows, including
data domains of dependence, even though these flows are time dependent. The sonic
locus is given by

1
4η

2
2 + η1 − U = 0, (5.9)

with the flow being hyperbolic (supersonic), where
1
4η

2
2 + η1 − U > 0. (5.10)

We then use (5.9) to locate the sonic locus in regions where our time-dependent flows
remain self-similar.

The solution for the case Vbbc =−10, equation (2.5) parameters and for the scaled
times τ = 5, 15, 30 and 500, is displayed in figures 9 and 10. The flow remains
self-similar until the wavehead of the disturbance reaches the symmetry line, located
at y∗ = 110, at τ ≈ 30. We can separate the flow into subsonic and supersonic flow
regions for τ > 0 (the dashed curve, is the sonic locus, (5.9)). The two branches of
the sonic locus meet at the shock /edge-intersection corner. Data moving off of the
entire withdrawn bottom boundary initially dominate the post-detonation flow. An
expanding supersonic region, consisting of a rarefaction fan resting upon a constant
state, is seen to grow out from the shock/edge-intersection corner. A shock wave
sitting perpendicular to the lower boundary marks the rear of the fan, and separates
the fan from the smooth rarefaction region. Data in the fan region propagate rearward
along the characteristics of that supersonic flow and are deposited along the lower
boundary of the sonic locus. These fan-related data have a growing influence on
the flow in the subsonic region. This fan region expands rearwards, engulfing the
subsonic flow region that was established initially. It occupies the entire region near
the lower boundary at τ ≈ 30. Comparing the location of the intersection of the
subsonic/supersonic boundary with the x∗-axis at τ = 5 and τ = 15, we note perfect
scaling, with x∗/τ being constant, at the rear boundary of the supersonic region. The
flow in the subsonic region remains smooth. Eventually, a fully supersonic steady
state is reached, displayed in figures 9 and 10 as the τ = 500 snapshot. However,
the time scale to reach steadiness is long; changes in locations of contours of the
order of 0.5 % are observed near the lead shock between τ = 300 and τ = 400, but
not between τ = 400 and τ = 500. V(x∗, y∗ = 0, τ ) = −10 throughout the evolution,
except for small errors near x∗ = 0, y∗ = 0. The rarefaction fan deviates from a PM,
simple wave at τ = 500, as now the rarefaction reaches both the shock, x∗ = 0, and
the symmetry line, y∗ = 110. It is worth noting the two-tier evolution of the flow:
(i) an initial smooth subsonic flow which pushes out from along the entire bottom
boundary, which is then followed by (ii) a supersonic rarefaction fan, which rests
upon a constant state, that pushes out rearward from the shock/edge-intersection
corner. At very long times, the entire flow becomes steady and supersonic. However,
the time scale to reach steadiness is long.

Displayed in figure 11 is a plot of the U (a) and V (b) contours at τ = 30, for the
case where Vbbc = −2.0, the reaction is instantaneous and (2.5) parameters are used.
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FIGURE 9. The U contours at τ = 5, 15, 30 and 500 for the impulsive withdrawal
of the bottom boundary, with Vbbc = −10, for the case of a supported, instantaneous
reaction, CJ detonation using (2.5) parameters. The dashed curve is the sonic locus.
A supersonic flow is seen to develop near the shock/edge-intersection corner, that includes
a complex consisting of a rarefaction-fan region sitting upon a constant-state region. A
shock separates the left side of the fan/constant-state complex from the right side of the
smooth, subsonic rarefaction flow. With time, the supersonic region expands rearward. The
simulations used a resolution of dx∗ = dy∗ = 0.02, with all other numerical parameters as
given in Bdzil & Short (2017).

Although the expansion of the subsonic flow reaches the symmetry line at the same
time as for the case with Vbbc=−10.0, the rearward push of the supersonic rarefaction
fan and constant-state complex, occurs more slowly for this weaker rarefaction, owing
to the overall weakness of the rearward propagating nonlinear wave. Correspondingly,
the angle range of the fan is less and that of the constant state is greater. Further,
decreasing the magnitude of Vbbc, decreases the rate of rearward propagation of the
rarefaction fan.
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FIGURE 10. The V contours at τ = 5, 15, 30 and 500 for the impulsive withdrawal of the
bottom boundary, with Vbbc=−10, for the case of a supported, instantaneous reaction, CJ
detonation using (2.5) parameters. (see caption for figure 9).

This two-tier solution structure is observed for all values of Vbbc we have examined.
The broad subsonic release, moving in from the impulsive removal of the bottom
boundary, is a fully distinct flow from the focused, supersonic fan emanating from the
region of the shock/edge-intersection corner. We find that, although the shock polar of
figure 8 provides information about the flow at the shock/edge-intersection corner, it
does not speak to the complexity and details of the flow away from the corner, which
we have described.

For the case of a 1-D instantaneous reaction detonation, whose shock normal makes
an angle of ω= 90◦ with the normal to the undisturbed HE boundary, the detonation
shock is not disturbed by the HE /confiner interaction. The phase velocity of the
shock/edge-intersection point, starts and remains at D0=DCJ owing to the flow being
sonic there and everywhere along the shock, in the shock-attached reference frame.
In the next section, we will see that a feature similar to what is observed along the
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FIGURE 11. The U (a) and V (b) contours at τ = 30 for the impulsive withdrawal of the
bottom boundary, with Vbbc =−2, for the case of a supported, instantaneous reaction, CJ
detonation using (2.5) parameters. A shock separates the left side of the fan/constant-state
complex from the right side of the smooth, subsonic rarefaction flow. The dashed curve
is the sonic locus. The simulations used a resolution of dx∗ = dy∗ = 0.02, with all other
numerical parameters as given in Bdzil & Short (2017).

wall in figure 11 for an instantaneous reaction CJ-detonation, is also observed for a
SRHR detonation.

6. Loss of confinement: examples for a SRHR detonation with δ = 0.33

For a resolved reaction-zone SRHR 1-D detonation, the shock state is initially
subsonic at the shock/edge-intersection point. Thus, as the HE bottom boundary is
impulsively withdrawn for τ > 0, we expect the shock to instantly become perturbed.
As in the previous section, we use a shock-polar diagram for a SRHR detonation to
guide us as to what flows are possible for such a detonation.

The shock polar for the fully instantaneous reaction detonating HE, displayed in
figure 8, has only a rarefaction fan component. Thus, the interaction of the HE
with both high-impedance and low-impedance inert materials is similar, with only
the strength and angle range of their fans being different. The same picture was
observed in our numerical simulations for the UTSD equations for these cases. Now,
the shock polar for the SRHR model, which is displayed in figure 12, has a subsonic
shock branch (near the pressure axis) in addition to the supersonic rarefaction-fan
branch (here all in a reference frame moving with the shock/edge-intersection
point phase velocity, assumed to be, D0 = 7.7026 mm µs−1). The flow is sonic
where the HE shock and rarefaction branches meet. As n is decreased to n = 0,
then D0 = DCJ = 8.0 mm µs−1 and the shock branch increases both its maximum
amplitude and maximum Θ range, with the increase being proportional to δ. The
shock branch vanishes for n = 1, then the phase speed reaches its minimum value,
D0 = 7.5518 mm µs−1, for the case of figure 12, with δ = 0.33. The greater the Θ
range occupied by the SRHR shock branch (say for n = 0), then the lesser is the
Θ range of the rarefaction required to reach a given total shock/edge-intersection
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FIGURE 12. The shock-polar diagram for a SRHR detonation for δ = 0.33, with n =
0.67 and (3.4) yielding D0 = 7.7026 mm µs−1 at the edge, for (2.5) parameters. This
corresponds to the parameter A = 1 in (3.35), with (1 − n)CL = δ. Two inert material
confiners are shown, Lexan and tungsten. Now, the HE shock polar has two branches,
the shock branch sitting near the pressure axis and shown as a solid curve, and a
rarefaction-fan branch shown as the chain-dashed curve. The point where they connect,
Θ = 3.661◦ (displayed with a square) is the point of sonic flow for the HE for the given
value of D0. For these values of δ and n, now the tungsten polar crosses the subsonic
shock branch, while the Lexan polar has two crossings, one with the HE supersonic
rarefaction fan (the normal case) and a higher-pressure crossing with the HE shock branch
(the unusual case).

streamline deflection. Thus, the turning of streamlines in the detonation reaction zone
decreases the importance of the rarefaction fan for that purpose.

For D0 = 7.7026 mm µs−1, the tungsten shock polar now crosses the SRHR
shock-branch polar. The Lexan polar crosses both the HE rarefaction fan and
shock-branch polars. (The upper crossing of the Lexan polar with the SRHR
shock-branch polar occurs for a subsonic flow in both the HE and Lexan, and
will not be considered here. This solution requires a third, high-impedance material
positioned beyond the Lexan to support the flow.) The SRHR model introduces
additional scales into the flow: the reaction-zone length scale and δ. Now the phase
velocity, D0, of the shock/edge-intersection point depends on the HE’s charge size
and time in addition to the streamline deflection angle. All of this dependence carries
over to the shock polar. Nonetheless, we can still use the results in figure 12 to gain
some estimates of where the HE solution point might transition from the shock to
the rarefaction branch. With δ now prescribed, we use (5.4), (3.13) and (3.17), to
write

tanΘe =

(
ũy

ũx

)
e

≈−

√
α

γ
δ3/2Vbbc, (6.1)

tan (Θe)sonic ≈
δ
√

1− n
γ

, (6.2)
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and where
√

1− n is a function of the charge size and time. Then for a steady-state
wave, the transition from the upper, subsonic branch to the lower, supersonic branch
occurs at

(Vbbc)transition ≈−
1
√
α

(
√

1− n)CL

δ1/2
, (6.3)

which for the case of figure 12 yields

(Vbbc)transition ≈−
1
√
α
=−0.866, (6.4)

(Θe)sonic ≈ 3.62◦. (6.5)

The estimate given by (6.5) agrees well with the value, (Θe)sonic= 3.66◦, for the exact
HE polar sonic point in figure 12. We will use (6.2) and (6.3) as a guide later in this
paper for picking cases to study with our SRHR, UTSD simulations.

Next we use our SRHR, UTSD equation simulations to study the transients and
eventual steady-state solutions for cases that we expect to be fully unconfined, with
Vbbc =−2.0 and Vbbc =−4.0. We consider δ= 0.33 in a geometry with ( y∗)CL = 110.
This case will satisfy the constraint on

√
1− n that

√
1− n = Aδ1/2, with A = O(1),

discussed in § 3.

6.1. Transients during loss of confinement: δ = 0.33, with Vbbc =−2.0,−4.0

In our SRHR, UTSD simulations, we take k= 0.02 µs−1 and ν = 0.5 in the rate law,
(3.42), so as to have a reaction-zone length, given by the integral of (3.42),(

1− λ̄
)
= (1+ 2(1− ν)kx∗)1/(1−ν) (6.6)

of x∗rz = 50. Then, the distance to the centreline is approximately 3 ZND reaction-
zone lengths for our case δ = 0.33. We use (2.5) parameters in our simulations. The
numerical resolution is dx∗= dy∗= 0.02, unless otherwise stated, and the domain and
boundary conditions are given in figure 7. Here we also take the x∗-domain to be
−100 6 x∗ 6 0. The remaining numerical parameters are as in Bdzil & Short (2017).

6.1.1. Two-dimensional flow contours
We begin by displaying in figure 13 the results for δ = 0.33 and Vbbc = −2.0 at

τ = 30 and comparing them with the results displayed in figure 11 for the case of a
δ = 0, instantaneous reaction CJ-detonation at τ = 30. Even though the flow is time
dependent and everywhere hyperbolic for the results in figure 13, the SRHR case
shows many similarities with the δ = 0 case displayed in figure 11, where different
regions are distinctly subsonic and supersonic. The post-reaction zone, left-hand side
of each panel, supports a smooth, upwards propagating, predominantly y∗-direction
rarefaction coming off of the withdrawn bottom boundary, as in figure 11. On the
right-hand side, we see a singular fan growing out of and moving back from the
shock/edge-intersection point. As for the δ = 0, CJ-detonation examples, early in the
evolution a shock wave separates the left side of the fan/constant-state region from the
right side of the smooth rarefaction region. The wavehead speed for the smooth, post-
reaction zone, upwards propagating rarefaction displayed in figure 13 is nearly equal
to that observed for the same feature in figure 11. The energy release in the reaction
zone is seen to reduce both the strength and the reach of the singular, shock/edge-
intersection centred rarefaction fan. With the passage of time (see figure 14), this
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FIGURE 13. The U (a) and V (b) contours at τ = 30 for the SRHR model with (2.5)
parameters, δ = 0.33, k = 0.02 µs−1, ν = 0.5 and for an impulsively withdrawn bottom
boundary, with Vbbc =−2.0. The parameter δ here and ε in figure 11 play similar roles.
Although similar, the fan here is weaker. A weak shock separates the left side of the
fan/constant-state complex from the right side of the smooth, subsonic rarefaction flow.
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FIGURE 14. The steady-state contours U (a) and V (b), displayed at τ = 500, for the
problem described in figure 13. The dashed curve is the sonic locus.

singular feature is maintained, with its reach extending rearwards along a 45◦ line,
much like what is observed for the δ = 0 instantaneous reaction case displayed in
figure 9. Once the flow becomes steady (the flow displayed at τ = 500 in figure 14
is steady), we can write our UTSD equations, equations (3.39) and (3.40), as the
second-order PDE

∂Ξ

∂x∗
∂2Ξ

∂x∗2
+
∂2Ξ

∂y∗2
=Rate, (6.7)
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where Ξ is the velocity potential given earlier, with

U =
∂Ξ

∂x∗
, V =

∂Ξ

∂y∗
. (6.8a,b)

Now, U = 0 corresponds to the sonic curve in our shock-attached coordinate frame. It
separates the regions of subsonic flow, U > 0, from those of supersonic flow, U < 0.
Previously we defined the sonic parameter at the shock with (3.17), so we can write

c2
− (ũx)

2
− (ũy)

2
= γDCJ (ũx − ũCJ)+ · · · = δ

γD2
CJ

γ + 1
U + · · · (6.9)

This sonic locus is displayed in figure 14 as the dashed curve. It separates a smooth
subsonic flow in the near shock reaction-zone region from a supersonic flow that
carries the singular rarefaction fan growing out of the shock/edge-intersection corner.
A near-constant state is established near the bottom boundary which is similar to what
is observed at τ = 500 in figure 9.

We see that the competition between the rate of the energy-releasing reactions and
the energy-removing rarefaction sets the overall state of the flow. In the instantaneous
reaction case of figures 9 and 10, all of the explosive’s energy is available to
drive the detonation, being released instantly on the passage of the shock over the
explosive, and the detonation propagates at DCJ . Then the flow is exactly sonic at
the detonation shock, in the shock-attached reference frame. As shown in figures 9
and 10, the rarefaction generated by the withdrawal of the bottom boundary, grows
weaker as it approaches the detonation shock along the upper boundary. The sole
role of the rarefaction is to reduce the post-reaction-zone pressure, and it does not
influence the detonation state.

For the finite-rate reaction case, figures 13 and 14 show that the rarefaction enters
into the finite-length reaction zone, whose terminus is located at x∗ = −50, and
reduces U at the detonation shock. With the steady-state solution as displayed in
figure 14(a), the sonic locus can be defined in the shock-attached frame now moving
at the steady phase velocity, D0 < DCJ . As can be seen, the sonic locus (the dashed
curve in figure 14a) is now well interior to the reaction zone, and in fact enters into
the shock/edge-intersection corner. The flow is seen to support a singular fan in the
supersonic zone and a smooth flow in the subsonic zone in that corner. Equation (6.7),
the PDE describing the steady flow in those two regions, is of a different type: (i) a
hyperbolic, wave-supporting PDE in the supersonic region and (ii) an elliptic PDE in
the subsonic region supporting a fully, smooth flow. Increasing the withdrawal speed
of the bottom boundary to Vbbc = −4.0, shows both the strength and the backwards
reach of the singular, rarefaction fan to be greater. The subsonic region of the U
contours at τ = 500 for cases Vbbc = −2.0 and Vbbc = −4.0 are essentially identical
(see figures 14 and 15).

Next we examine the evolution of the detonation shock for the SRHR model. This
provides us with more quantitative information about this time-evolving flow. Since in
our shock-attached simulations x∗=0 corresponds to the shock, the numerical accuracy
of the shock state is comparable to that of the interior solution.

6.1.2. Evolution of the SRHR detonation shock
Even though the contour plots displayed in the previous subsection provide a good

global overview of these rarefaction induced reactive flows, they give little quantitative
information. By comparing snapshots of the time-evolving detonation shock locus, we
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FIGURE 15. The U (a) and V (b) contours at τ = 30 and τ = 500 for the SRHR model,
with (2.5) parameters, δ= 0.33, k= 0.02 µs−1, ν = 0.5 and for an impulsively withdrawn
boundary, with Vbbc=−4.0. The fan is stronger and grows more quickly than for the case
with Vbbc=−2.0, displayed in figures 13 and 14. At τ = 30, a shock separates the left side
of the fan/constant-state complex from the right side of the smooth, subsonic rarefaction
flow. At τ = 500, a near constant state is found along y∗ = 0.

have a convenient way of measuring some key metrics of the flow transients. For
example, we can determine key properties of U+ and V+ at the HE edge, follow
the progress of the rarefaction disturbance wavehead along the shock, determine the
evolving, local detonation phase velocity of the detonation and eventually determine
the properties of the steady-state flow.

We begin by examining the short-time response of a 1-D, steady-state, SRHR
detonation to a strong, impulsively applied rarefaction. As displayed at τ = 0.1 in
figure 16, high-resolution simulations for the case of an applied bottom-boundary
velocity Vbbc 6 −2 reveal that the shock-state variables (U 2

+
+ δαV2

+
) and U+

experience large, O(1) jumps near the confinement boundary.
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FIGURE 16. The shock-state variables (U2
+
+ δαV2

+
) and U+ versus y∗ at τ = 0.1 after

the bottom boundary is impulsively removed, with Vbbc 6 −2, are displayed in (a) and
(b), respectively. The SRHR model parameters are δ = 0.33, k = 0.02 µs−1, ν = 0.5 and
(2.5) parameters. Results are shown for three levels of numerical resolution: (i) solid (red),
dx∗ = 0.001; (ii) chain-dash (blue), dx∗ = 0.0005; and (iii) dashed (green), dx∗ = 0.00005.
(U2
+
+ δαV2

+
) is relatively insensitive to resolution, except at the wavehead at the right,

while U+ is sensitive to resolution near the explosive edge (y∗ = 0).

Rewriting the shock-state evolution, given by (3.41), using (3.10) and (3.12), we
have

δ3/2V+(y∗, τ )=−
1
√
α

∂ψ̃s

∂y
+ · · · , (6.10)

where with the shock locus as defined in (1.3)

ψs(y, t)=DCJt+ ψ̃s(y, t), (6.11)

and on introducing

ψ̃s(y, t)= δ
2DCJ

α
ψ∗s (y

∗, τ ), (6.12)

we have that

V+(y∗, τ )=−
(
∂ψ∗s

∂y∗

)
, (6.13)

which on substituting into (3.41), yields as the shock boundary condition

∂

∂y∗
(
(U+)2 + δα (V+)2

)
=

∂

∂y∗

(
∂ψ∗s

∂τ

)
. (6.14)

Integrating over y∗ across the jump, from the edge (y∗=0) to the 1-D state (y∗=0.24),
yields for the scaled phase velocity at the explosive’s edge(

∂ψ∗s

∂τ

)
y∗=0

=−1+
(
U 2
+
+ δαV2

+

)
y∗=0 (6.15)
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FIGURE 17. The V contours at τ = 0.01 (a) and τ = 0.1 (b) for the SRHR model with
(2.5) parameters, δ=0.33, k=0.02 µs−1, ν=0.5 and for an impulsively withdrawn bottom
boundary, with Vbbc = −4.0. These early-time snapshots show: (i) a nearly self-similar
flow, in the scaled variables (x∗/τ) and ( y∗/τ), (ii) a locally sonic flow at the shock/edge
intersection (the dashed curves represent the sonic loci, both for the leading edge of the
upward moving rarefaction and for the interior flow) and (iii) a jump in V+ at the edge
from 0 to −0.609 (contours for V =−0.59, − 0.6 and −0.61 are displayed).

and where the unscaled phase velocity is given as(
D0

DCJ

)
y∗=0

= 1− δ2
+ δ2

(
U 2
+
+ δαV2

+

)
y∗=0 . (6.16)

So, as (U 2
+
+ δαV2

+
)y∗=0 drops precipitously at the edge from its initial value of 1

to a small value, the phase velocity does likewise. This early-time value of (U 2
+
+

δαV2
+
)y∗=0 can be shown to depend weakly on numerical resolution (see figure 16a)

and on δ, (
U 2
+
+ δαV2

+

)
y∗=0 = 0.0234+ 0.4935 δ − 0.2128 δ2, (6.17)

which keeps the edge phase velocity at early times above its allowed minimum value
of (1 − δ2). Although the early-time detonation phase velocity depends on γ and δ,
it is independent of the reaction-rate constant (when of O(0.02 µs−1)) and of the
boundary velocity (when Vbbc 6−2).

The self-similar nature of the early-time flow in the vicinity of the shock/edge
intersection is evident in figure 17, where snapshots of the V contours, displayed
at τ = 0.01 and τ = 0.1, are seen to scale as (x∗/τ) and ( y∗/τ). As displayed in
figure 16, the phase velocity and flow jump at the edge, leaving a sonic flow there
(i.e. U+( y∗ = 0, τ ) = 0). With the role of the reaction rate muted at early times
and the flow being nearly self-similar, the jump in the phase velocity at the edge
remains constant. In some respects, this flow resembles the early-time snapshots of
the instantaneous reaction detonation displayed in figure 10, the exception being
the perturbation of the detonation shock here. Thus, we see self-similar solutions
at early times for both the instantaneous reaction and the SRHR detonation models,
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FIGURE 18. The shock state, U+ and V+ at τ = 10, 20, 30, 40, 50, 100, 200, 400 and 500
for the SRHR model with δ= 0.33, k= 0.02 µs−1, ν= 0.5, equation (2.5) parameters and
Vbbc =−4.0, for the problem domain −100 6 x∗ 6 0, 0 6 y∗ 6 110 displayed in figure 15.
As we argue later, the disturbance wavehead is located at y∗ = 2τ .

although different self-similar solutions. This early-time, self-similar phase velocity
is maintained until at later times, the explosive’s heat-release rate slowly works to
increase the phase velocity as τ increases (for τ > 10).

The detonation phase velocity depends on a weighted-quadratic sum, (U 2
+
+

δαV2
+
)y∗=0. Thus, any combination of U+ and V+ that gives the same sum gives the

same phase velocity. What figure 16(b) reveals is that, although (U+)y∗=0 precipitously
drops to near zero for τ > 0, this minimum value of (U+)y∗=0 is sensitive to the level
of numerical resolution. Since (U+)y∗=0 → 0, this sensitivity of (U+)y∗=0 = 0 to
resolution has little effect on (U 2

+
+ δαV2

+
)y∗=0. Given that (U+)y∗=0 = 0 corresponds

to a sonic point at the edge for a self-similar flow, then a sonic locus can be defined
for the flow near the shock/edge intersection for our early-time, time-dependent flow.
The significant observation about having (U+)y∗=0→ 0, is that this corresponds to the
minimum normal shock velocity, Dn, for the SRHR detonation, and thus the minimum
allowed pressure. Further, as displayed in figure 16, we observe that the wavehead
of the rarefaction moves at the expected speed for a wavehead moving along a 1-D
shock, putting the wavehead at y∗ = 2τ (see (6.22)).

Although, these early-time results track the strong lateral rarefaction into the
1-D, steady-state reaction-zone profile, the explosive’s heat-release rate does not
play any direct role in this process. However, with the passage of time, the
heat-release rate plays a significant role, as the next set of results show. Displayed
at τ = 10, 20, 30, 40, 50, 100, 200, 400 and 500 in figure 18 are snapshots of
U+ and V+ for the problem domain −100 6 x∗ 6 0, 0 6 y∗ 6 110. Two things about
the shock state are apparent: (i) U+( y∗ = 0, τ ) immediately jumps from U+ = 1 to
U+≈ 0, as we have discussed, and remains there while (ii) V+( y∗= 0, τ ) experiences
an early jump to a negative, O(1) value, after which it undergoes a slow evolution,
finally settling to the steady-state value, V+(y∗ = 0, τ→∞)=−

√
(1− n)CL/δα. Here√

(1− n)CL = U+(y∗ = 110, τ →∞), which for this case has
√
(1− n)CL = 0.583 (or

(n)CL = 0.660) at steady state and V+(y∗ = 0, τ→∞)=−
√
(1− n)CL/δα =−0.880.

Given the smallness of U+(y∗ = 0, τ ), the value of V+(y∗ = 0, τ → ∞) from
the shock condition, equation (3.41), is in excellent agreement with the long-time
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computed results for V+(y∗= 0, τ→∞) displayed in figure 18(b). Importantly, a self-
similar solution of (3.39), (3.40) and (3.41), with Rate= 0, returns U+(y∗ = 0, τ )≈ 0
(a sonic flow) and a value for V+(y∗ = 0, τ ) (here V+( y∗ = 0, τ = 0.1) = −0.609),
which sets the phase velocity and shock angle, for the short-time, edge-flow solution.
With the passage of time, the flow at the edge evolves such that U+(y∗ = 0, τ )
remains zero, while V+(y∗ = 0, τ ) changes to reflect the wave dynamics occurring
along the entire length of the shock, ending at its ultimate, steady-state value,
V+(y∗ = 0, τ→∞)=−

√
(1− n)CL/δα.

From (6.14), we get an alternate form for the shock condition:

∂ψ∗s

∂τ
=−1+ U 2

+
+ δα

(
∂ψ∗s

∂y∗

)2

+ · · · (6.18)

Since for the problems of this section, when the bottom boundary is impulsively
removed, we find that U+(y∗ = 0, τ ) = 0, then we are led from (6.18) to the edge
condition on the detonation shock that(

∂ψ∗s

∂τ

)
e

=−1+ δα
(
∂ψ∗s

∂y∗

)2

e

+ · · · , (6.19)

and where the phase velocity at the edge can be written as

(1− n)e = 1+
(
∂ψ∗s

∂τ

)
e

= δα

(
∂ψ∗s

∂y∗

)2

e

. (6.20)

Then, the result for a steady-state detonation given earlier in this section that V+(y∗=
0, τ →∞)=−

√
(1− n)CL/δα, is just a special case of the time-dependent result of

(6.20). Given that ((∂ψ∗s /∂y∗))2e begins at zero and then mostly increases with time, as
displayed in figure 18(b), then (n)e= 1 initially and decreases with time, from which
we have (

D0

DCJ

)2

e

= (1− δ2)+ δ2(1− n)e, (6.21)

where (n)e is fully time dependent. Even neglecting the fractional rate of convergence
of U+(y∗, τ ), with U+(y∗ = 0, τ ; dx∗) = O(0.1), then the contribution of U+(y∗ =
0, τ ; dx∗) to the result in (6.18) at the edge is small, being O(0.01). Displayed
in figure 19 are the transient phase velocities, measured both at the edge (solid
curve) and centreline (chain-dash curve) for the case δ = 0.33, Vbbc =−4.0 and (2.5)
parameters. As discussed, the phase velocity at the edge drops precipitously for τ > 0,
and then quickly begins a recovery, overshooting before relaxing to its steady-state
value. The velocity at the centreline only deviates from its 1-D, steady-state value
once the rarefaction reaches the centreline, then it drops and undershoots before
reaching its 2-D, steady-state value at approximately τ = 300.

Taken altogether, we see that, for Vbbc 6 −2.0, the flow at the shock/edge-
intersection point has U+(y∗ = 0, τ ) ≈ 0 for 0 < τ 6 500 (i.e. during the entire
transient event), as measured in the reference frame attached to that point. The
phase velocity at the edge initially drops via a self-similar process from its initial,
1-D value, after which it slowly increases, experiencing some oscillations, before
ultimately reaching its steady-state value. These behaviours are consistent with the
constraint of (1.6).
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FIGURE 19. The phase velocity, ∂ψ∗/∂τ =−n, along the edge (solid curve) and centreline
(chain-dash curve) versus τ for the SRHR model solved over the domain −100 6 x∗ 6 0,
0 6 y∗ 6 110 with (2.5) parameters, δ = 0.33, k = 0.02 µs−1, ν = 0.5 for the case of an
impulsively withdrawn bottom boundary, with Vbbc=−4.0. The flow remains sonic at the
edge in its local frame for the entire transient phase. At τ = 130 the growth of the phase
velocity at the edge is limited by the return to the edge of the reflection of the rarefaction
off of the axis.

Returning to figure 18, we note two things concerning the track of the wavehead
into the 1-D, steady-state detonation solution. First, the speed of the wavehead into
the 1-D detonation state follows the Whitham result (Whitham 1974), which for the
SRHR model is √(

c2 − (ux −DCJ)2
)

wh =DCJ

√
δ

α
, (6.22)

placing the wavehead at y∗ = 2τ in our scaled coordinates. This is what we observe
in all our simulations. Second, the signal at the wavehead is seen to decay with its
increasing progress into the undisturbed 1-D detonation state (more evident in V+
than in U+). The weakness of this wavehead, in what is a time-dependent, hyperbolic
PDE system, is one of the reasons why a parabolic detonation propagation model that
does not support a wavehead, like detonation shock dynamics, is able to describe the
propagation of detonation fronts (see figure 6 and Bdzil & Stewart (1986)).

6.1.3. More loss of confinement: δ = 0.33 with Vbbc =−2.0,−1.25,−1.1, −1.0
As displayed in figure 12, when the streamline deflection angle decreases, the shock

branch of the SRHR HE detonation shock polar becomes accessible. This translates
to smaller values of |Vbbc| through (6.1). Next, we step through some different values
of Vbbc, starting with Vbbc =−2.0, Vbbc =−1.25 and then jumping to Vbbc =−1.0, to
see how the growth of the shock/edge-intersection corner rarefaction fan is diminished
and then stopped as |Vbbc| is decreased. We end by examining the transitional case,
Vbbc =−1.1, in some detail.

The U and V contours for the case with Vbbc = −2.0 are displayed in figures 13
and 14. As for the instantaneous reaction, the CJ case shown in figure 11, one finds
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FIGURE 20. The U contours at τ = 30 and τ = 500 for the case of the SRHR model
with δ= 0.33, k= 0.02 µs−1, ν = 0.5, equation (2.5) parameters and Vbbc=−1.25 for the
domain −100 6 x∗ 6 0, 0 6 y∗ 6 110. Comparing the results here to those displayed in
figures 13 and 15 for Vbbc = −2.0 and Vbbc = −4.0 at τ = 30, respectively, the strength
and backward growth of the shock/edge-intersection centred fans are much reduced. The
flow in the supersonic region at τ = 500 (the sonic locus is dashed) is not dominated by
the fan, as it is in figures 14 and 15. The detonation heat release now even dominates
the region of supersonic flow.

both a rarefaction fan near the shock/edge-intersection corner and a smooth rarefaction
near the left-hand side of both figures. The fan region is shown to grow backwards at
a slower rate at τ = 30 in figure 13 than in figure 11. The spatially resolved energy
slows the growth of the fan region. However, as shown in figure 14, the fan eventually
extends completely to the left boundary. This competition between energy removal
by the fan and energy addition by the reaction is dominated in this case, by the fan.
As the magnitude of the wall speed is reduced, there comes a point where the HEs
resolved energy release will be dominant, as it is for a 1-D detonation. Reducing the
magnitude of |Vbbc| to get Vbbc=−1.25, figure 20 shows the growth of the fan to be
significantly retarded at τ = 30 compared with what is observed in figures 13 and 15.
Although the subsonic flow region in the τ = 500 U contour is nearly the same as
that in figures 14 and 15, the supersonic flow shows that the shock/edge-intersection
centred fan is all but absent, and the U contours there more resemble those in a 1-D
detonation reaction zone. The increasing role of the detonation heat release over the
rarefaction fan in setting the detonation state is now clear.

Further reducing the speed of withdrawal of the bottom boundary to Vbbc = −1.0,
finds that the role of the rarefaction fan is all but gone, and now the smooth
rarefaction off of the bottom boundary is the dominant energy withdrawal mechanism
competing with the HEs heat-release rate (see figure 21). The corner-centred
supersonic rarefaction fan is barely visible. For Vbbc = −4.0 and Vbbc = −2.0, the
strength of the rarefaction fan exceeds the conditions necessary to establish a subsonic
flow in the reaction zone. That is, the confinement is beyond a critical weakness and
cannot influence the flow (as in the case of Lexan confinement shown in figure 12).
For Vbbc =−1.0, the smooth rarefaction coming off of the bottom boundary directly
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FIGURE 21. The U contours at τ = 30 and τ = 500 for the case of the SRHR model with
δ= 0.33, k= 0.02 µs−1, ν= 0.5, equation (2.5) parameters and Vbbc=−1.0 for the domain
−1006 x∗6 0, 06 y∗6 110. The strength and reach of the shock/edge-intersection centred
fan appears to be insignificant (see the insets of the corner-centred fan regions). Now,
the sonic locus (shown as the dashed curve at τ = 500) intersects the bottom boundary;
although there is a barely visible supersonic region in the immediate vicinity of the corner
in the τ = 500 inset.

sets the conditions of the flow in a reaction zone dominated by subsonic flow at
τ = 500. Near the edge of the explosive, now the competition between the explosive’s
heat-release rate and the energy withdrawal by the smooth rarefaction is weighted in
favour of the explosive’s heat-release rate.

This switch in dominance between energy addition by the explosive’s heat release
and the energy withdrawal by the rarefaction is displayed in a plot of the steady-state
detonation (τ = 500) phase velocity (−n) versus Vbbc in figure 22. The region where
Vbbc<−1.25 shows a constant propagation velocity which results when the detonation
is fully unconfined.

The transition from a fully unconfined to a partially confined detonation occurs
between −1.25<Vbbc <−1.0. As our last contour plot of a steady-state flow that can
develop for the case δ=0.33, equation (2.5) parameters, k=0.02 µs−1 and ν=0.5 for
the domain −100 6 x∗ 6 0, 0 6 y∗ 6 110, we show in figure 23(b) steady contours at
τ = 750 for the slowly evolving flow when Vbbc=−1.1. Displayed in figure 23(a) are
the phase velocity histories at the edge and centreline. For this transitional case, the
phase velocities are only approaching steadiness at τ ≈ 500. We find an embedded
region of supersonic flow, supporting a rarefaction fan, within an otherwise smooth,
subsonic region of the reaction zone near the shock/edge-intersection corner. The flow
shown in figure 23(b) is steady. There the left edge of the small supersonic region
shown in the inset and sitting near the shock/edge-intersection corner is a shock wave.
The evolution to steady state for this case is slow, owing to the broad regions near
the lower boundary where the flow is nearly sonic (transonic). Flow structures of this
type have been observed in special circumstances of high-speed flow past blunt bodies
(Courant & Friedrichs 1948; von Mises 1958). Similar transition structures have been
observed for a fully resolved reaction-zone model (Chiquete et al. 2017).

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
28

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1028


886 A27-36 J. B. Bdzil, M. Short and C. Chiquete

10-1-2
vbbc

-3-4-5

0.1

0

-0.1

-0.2

-0.3
(d

¥
* /d

†)
 =

 -
n

-0.4

-0.5

-0.6

-0.7

FIGURE 22. The scaled, steady-state phase velocity, (−n), where (D0/DCJ)
2
= 1 − δ2

+

δ2(1− n), versus the bottom-boundary withdrawal speed, Vbbc, taken from the centreline at
τ = 500. The SRHR model with (2.5) parameters, δ= 0.33, k= 0.02 µs−1, ν= 0.5, for the
problem domain, −1006 x∗6 0, 06 y∗6 110. The horizontal plateau, where Vbbc 6−1.25,
corresponds to unconfined detonation.

In the next section, we examine the properties of the steady-state flows that develop.
There our attention will be directed at zones of influence and how information flows
from the boundaries to set the detonation state.

7. Zones of influence in steady-state detonation flows: examples for δ=0.33, Vbbc=

−4.0

Once the detonation flow becomes steady, equation (6.7),

∂Ξ

∂x∗
∂2Ξ

∂x∗2
+
∂2Ξ

∂y∗2
=Rate, (7.1)

where Ξ is the velocity potential, describes the flow. Regions where U = (∂Ξ/∂x∗)>0
are subsonic and where U = (∂Ξ/∂x∗) < 0 are supersonic, with U = (∂Ξ/∂x∗) = 0
being the sonic locus. There is extensive literature (going back to the 1950s) on the
required boundary data necessary to uniquely define solutions to this equation. This is
largely due to its being possible to transform (7.1) to a linear PDE, by interchanging
the independent and dependent variables, using the Hodograph transformation
(Courant & Friedrichs 1948). Here, we use that theory to set out the appropriate
set of boundary curves and data domains of dependence with which to uniquely
define our detonation flows.

In supersonic regions of the flow, our boundary condition discussion involves two
families of characteristics (

dx∗

dy∗

)
±

=±
√
−U , (7.2)

which represent the paths along which information flows from and to the boundaries.
This includes how information moves from the confinement boundary to the sonic
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FIGURE 23. The phase velocity, ∂ψ∗/∂τ =−n, along the edge (solid curve) and centreline
(chain-dash curve) versus τ (a) and the U contours at τ = 750 (b), for the SRHR model
with δ= 0.33, k= 0.02 µs−1, ν = 0.5, equation (2.5) parameters, for the domain −100 6
x∗6 0, 06 y∗6 110 and for an impulsively withdrawn bottom boundary, with Vbbc=−1.1.
In the transition from a fully unconfined detonation, with Vbbc = −1.25, and confined
detonation with Vbbc = −1.0, a mixed steady state develops near the corner that has
attributes of both unconfined and confined detonation. The flow displayed in (b) is steady
at τ = 750 and the dashed curves are sonic loci. The left boundary of the small supersonic
region, embedded in the shock/edge-intersection corner of the otherwise subsonic region,
and displayed in the inset, is a weak shock wave. We have seen the tent-shaped, inner
supersonic flow near the boundary in transient flows in both other SRHR cases and for
instantaneous reaction detonation. The structure displayed by the solid curve near τ = 150
in (a) is the result of an earlier tent region being over washed by the return to the edge
of the reflected wave off of the axis.

locus for an unconfined detonation. Then the steady-state SRHR model, (7.1), can be
written as a pair of ordinary differential equations along the paths given by (7.2)(

d
dy∗

)
−

(
−

2
3
(−U)3/2 + V

)
=Rate, (7.3)(

d
dy∗

)
+

(
2
3
(−U)3/2 + V

)
=Rate, (7.4)

and where (
d

dy∗

)
±

=±
√
−U

∂

∂x∗
+
∂

∂y∗
. (7.5)

In figure 15 we saw that for an unconfined detonation, a broad supersonic region
separated the bottom confinement boundary from the subsonic region of the reaction-
zone flow. Thus details on how information moves through this supersonic region to
the sonic locus is important to connect how the confinement boundary influences such
features as the shape and speed of the detonation shock, both of which are intimately
tied to the region of subsonic flow.
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We turn to the classic example for 2-D, steady flows of mixed hyperbolic
(supersonic) and elliptic (subsonic) types, the Tricomi equation (Guderley 1962), to
precisely formulate what boundary curves and data are appropriate for our detonation
problem to have the solution be uniquely defined. Those who have studied quasi-1-D
and quasi-steady 2-D detonation know of the central role of the sonic locus in setting
the detonation speed as part of the solution of the detonation-eigenvalue problem
(Fickett & Davis 1979, pp. 133–229). Although the sonic locus continues to divide
subsonic from supersonic flows, because of the complex shape of this locus (with
the sonic locus intersecting the shock), then since the characteristics can squarely
intersect the sonic locus, the information they carry will be deposited on that locus.
Here our discussion follows Guderley’s for a related problem, flow in a de Laval
nozzle containing a sharp corner (Guderley 1962). The reader is referred to figure 41
in Guderley (1962) for the discussion. Here we borrow points from his discussion
and apply them to our flow.

Displayed in figure 24 is the laboratory coordinate representation of the steady-state
solution of the SRHR detonation for δ = 0.33, k= 0.02 µs−1, ν = 0.5, equation (2.5)
parameters with Vbbc =−4.0 and solved on the domain −100 6 x∗ 6 0, 0 6 y∗ 6 110.
Following Guderley (1962), data must be prescribed on three curves to uniquely define
the steady-state solution: (i) along the detonation shock (the shock conditions), (ii)
along the centreline (the symmetry condition) and (iii) along a cross-characteristic
encircling the fan singularity, starting at the sonic locus and ending at the limiting
characteristic. The limiting characteristic (displayed as the chain-dashed curve) is the
characteristic emanating from the fan singularity that is just tangent to the sonic locus
(dashed curve) at the centreline. The data along the second family of characteristics,
the cross-characteristics, define the fan singularity. These data are carried back and
upwards by the first family of characteristics that sits to the right of the limiting
characteristic, and is squarely deposited onto the sonic locus.

The role of the shock and symmetry boundary conditions in defining the solution is
clear. Here we focus on the data for (− 2

3(−U)
3/2
+V) along the cross-characteristic, a

member of the second family of characteristics (curve 3 in figure 24). As we integrate
(7.3) through the supersonic region along the first family of characteristics, starting
at the cross-characteristic and ending at the sonic locus, then the magnitude of the
Rate along that characteristic paths increases (− 2

3(−U)
3/2
+ V), until we get to the

sonic locus where U = 0 and the accumulated value of V is deposited along the
sonic locus. In a similar fashion, data on ( 2

3(−U)
3/2
+ V) taken from along the sonic

locus are integrated with (7.4) along the paths of the second family of characteristics
towards the bottom boundary, decreasing ( 2

3(−U)
3/2
+ V) until the bottom boundary

is reached. Then with V known on that boundary, the value of U is deposited on
that boundary. So information from both the fan singularity and the supersonic region,
between the bottom boundary and the sonic locus (including information on the Rate),
is deposited on the sonic locus not only affecting the shape of the sonic locus but also
such quantities as the detonation phase velocity that are determined in the subsonic
zone.

The relative importance of this supersonic region to the flow in the subsonic region
is a function of the lateral dimension of the explosive charge size. The larger the
distance to the symmetry line (the wider the charge size), the less is the effect of
this supersonic region on the subsonic region, and on such quantities as the shock
shape and the detonation phase velocity.

From the above discussion, it should be clear that the characteristics that intersect
the sonic locus will be influenced by the flow in the region they traverse, including
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FIGURE 24. The problem domain for the steady-state SRHR model detonation solution,
displayed in laboratory coordinates. The problem parameters are those given in the caption
to figure 15. A unique solution is obtained given data along curve 1, the shock conditions,
along curve 2, the symmetry condition and along curve 3, a cross-characteristic encircling
the rarefaction fan in the supersonic region of the shock/edge-intersection corner. Also
shown are characteristics emanating from the rarefaction-fan singularity and the sonic
locus (dashed curve). The characteristic emanating from the fan singularity and just
tangent to the sonic locus at the centreline (shown as the chain-dashed curve) is called the
limiting characteristic. Only characteristics emanating from the fan singularity and to the
right of the limiting characteristic deposit information on the sonic locus, and as a result,
influence the subsonic zone. The data propagated along these characteristics can affect the
speed and shape of the detonation shock.

information about the Rate and EOS. Here we describe how information about the
boundary condition along the bottom of our domain, as represented by Vbbc, can
influence the solution in the subsonic region. This more quantitative discussion will
focus on the transition in detonation response, as displayed in figures 20 and 23, and
on why the rarefaction fan recedes towards the corner as we decrease the magnitude
of Vbbc.

Displayed in figure 25(a) is a blowup of the steady-state solution for the problem
described in the caption to figure 15. Shown are the members of the first family
of characteristics, shock, sonic locus and the limiting characteristic, all displayed in
shock-attached coordinates. Figure 25(b) shows the shock polar displayed in figure 12,
now with the inclusion of the ‘limiting characteristic point’. This point corresponds
to the pressure on the limiting characteristics in the corner. For the detonation to
propagate at the speed of a fully unconfined detonation, the inert material providing
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FIGURE 25. (a) Shows an expanded view (in shock-attached coordinates) of the
vicinity of the shock/edge-intersection corner for the characteristic diagram (in laboratory
coordinates) displayed in figure 24. The limiting characteristic, sonic locus and a number
of other characteristics are shown. The P= 25.66 GPa contour is tangent to the limiting
characteristic at the corner. (b) Shows the shock-polar diagram displayed in figure 12. The
point labelled as ‘limiting characteristic point’ corresponds to the pressure on the limiting
characteristic at the corner in (a). In order for the unconfined detonation displayed here
to remain unconfined, the shock polar for the inert material (the Lexan polar here) must
cross the SRHR fan below the ‘limiting characteristic point’.

confinement must cross the SRHR-fan polar below the ‘limiting characteristic point’.
In the event that the polar of the confining inert material crosses above this point, the
rarefaction fan would be narrowed, with the characteristics emanating from the fan
singularity not being able to reach the entirety of the sonic locus. This would disrupt
the steady, unconfined solution. The likely outcome of this disruption would be a flow
like that pictured in figure 23. As the confinement becomes even stronger, we would
then transition the shock-polar solution to the SRHR shock branch, as displayed for
the tungsten example in figure 12.

The quantitative discussion presented here allows us to understand the phase
velocity versus confinement (Vbbc) curve displayed in figure 22. In addition, the
limiting characteristic diagram (figures 24 and 25) provides some insights into why
the rarefaction fan shrinks into the corner when the magnitude of Vbbc is decreased.
Going on to consider the case for Vbbc = −1.0, that is displayed in figure 21, the
fan at the shock/edge-intersection corner is essentially absent, and the sonic locus,
which now intersects the bottom boundary, both sits well back from the shock and
is followed by what is a non-singular, distributed shallow ‘fan’. These characteristic
paths propagate both to the sonic locus and far back into the following flow (see
figure 26). The influence of the supersonic region behind the sonic locus and along the
wall on the subsonic region, is now much weaker than what is displayed in figure 25.
This is due to the shorter characteristic paths and how close the characteristic
paths that intersect the sonic locus stay to the sonic locus. The shorter distances
travelled along these characteristic paths lessens the ability of the reactivity there to
influence the subsonic region. Thus, as the strength of the confinement increases (this
corresponds to |Vbbc| decreasing), and we go from the case of figures 24 and 25 to

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

10
28

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2019.1028


Loss of detonation confinement 886 A27-41

-20-40-60

y*

x*
-80-100

100

80

60

40

20

Supersonic

Characteristics

† = 500 Subsonic

Sonic
locus

-22.5-23.0-23.5-24.0

0.5

1.0

1.5

FIGURE 26. For the confined detonation case of figure 21, here we show how the
characteristics that both end at the sonic locus and travel far back into the flow come
from a distributed, shallow ‘fan’ that starts where the bottom boundary meets the sonic
locus. An expanded view of the region behind the sonic locus is displayed in the inset.

that of figure 26, the influence of the supersonic region on the subsonic region, and
everything that the subsonic region determines, is diminished. Restated somewhat
differently, either as the confinement increases and the area of supersonic region that
can influence the subsonic region diminishes (as in going from figures 24 and 26) or
as the explosive charge size for an unconfined detonation increases, and the supersonic
flow near the corner is proportionately a smaller influence, then the classical picture
of the dominant role of the subsonic region becomes closer to correct. The important
role of the supersonic region in setting the sonic locus and boundary conditions
for the subsonic region, by depositing data along the sonic locus (as displayed in
figure 24), should not be under appreciated. The sharp break in the detonation speed
versus confinement curve, displayed in figure 22, is witness to the important role of
the singular rarefaction fan on confinement and how sharply the detonation speed
changes as the rarefaction fan gives way to a smooth release. Based on the above
discussion, the steady-state detonation displayed in figure 20(b) is unconfined, while
that displayed in figure 23(b) is a hybrid, partially confined case.

8. Summary
In this paper, which is a companion to Bdzil & Short (2017), we have considered

the problem of detonation confinement, for the case where a compliant inert
material along the detonating explosive’s boundary, is deflected by the passage
of the detonation. This leads to the propagation of a rarefaction into the explosive’s
detonation reaction zone. Here we have modelled that problem with a boundary
condition which prescribes the constant, velocity of withdrawal of the boundary,
once the detonation passes. This is accomplished by solving the problem in a
shock-attached reference frame, which makes applying such a boundary condition
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straightforward. Since the shock corresponds to one boundary and the deflected
interface to another, we enjoy the advantage of not having the numerical errors
associated with either shock-capturing or material interface algorithms.

With these advantages, we are able to study the singular flows that develop at
the point where the shock and boundary meet, resulting from the abrupt, scale-free
withdrawal of the boundary. To reduce some of the complexity of the fully resolved,
reaction-zone model, here we use the SRHR detonation model, which considers a
2-step, reaction-kinetics model, and focuses on how the last 10 % of the explosive’s
energy release influences a 2-D detonation flow. With this model, we can reduce the
problem to the unsteady, transonic, small-disturbance equation, with an added source
term to model the resolved detonation energy release. This nonlinear, 2-D model
captures the transonic flow which dominates unsupported detonation propagation. We
solved the modelling equations using the implicit, finite-difference solver described
in § 3.1: a solver related to the Murman–Cole solver (Murman & Cole 1971).

We studied both the time-dependent, full instantaneous reaction, CJ and the
partially resolved reaction, SRHR detonation models. There are two features that
the solutions to both models have in common: (i) a singular rarefaction fan, centred
at the shock/edge-intersection corner and (ii) a smooth rarefaction moving up from
the full length of the withdrawn bottom boundary. For the CJ detonation case, the
singular fan sits in a region of supersonic flow, while the smooth rarefaction is found
in a region of subsonic flow. In the competition between these two rarefactions, the
singular fan wins in the end, independent of the strength of the rarefaction. For
the SRHR detonation, there is another player: the spatially resolved energy release.
Now, the resolved energy release can suppress the fan, and we can end with a
steady, subsonic flow in the shock/edge-intersection corner when the rarefaction is
not of sufficient strength. This transition in steady-state SRHR detonation confinement
response occurs near Vbbc = −1.1, when (2.5) parameters are used. Solutions with
Vbbc 6 −1.25 yield unconfined fan solutions while solutions with Vbbc > −1.0 yield
confined smooth solutions. In the transition region, −1.0<Vbbc<−1.25, the solutions
are mixed, including both fan and smooth features along the confinement boundary
(see figure 23b).

When examined on a finer-grained scale, we have the following specific takeaways
for the detonation confinement problem:

(i) Our SRHR results are valid for
√
(1− n)CL=Aδ1/2, achieved in explosives of a

moderate half-width size (approximately 5), measured on the reaction-zone scale
(see figure 6).

(ii) The impulsive removal of the confinement boundary, causes the detonation
phase velocity at the edge to first experience an abrupt decrease. This early-time
evolution for a SRHR detonation is controlled by a reaction-rate-independent,
self-similar, initial-boundary value problem, for which the initial state is the
ZND shock state. Sonic loci can be defined for this early-time flow. At
later times, the phase velocity at the edge increases as the interaction of
the rarefaction with the explosive’s heat-release rate plays out.

(iii) For unconfined SRHR explosive charges, those with Vbbc 6 −1.25 for (2.5)
parameters, the flow is found to have U+( y∗ = 0, τ ) = 0, which could be
interpreted as sonic at the charge edge, for all τ > 0, as measured in a reference
frame moving along with the shock/edge-intersection point. This corresponds to
the minimum allowed normal detonation velocity, D2

n =D2
CJ(1− δ

2), and shock
pressure for a SRHR detonation.
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(iv) The last two points are consistent with the sonic constraint of (1.6) at the edge.
(v) As the rarefaction wavehead propagates through the reaction zone, its amplitude

where it intersects the shock decays to low levels.
(vi) As displayed in figures 19 and 23(a), the phase velocity takes a long time to

reach steadiness, with transients exhibiting undershoots and overshoots.
(vii) Once the full steady state is reached, we can more generally describe the

flow as subsonic and supersonic over the entire flow field. In the steady
limit, a sonic locus is established in the reaction zone, that intersects the
shock/edge-intersection corner for weak confinement and the confinement
boundary for strong confinement.

(viii) For a steady SRHR detonation, there exists in the supersonic region a limiting
characteristic which separates what is a fully unconfined detonation from a
partially confined detonation (see figure 25 and the surrounding discussion).

(ix) For a fully unconfined, steady-state detonation, a significant part of the
supersonic flow region near the confinement boundary can influence the solution
in the subsonic part of the reaction zone. The degree to which the subsonic
zone is influenced depends on the lateral dimension (width) of the explosive
charge, with wider charges being less affected.

(x) For a well-confined but still 2-D detonation, the trailing supersonic region of the
reaction zone only weakly affects the subsonic region of the reaction zone.

(xi) Taken together, the last two points support the notion discussed in Fickett &
Davis (1979, pp. 133–229) of an eigenvalue detonation for setting the speed of
a steady-detonation wave, when the lateral dimension of the detonation charge
is many reaction-zone lengths wide.

As a general remark, we expect results of our SRHR model study to provide
a qualitative picture of what to expect for the fully resolved, reaction-zone model
problem in many instances. Some results that we have been able to compare against,
such as those of Romick & Aslam (2017) and Chiquete et al. (2017), show such
agreement. The solutions of the SRHR, UTSD equations that we have shown here,
capture the transonic flow that controls the slow evolution of unsupported detonation
to a 2-D steady flow.

In closing, we note that the SRHR model differs from the more widely studied
small heat-release model in one significant respect: the form of the shock conditions.
Equation (8.1) is the shock condition (restricted to semi-infinite charges, see (6.18))
for the SRHR model, and (8.2) is the shock condition for the small heat-release model
(Faria, et al. 2015),

∂ψ∗s

∂τ
=−1+ U 2

+
+ δα

(
∂ψ∗s

∂y∗

)2

+ · · · , (8.1)

∂ψs

∂t
=
σ+ + σ0

2
+

(
∂ψs

∂y

)2

, (8.2)

where here σ is the flow variable in the small heat-release model which corresponds
to U in the SRHR model. The quadratic dependence of (8.1) on U limits the
shock speed, (∂ψ∗s /∂τ), to a minimum velocity, associated with the instantaneous
energy-release fraction of the SRHR detonation. The linear dependence of (8.2) on σ
provides no such downside limiting of the shock velocity for the small heat-release
model. In our earlier study of Mach reflection for a CJ-limit detonation (Bdzil &
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Short 2017), we found a smoothly curved Mach-reflection shock, independent of the
angle of attack of the incident detonation. That self-similar solution showed the flow
cleanly separated into a supersonic region ahead of the reflected shock and behind
the incident shock and a subsonic region bounded by the reflected shock, the curved
Mach shock and the bottom boundary. The problem of inert material, weak shock
reflection shares properties with this CJ-detonation problem, including the UTSD
equations, with (8.2) replacing (8.1) (Tesdall & Hunter 2002). Unlike the smooth
flow we see behind the Mach shock for the SRHR model, simulations for this inert
flow reveal small supersonic regions, attached to the Mach shock and embedded in
the mostly subsonic flow behind it (Hunter & Brio 2000). These regions contain weak
shocks followed by fans. Although controversy remains concerning these localized
shock-fan complexes, it is interesting that the CJ-limit, SRHR detonation does not
exhibit such structures (Bdzil & Short 2017).
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