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Abstract

The existence of Nash equilibrium points of game between n players has been established under
the conditions dual to known ones.

Subject classification (Amer. Math. Soc. (MOS) 1970); 90 D 10.

1. Introduction

To start with let us consider the following well-known theorem of Nash (1951):

THEOREM 1.1. Let K^K^ ...,Kn be «Ss2 nonempty compact convex sets each in a
real Hausdorff topological vector space. Letfvf2, ...,fnbe n real-valued continuous
functions defined on K = Ylf=i^i- Further suppose that for each j = 1,2, ...,n and
each fixed XjEYl^Kj = K^ffa^Xj) is a quasiconcave function ofxj on Kj (that is,
for each real number t and each fixed xt, the set {xjeKi:f(xi,xj)>t} is convex).
Then there exists a point ueK such that for allj= 1,2,..., n,

fj(u)=
VjeK,

where Uj is the natural projection ofu on R^.

In terms of a game between n players, Klt K2,...,Kn are n sets of mixed strategies
(convex hulls of pure strategies) corresponding to n players; fo is the pay-off
function of the ith player. The vector u is called a Nash equilibrium point in the
sense that, for each j= 1,2,...,«, f^u) = max^x^O^u , ) implies that each
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player's mixed strategy maximizes his pay-off if the strategies of other players
are kept fixed.

Theorem 1.1 in the above form is due to Fan (1966), Theorem 4 (see also Browder
(1968), Theorem 14). Browder (1968) has proved a similar result for an arbitrary
family of sets, each in a locally convex Hausdorff topological vector space, while
Ma (1969) extended Theorem 1.1 for an arbitrary family of sets each in a Hausdorff
topological vector space.

The purpose of this note is to investigate whether the condition in Theorem 1.1
that for each xiefcj = n<#/- î> fj(xpxj) is a quasiconcave function of xt on Kj
can be replaced by the type of the condition that, for each fixed XjeKj,fj(x},x})
is a quasiconcave function of Xj on &$. To this end we will use two recent results
of ours (Tarafdar and Husain (1978), Theorem 2.1 and Theorem 2.3). Here we
write these two results as lemmas.

LEMMA 1.1 (Theorem 1.1). Let KlyKz, ...,Kn be n^2 nonempty compact convex
sets, each in a real Hausdorff linear topological space, and let K= IIJLi^' Let
SVS2, ...,Snbe n subsets of K having the following properties.

(a) Let Rj= I l i ^ ^ o and let us denote the points of Rj by x}. For each
j = 1,2,. ..,n and for each fixed x^Kj, the set Sfa) = {x} e kf [x^x^eSj] is a
convex subset of '&j (maybe empty).

(b) For each j=l,2,...,n and for each fixed St} e Kj7 the set

Sj(xj) = {xjsKj:[x},xj]eSj}

is a nonempty open subset ofKt.
(c) For xe(x1,x2,...,xn)eK, let A(x) = njLi5/*/) where x} is as before the

natural projection ofx on £.}. Assume that \JxeKA(x) = K. Then n j - i -S^O.

LEMMA 1.2 (Theorem 2.3). Let {Kx: Ae/} be a family of nonempty compact
convex sets, each in a locally convex Hausdorff topological vector space. Let
K = II A el ̂ A and &\ = Il^A Kp Let is\ '• * e O be a corresponding indexed family
of closed subsets of K having the following properties.

(a) For each x = {x>}eK and A el, the sets SA(xx) = {yxeKk: LvA, *A] e S J is
nonempty, where xx is the natural projection ofx on JtA.

(b) For each x = {x^ eKand each Xel, the set 5A(x,0 = {yx e £A: [xA, yx] 6 S J
is a convex subset of XA (maybe empty).

(c) Let, for each x = {x^}, A(x)= H\ei
s\(^x)- Assume that \JxeKA(x) = K-

Then f)xei

REMARK. Lemma 1.1 is dual to Theorem 1 of Fan (1966) (see also Theorem 11
of Browder (1968) and Theorem 8 of Fan (1972)) in the sense that we have inter-
changed the positions of the words 'open' and 'convex' in (a) and (b). In the same
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way, Lemma 1.2 is dual to Theorem 2 of Fan (1966) (see also Theorem 13 of
Browder (1968)). To prove Lemmas 1.1 and 1.2 we have employed a duality
principle, namely, that if T: K^-2K is a multivalued mapping (K being any non-
empty set) then a point x0 e K is a fixed point of T (that is, x0 e T(x0)) if and only if
x0 is a fixed point of the mapping.

T-1: T(K)->2K where T(K) = \J T(x)
xeK

and r - 1 is defined by

2. Main Results

As an application of our Lemma 1.1 we prove the following two theorems on
the existence of Nash equilibrium point in many-person game.

THEOREM 2.1. Let KX,K2 Knben^2 nonempty compact convex sets each in a
real linear Hausdorjf topological space. Let fvf2, ...,fnbe n real-valued continuous
functions defined on K= II™=i^ satisfying the following conditions.

(i) For each j = 1,2,..., n and each yjSKj, the set

, Xj) > max flu,, *,) -1}

is a convex set in Rjfor each real number t>0. (Note that max,,i6^./}(«y,.fy) is
finite due to the continuity offj and compactness of K^

(ii) If for j = 1,2,..., n, f/jCy) is a real valued continuous function on Rj such that
for each j=\,2,...,n and fy e t^, the set {y} e Kt: f^yj, xt} > tj(Xj) is nonempty, then
\JxeKA(x) = K where x = (Xl,x2, ...,xn)andA(x) = U.f=1{yjeKj:f}{yi,xj}>ti(xj)}.

Then there exists a point ueK such that for j = 1,2,...,«,

//«)= max fly,, u,).
K

PROOF. Basically, we follow the argument of Browder (1968). For each x} in Rit

letgj(Xj) = ra&Xy^^fjiy^Xj). For eachy" = 1,|2, ...,n, g} is a real valued function of
Kj and is continuous, due to the uniform continuity of ft on the compact space K.
For each e>0, we define

He = {xeK:fj(x)>gi(xj)-e,j= 1,2,...,«},

in which ^ is as before the natural projection of x on fry The continuity of fj,gj
and the projection mapping on Rj for all j = 1,2,..., n, implies that He is a compact
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subset of K. Also He decreases as s decreases. Clearly each element« e HQ = n«>o ̂ «
satisfies the conclusion of Theorem 2.1. Since He is decreasing, H,, will be nonempty
if He is nonempty for each e > 0. We now prove that for each e > 0, He is nonempty.
Let e>0 be chosen arbitrarily and let Sy = {xe K: fj{Xj,Xj)> g^Xj)—s). By conti-
nuity of/}, it follows that for each XjeRj, the set

is an open set in Kj. Also by definition of gt, SyCfy) is nonempty. By condition (ii)
we see, by taking tt{x^ = gj{xj)—e, that {JX£K^(X)

 = %> where for each

X = ( X 1 , X 2 , . . . ,

i

By condition (i), for eachy and each yjSKj, the set

is a convex set in J^. Thus all the conditions of Lemma 1.1 are satisfied. Hence,
by Lemma 1.1, there is a point ve\JJ=1Sj. Clearly veHe.

DEFINITION 2.1. Let AT be a nonempty convex subset of a linear space E. A
real-valued function g defined on Kis said to be convex if g(Xx+fiy) «S hg(x)+ng(y)
for all x,yeK where 0< A, /*<1 and A+/* = 1.

DEFINITION 2.2. Let K be a convex subset of a linear topological space. A real-
valued function / defined on K is said to be strongly quasiconcave if, given any
continuous convex function g on K, the set {xeK:f{x)>g{x)} is either empty or a
convex set. It is trivial to see that a strongly quasiconcave function is quasiconcave.

EXAMPLES. Let E and F be two linear topological spaces with a continuous
bilinear pairing O of ExF into the reals. In the usual notation G>(x,w) = (x,w),
xeE, weF.

(i) For each fixed xeE, Q>(x,w) is strongly quasiconcave on any convex subset
ofF.

(ii) For each fixed weF, O(;c, w) is strongly quasiconcave on E or on any convex
subset of E.

(iii) For each fixed xeE, the function/(w) = <S>(x,w)—g(w) is strongly quasi-
concave on F where g is a real-valued convex function on F.
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THEOREM 2.2. Let KltK2,...,Knben^2 nonempty compact convex sets, each in a
real linear Hausdorff space. Let fvj"2,..., fn be n real-valued functions defined on
K= H*=1Kj satisfying the following conditions.

(a) For eachj = 1,2,...,«, the function gt defined on K} by

is convex.
(b) For eachj = 1,2, ...,n and for each y^Kj, the function f^, Xj) is a strongly

quasiconcave function ofx} on Ky
(c) The condition (ii) of Theorem 2.1 holds. Then there is a point ueKsuch that,

for eachj = 1,2, ...,«,//«) =

PROOF. Since for each real number /, the function gj{Xj)—t is convex by condition
(a) and continuous by the argument given in Theorem 2.1, condition (i) of
Theorem 2.1 holds by virtue of the condition (b), while condition (ii) of Theorem 2.1
is assumed in condition (c). Hence the theorem follows from Theorem 2.1.

The following theorem is dual to Theorem 15 of Browder (1968).

THEOREM 2.3. Let {Kx: Xel} be a family of nonempty compact convex sets each
in a locally convex linear Hausdorff topological space E. Let {/A: Xel} be a
correspondingly indexed family of continuous real valued functions on K= YlXeiKx

satisfying the following conditions:
(i) For each xx eK, consider the nonempty set

= {yxeKx:fx(yx,xj> max/A(«A,
K

and for each x = {xx}, put A(x) = YlXeIB(x). Assume that \JxeKA(x) = K.
(ii) For Xel, the function gx defined on £x by gx(xx) = m!aV)ieKxfA(yx,xx) is

convex.
(iii) For each Xel, and for each fixed yxeKx, the function fx(jx,xx) is a strongly

quasiconcave function ofxx on Rx.
Then there exists a point ueKsuch that for each Xel,fx(u) = iaaxyi[eKxfx(yx,ux)

PROOF. We consider for each Ae/the nonempty set

Sx = {ueK: fx(u)> max fx(y,
K

Since K is compact in the locally convex space II;UJ£A> the uniform continuity of
fx on K implies that the function £A(JCA) as defined above is continuous on j£A.
It then follows that Sx is a nonempty closed subset of K for each Xel. Now for
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each Ae/ and each xx in JtA,

SA(*A) = 0*AG*A:/A0'A.*A)>*A(*A» = {yxeKx: (yMeSJ

is nonempty by definition of gx. Also it is clear that

A(x) = U(x n
Xel Xel

Then by condition (i), \JxeKA(x) = K. Finally for each Ae/ and for each fixed
xAeATA, the set

is convex by conditions (ii) and (iii). Thus all the conditions of Lemma 1.2 are
satisfied. Hence there is a point ueKsuch that uef\XeISx, that is

JM6.EA

for each Ae/.
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