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A novel approach to studying strategic decisions with eye-tracking and

machine learning

Michal Krol∗ Magdalena Krol†

Abstract

We propose a novel method of using eye-tracking to study strategic decisions. The conventional approach is to hypothesize

what eye-patterns should be observed if a given model of decision-making was accurate, and then proceed to verify if this

occurs. When such hypothesis specification is difficult a priori, we propose instead to expose subjects to a variant of the

original strategic task that should induce processing it in a way consistent with the postulated model. It is then possible to use

machine learning pattern recognition techniques to check if the associated eye-patterns are similar to those recorded during

the original task. We illustrate the method using simple examples of 2x2 matching-pennies and coordination games with or

without feedback about the counterparts’ past moves. We discuss the strengths and limitations of the method in this context.
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1 Introduction

Recently, there has been growing interest in using the eye-

tracking method, already well established in psychology, to

study economic decision-making. The purpose is to gain

insights about behavior that would be unavailable based on

observed choice data alone. At the same time, in contrast

with more expensive and complex procedures, like fMRI,

eye-tracking makes it possible to test subjects under exactly

the same conditions as those that they encounter in standard

behavioral experiments.

To date, the prevalent approach has been to formulate mod-

els of the decision process, together with the corresponding

characteristic gaze patterns that should occur if each of the

alternative models was accurate. One can then select the

best model based on: a) the fit between the postulated and

observed gaze patterns; and b) the fit between the choices

predicted by the model for the observed gaze patterns and the

choices that actually occur. Such a potential use of process

tracing techniques in studying decisions has long been ac-

knowledged (Schulte-Mecklenbeck, Kühberger, & Ranyard,

2011).

For instance, Krajbich, Armel, and Rangel (2010) and

Krajbich and Rangel (2011) evaluate a number of alternative
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drift-diffusion models in the context of choosing between two

or between three food items, and report, among other things,

that: a) as predicted by the theory, eye-fixations immediately

prior to choice are relatively short; and b) some of the mod-

els, but not others, correctly predict that food items that were

looked at more often are also more likely to be selected. In a

similar context (but for a larger number of alternative choice

items), Reutskaja, Nagel, Camerer, and Rangel (2011) com-

pare an optimal costless search model, a satisficing search

model and a hybrid search model, while Arieli, Ben-Ami,

and Rubinstein (2011) consider choosing between lotteries.

Relatedly, Rubaltelli, Dickert, and Slovic (2012) report that

eye-movement patterns differ across two variants of the same

task, depending on whether subjects evaluate gambles on an

attractiveness scale or via specifying the monetary amount

one would pay to partake in or avoid the gamble. This

suggests that the impact of decision consequences (even hy-

pothetical ones) on the underlying decision process could

be reflected in the accompanying eye-movements — an idea

that will be important for this study. Interestingly, Glöck-

ner and Herbold (2011) report that eye-movement patterns

recorded while choosing between gambles “conflict with the

idea that necessary calculations are deliberately conducted

by computing weighted sums”, while Venkatraman, Payne,

and Huettel (2014) use eye-data to argue that people readily

switch between different decision strategies.1

These results are important, given our focus on a particular

type of decisions, namely those between different strategies,

each of which will yield payoffs contingent on the unknown

choice of another party. Because of this strategic uncertainty,

1Recent evidence also suggests that findings from eye-tracking studies on

valuation of risky prospects extend to choices between “ordinary” consumer

goods, see, e.g., Ashby, Walasek, and Glöckner (2015).
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such decisions may also be thought of as gambles. In this

context, eye-tracking becomes technically more challenging

to conduct on more than one computer terminal at the same

time. Hence, many studies use a related but less complex

mouse-tracking procedure, which entails hiding parts of the

decision screen containing various pieces of information be-

hind boxes that reveal their contents only as long as the

subject hovers the mouse cursor over them. This has some

limitations, such as the fact that subjects might be reluctant to

explore the screen to collect data when this requires more ef-

fort, and need not look at the data under the cursor at all. An

example of this approach is the work of Johnson, Camerer,

Sen, and Rymon (2002), who reject backward induction rea-

soning in a sequential bargaining game based on the fact

that subjects do not look at the information sufficiently far

ahead. A number of studies focus on subject heterogeneity.

For example, Costa-Gomes, Crawford, and Broseta (2001)

and Costa-Gomes and Crawford (2006) group subjects into

a priori-defined types, depending on their choices and the

accompanying mouse lookup pattern, and find that devi-

ations of observed choices from equilibrium can be largely

explained by subjects belonging to types based on various de-

grees of k-level thinking (see also Stewart, Gächter, Noguchi,

& Mullett, 2016). More recently, Brocas, Carrillo, Wang,

and Camerer (2014) and Polonio, Di Guida, and Coricelli

(2015) use cluster analysis to group subjects into types with-

out having to define them beforehand (thereby requiring less

model structure to be imposed a priori). Note that the latter

study is based on eye-tracking (rather than mouse-tracking),

and reports that the subjects’ types can remain stable over

time and across different strategic tasks. Our aim is similar,

in that we want the analysis to be as model-free as possible,

but with the focus on heterogeneity of cognitive processing

across different tasks, rather than between subjects.

More specifically, in many situations it may be difficult

to specify a priori what gaze patterns should accompany a

given decision rule. For instance, suppose we have subjects

playing a coordination game in which they each indepen-

dently choose one of two numbers shown on-screen, and

get rewarded only if they both choose the same number.

Suppose we want to ascertain how confident they are of

the counterpart’s expected choice, and consequently of their

own decision. As shown by Rutstrom and Wilcox (2009),

asking subjects to state their beliefs can interfere with game

play, while inferring the beliefs from counterparts’ past ob-

served actions requires data from several decision trials and

feedback from previous trials being available to subjects. In

contrast, eye-tracking is completely noninvasive (does not

interfere with the choice problem), and makes it possible

to analyze single decision trials in isolation, or scenarios in

which feedback on counterparts’ past actions is unavailable.

At the same time, however, it is difficult to specify a priori

what eye-movement patterns would be a marker of making

confident predictions of others’ choices, as opposed to being

unsure about them. In the former case, we might expect

subjects to look carefully at both options in turn in order to

compare them and form a well-grounded expectation. How-

ever, switching one’s gaze between the options could also be

a sign uncertainty and indecision (Patalano, Juhasz, & Dicke,

2009). Similarly, focusing on one of the options could mean

that one is sure the counterpart would choose it, or that, on

the contrary, one thinks that to predict the choice of the other

player is impossible and hence chooses the first option she

happens to look at.

Instead of making assumptions about how players’ deci-

sion strategies dictate the distribution of eye fixations be-

tween options, it would therefore be prudent to establish

this relationship empirically. For example, we might ask

subjects to play two additional variants of the original task

against a computer player: (1) where they are told that the

computer will “flip a coin” to select one of the numbers with

equal probability; and (2) where the computer will select

the number according to a pre-specified rule. Thus, in the

latter case subjects should be considerably more certain of

the counterpart’s choice than in the former case. We can

then check which of the two variants in question is more

similar to the original strategic task (playing against a hu-

man player) in terms of the accompanying eye-tracking data.

This should allow us to gain insight into decision-making

strategies involved in the original task.

Of course, as a prerequisite for this analysis, we need to

have a method of measuring similarity that would allow us

to distinguish between the two variants of the task with good

accuracy. In other words, given eye-data of a subject playing

a single trial of the game against the computer, we should be

able to predict whether the trial was an instance of variant

(1) or (2) of the original task.

This alone is a considerable challenge, much more so than

simply documenting the statistical differences between the

two variants of the task. An early encouraging result is the

work of Day (2010), who uses the Needleman-Wunsch algo-

rithm to predict which of a number of decision-strategies a

given sequence of eye-movements corresponds to, with ac-

curacy significantly above chance. However, this is done by

comparing the sequence to a hypothetical model sequence,

specified a priori for each strategy by the researcher. In this

sense, the study resembles the bulk of existing literature, as

described above, in theorizing in advance as to what gaze

patterns we should find in order for a given hypothesis to

be confirmed. Furthermore, the decision strategies them-

selves are imposed on the subjects, who are first extensively

trained and then explicitly instructed to use them. This puts

into question the ability of the method to identify the de-

cision strategy when people can choose it freely, and when

eye-movements actually accompanying each strategy are dif-

ferent from the hypothetical ones specified by the researcher

(as was in fact observed by the author).
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Indeed, Greene, Liu, and Wolfe (2012) reported a neg-

ative result, suggesting that it is impossible to identify the

observer’s task by comparing the accompanying eye move-

ments with those of other subjects pursuing each different

type of task. However, Borji and Itti (2014) showed that ap-

plying non-parametric machine learning classification tech-

niques can change this state of affairs. In particular, sub-

jects’ gaze patterns were recorded while performing one of a

number of image-viewing tasks (like estimating the ages of

people shown in the picture or their material circumstances).

In the end, the classification algorithm was able to guess

which task was performed based on eye-data with an accu-

racy significantly above chance.

In this paper, we extend this approach, for the first time,

to economic and particularly strategic decisions. Further-

more, we show that it can be used to analyze tasks that are

visually similar, but where the underlying decision strategy

is unknown, in order to gain meaningful insights into the

impact of factors such as the game’s payoff structure or the

availability of feedback on the players’ decision process.

More specifically, our demonstration of the proposed

method using simple 2x2 games proceeds as follows. De-

pending on the experimental condition, we ask each subject

to play either a coordination game or a matching pennies

game a number of times. Initially, the subject plays against a

computer player, who behaves according to variant (1) above

in some trials, and otherwise according to variant (2), where

the subject is always told which scenario occurs in a given

trial. Next, the subject plays the same game against another

human player, where (depending on the second experimental

condition) feedback about the counterpart’s past decisions is

either available or not.

To analyze the process tracing data, we use a neural-

network classification algorithm with reaction time, pupil

dilation and gaze dispersion as inputs. In other words, we

refrain from using more complex identifiers, such as the

various similarity or distance measures between scanpath

sequences (Cristino, Mathôt, Theeuwes, & Gilchrist, 2010;

Dewhurst et al., 2012), or scanpath representation matri-

ces (Hayes, Petrov, & Sederberg, 2011). This is because,

with only two numbers required to convey all information

about the game (and hence only two areas of interest), we

considered the complete scanpath sequence information su-

perfluous. At the same time, we conjectured that the main

problem would be that different people might use different

viewing strategies to approach the same variant of the task.

Such a tendency would result in considerable noise and pos-

sibly non-linear relationships between the variables. This

motivated our use of the machine-learning neural network

technique.

We find that we are able to predict, with cross-validated

accuracy significantly above chance, whether eye-data from

a given trial played against the computer corresponds to the

latter being known to behave according to variant (1) or (2)

of the task. In addition, the accuracy rate is slightly, but

significantly higher than when using the canonical logistic

regression model instead of a neural network. This demon-

strates that eye-tracking, combined with machine-learning,

can be used to identify the information that players have

about the counterparts’ play in strategic games.

We therefore proceed to use the trained neural network al-

gorithm to investigate unknown decision-processes involved

in playing against a human player, and investigate how these

are influenced by the experimental conditions. As might

be expected, we find that the availability of feedback results

in more trials being classified as instances of variant (2) of

play against the computer (where the behavior of the lat-

ter is fully predictable). More surprisingly, the effect of a

more competitive payoff structure is similar. Specifically,

when playing the matching-pennies game, compared with

the coordination game, subjects’ eye-movements are more

similar to those observed when playing a predictable com-

puter player. This holds despite subjects being incentivized

to hide their mode of play from the rival in the matching-

pennies game, and to make it transparent and predictable in

the coordination game.

To further illustrate the strengths and limitations of the

proposed method, we conclude by discussing the implica-

tions of the results of our demonstration for existing the-

ories, particularly the interpretation of the mixed-strategy

Nash Equilibrium concept, and existing research on mixed-

strategy play by “amateur” subjects in the lab vs. “profes-

sional” subjects in the field (Wooders, 2010; Levitt, List, &

Reiley, 2010).

2 Method

2.1 Subjects

The experiment was conducted at the University of Social

Sciences and Humanities in Wroclaw (SWPS), Poland. 96

subjects were recruited from the local population of under-

graduate and postgraduate students (mean age = 23.66, SD

= 6.7, 51 females). Subjects did not previously take part in

any Economics or related courses, nor in any experiments

on strategic interactions. The data of four subjects who were

not able to successfully undergo the eye-tracking calibration

procedure (see Section 2.3) was removed from the analysis,

leaving 92 subjects.

Every point scored in the study was converted to 0.50 PLN

(local currency, equivalent to 13 US cents). The experiment

took around 30 minutes and the average payoff was 29.67

PLN (7.55 USD). This was in line with the rewards typically

offered to subjects in similar studies in Poland.
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Figure 1: The visual arrangement of elements on the

screen, the same across all tasks (only elements in black

were visible to subjects).

2.2 Stimuli and Design

The experiment adapted the fixed-pair protocol (subjects ran-

domly matched into pairs and interacting only with the other

subject from the same pair). This was first used in the classic

study by (O’Neill, 1987), and subsequently by most related

experimental studies mentioned in the previous section. The

tasks were presented in visual form with instructions com-

municated in words (both verbally and on-screen), rather

than as a matrix. In addition, the procedure was adapted to

enable the use of eye-tracking.

2.2.1 Experimental Tasks

Each subject attempted three different tasks a number of

times, where the visual arrangement of the elements on the

screen was simple and identical for all tasks. This was to

ensure that any between-task variation in eye-activity could

not be attributed to differences in visual appearance, and

to eliminate any potential pupil foreshortening error (Hayes

& Petrov, 2016). In particular, as illustrated in Figure 1,

subjects were shown two two-digit integers, displayed in

two of four possible square fields. The fields in which the

numbers were shown, as well as the numbers themselves,

changed randomly in each round. This made it impossible

for subjects to memorize the exact visual structure of the

tasks, and thus inducing them to constantly explore the screen

(which provided us with the required eye-data). Throughout

the whole study, divided into Stage One and Stage Two,

subjects were asked to select one of the two numbers, based

on varying rules and criteria.

Stage One: playing against a computer player. In the

first of two stages of the study, we presented every subject

with 40 rounds of play against two types of a computer player

(20 rounds for each type, in random order, where subjects

were always told before the trial which type of computer

player they would face).

Unpredictable computer player. Subjects were told that

the computer would randomly select one of the numbers with

equal probability. They were told that choosing the same

number as the computer would earn two points. — every

point scored in the experiment was converted to a monetary

payoff at a known fixed rate — but choosing a different

number would earn zero points. A subtle exception to this

rule occurred if a subject was assigned to play the matching-

pennies game at Stage Two of the study, and rewarded for

choosing a different number than the other human player

(see below). In that case, the subject was also told to select

a different number than the computer player at Stage One.

Predictable computer player. Subjects were told that

the computer would pick the number closer to X , where X

was an integer larger than one of the two numbers subject to

choice but smaller than the other (and closer to one of the two

numbers). For example, given a choice between 12 or 31 and

X = 14, the computer would select 12. The value of X varied

between rounds and was disclosed just before displaying the

choice screen presented in Figure 1. Subjects were told they

would receive one point if they select the same number as

the computer, and zero points otherwise. Once again, the

exception was that subjects assigned to play the matching-

pennies game at Stage Two of the study, and rewarded for

choosing a different number than the other human player,

were also told to select a different number than the computer

player at Stage One.

Stage Two: playing against another human player.

Upon completion of Stage One, each subject was then asked

to repeatedly play one of two strategic games with the subject

she was paired with for a total of 20 rounds. In each round,

both subjects would now see the same pair of two distinct

two-digit numbers, placed in the same two slots/fields for

both subjects (i.e., they would both face exactly the same

choice, of which they were made aware).

The numbers and their positions would continue to ran-

domly change between rounds, while ensuring that no num-

ber that has already appeared in Stage One appears during

Stage Two, and that no number appears more than once. The

two alternative strategic games that we considered were as

follows:

Coordination Game. The subject was told that she and

the counterpart would each receive two points if they inde-

pendently select the same number. Otherwise, they would

each receive zero points.

Matching Pennies Game. One of the subjects was told

that she would receive two points if she independently se-

lects the same number as the counterpart (and zero points

otherwise). The subject was also told that the counterpart

has an opposite objective and would receive two points if

she independently selects a different number than the rival

player (and zero points otherwise). In accordance with this,

the other of the two subjects was told the exact opposite.

Our choice of games was dictated partly by the fact that

they were both very simple to present visually, facilitating
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our eye-tracking analysis. In addition, the matching pen-

nies game is a classic example of a competitive constant-

sum game in the sense of (Schelling, 1960), one in which

it is essential to conceal one’s actions from the counter-

part. In contrast, in the coordination game it is essential

to be as predictable as possible in order to coordinate on

the mutually-beneficial outcome. Note that we require each

pair of subjects to play only one of the two games, and do

not alternate the roles in matching-pennies, so as to make it

easier to learn the game, the strategic properties of which re-

main unchanged between rounds ((Grimm & Mengel, 2012)

showed that taking turns to play strategically distinct games

impedes convergence to the equilibrium over time).

The other feature of the Stage Two strategic task that we

manipulate is the availability of information about the coun-

terparts’ previous choices. Specifically, we consider two

possibilities (experimental factor levels), with every pair of

subjects playing according to one of the two throughout the

entire Stage Two:

No Feedback. Every subject is told that she would only

learn the counterpart’s choices (and her own and the other

player’s payoffs) upon completion of the study.

Full Feedback. Each subject is told that, in every trial of

the task, after she and the other player make their choices,

they will each learn which number was selected by the coun-

terpart, as well as the resulting payoffs that each of them

receives (this information was displayed after the conclusion

of each trial but before starting the next one and displaying

the corresponding choice screen).

2.2.2 Experimental Conditions

There were two between-group factors affecting Stage Two of

the experiment: the type of strategic game and the presence

of feedback, giving rise to a total of four experimental con-

ditions: Coordination × No Feedback, Coordination × Full

Feedback, Matching-Pennies × No Feedback and Matching-

Pennies × Full Feedback. We assign twelve pairs of subjects

to each of the four conditions, testing a total of 96 subjects of

which 4 were later removed from data analysis due to poor

calibration.

2.3 Procedure

Eye-tracking Setup. The experiments were computerized

— our stimulus presentation software was programmed in

C# using Microsoft Visual Studio Express 2015. Each of

the paired subjects was seated at a separate computer ter-

minal and both were asked not to communicate with each

other. One of the computer terminals had attached under-

neath the screen a RED250mobile eye-tracking device, the

other a RED-m device (both manufactured by SensoMotoric

Instruments and set to 60Hz frequency). Immediately prior

to the commencement of the study we conducted a standard

five-point semi-automatic calibration and validation proce-

dure. The average deviation was below 0.5◦ for 92 subjects,

the other 4 subjects’ data was removed from the analysis.

Choice protocol. We considered it essential to avoid ask-

ing subjects to use keyboard to make their choices. This

would result in taking eyes off the screen, potentially even

for the entire duration of the task (when playing an unpre-

dictable computer player subjects could simply press one of

the two choice keys at random without looking at the screen).

Using the computer mouse instead would similarly result in

a distortion of the recorded eye-data, since some of it would

be an artefact of subjects seeking out and then following the

cursor with their gaze.

In order to address these issues, we ask subjects to first

decide which number they wish to select, then press any

keyboard key (which they can do without taking eyes off the

screen), and finally to look at their number of choice. The

eye-tracking device would detect this instantly, but to prevent

choices being made accidentally, the subject had to hold her

gaze on the chosen number for a further two seconds before

the choice was finalized. This kind of eye-control is widely

used in “augmentative and alternative communication” (to

enable people with disabilities to navigate their computer

with their eyes), and is adapted here for our research pur-

poses. Subjects found the protocol straightforward and intu-

itive, and had no difficulty using it.

2.4 Data Analysis

2.4.1 Pre-processing the eye-tracking data

For every trial/choice made by every subject, a total of

92 × (40 + 20) trials, we gather the eye-tracking data corre-

sponding to the time period starting with showing the choice

screen (Fig. 1), and ending with the subject finalizing her

choice. For each trial, we then calculate and record the

values of the following three variables.

Reaction time. This we calculate as the difference (in mil-

liseconds) between the time of the subject pressing a key

to signal the readiness to submit her choice (by looking at

the chosen number), and the time of the choice screen being

displayed.

Gaze dispersion. This we define and compute as the pro-

portion of the total time of the trial which the subject spent

looking at the square field (as in Fig. 1) containing the num-

ber she did NOT subsequently choose. Note that in this case

we include the time after the key has been pressed, because

it takes a further two seconds since pressing it to finalize

the choice (recall Section 2.3). The decision on whether to

use data until pressing the key or until finalizing the choice
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is not important for the measurement of reaction times, be-

cause the latter option simply adds a constant to each value.

However, considering the total duration of the trial for the

measurement of the other two variables slightly increases

the accuracy of distinguishing between the Stage One tasks,

while having no effect on the sign and significance of the

differences between the four experimental conditions.

Pupil deviation. Pupil dilation can serve as a measure of

both cognitive workload and emotional response (see (Wang,

2011) for a review of the related literature). However, pupil-

lary responses have so far rarely been used to study eco-

nomic decisions, although there are a few notable excep-

tions (Wang, Spezio, & Camerer, 2010; Glöckner, Fiedler,

Hochman, Ayal, & Hilbig, 2012; Fiedler, Glöckner, & Nick-

lisch, 2012; Franco-Watkins & Johnson, 2011). A signif-

icant difficulty associated with this kind of analysis is that

pupil dilation varies periodically in response to changes in

the intensity of light that falls on the retinal ganglion cells

of the eye, creating undesirable noise in the signal. We

solve this issue using the procedure introduced in (Marshall,

2007). Specifically, we conduct a discrete wavelet transform

of the pupil dilation (measured in mm) time series using a

Daubechies wavelet. The coefficient outputs of the wavelet

decomposition are subsequently submitted to a unit thresh-

old to remove noise. The remaining high frequency details

are then extracted from the convolution and inverse wavelet

transform used to construct a residual time series. This gives

the sudden unexpected changes (deviations) in pupil dilation

that cannot be explained by adjustments to changes in lumi-

nation, and are therefore indicative of cognitive or emotional

activity. We record the maximum value of the residual dur-

ing each trial, again including the time after pressing the

key.

2.4.2 Classifying individual Stage One trials

We investigate if it is possible to predict, based on the values

of reaction time, gaze dispersion and pupil deviation corre-

sponding to an individual trial, whether that single trial is of

“predictable” or “unpredictable” type.

To this end, we collect each subject’s data correspond-

ing to the 40 instances of Stage One trials. Of these, we

drop the (chronologically) first 5 instances of both the pre-

dictable and unpredictable type, because the subjects need

to learn the general structure of the problem at hand before

the data becomes representative of the underlying cognitive

processes.

We then conduct within-subject standardization of the re-

maining data (using the mean and standard deviation of each

subject’s remaining 30 trials). This removes between-subject

differences not related to the specific task types. As a re-

sult, it becomes feasible to train and validate a classification

model based on data from all 92 subjects, instead of having
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Figure 2: The structure of the neural network used in the

study.

92 individual models. We find the former preferable, as it

will allow us to extract the overall features of the entire tested

population, as well as providing the classification model with

more training and validation data.

Training the neural-network classifier. We analyze the

data using a neural network classifier with one input layer of

three nodes (one for each variable), one hidden layer of seven

nodes and one output layer of two nodes (one for each class:

predictable vs. unpredictable). The structure of the resulting

“multi-layered perceptron” is illustrated in Figure 2. Using a

single hidden layer is standard practice and the most common

neural network architecture across various fields of research;

it has been demonstrated that any continuous function can

be represented by a neural network that has only one hidden

layer with exactly 2n + 1 nodes, where n is the number of

input nodes (see Stathakis, 2009 for more detail). We use a

rectified linear hidden layer activation function instead of the

logistic sigmoid function in order to improve training time

and performance of the network (Nair & Hinton, 2010).

In addition, to prevent overfitting and allow the model to

generalize to the Stage Two strategic tasks in rounds 41–60,

we conduct K-fold repeated cross-validation with R = 5 runs

and K = 2 folds in the following manner.

First, we randomly split the data (30 × 92 trials) in half,

the first of these K = 2 subsamples used to train the neural

network, and the second one used for testing. In addition, a

fifth of the training data is set aside for validation purposes.

In the process of training, each case in the training data is
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presented to the model, and the weights of the neural network

are adjusted to fit the (known) true classes of the training

cases (predictable vs. unpredictable). Once all cases have

been presented, the average error between the true classes

and the ones predicted by the network is calculated for the

training and validation data. The entire process is repeated

until the validation error starts to increase (despite continuing

to decrease for the training data), indicating that overfitting

begins to occur. Note that we use L2 regularization, which

is a technique that reduces overfitting by adding a fraction of

the sum of the squared weights to the error term.

After that, the accuracy of the trained neural network is

evaluated on previously unseen testing data (the other of the

two subsamples). More specifically, we compute the fraction

of trials in the testing data that were correctly classified as

predictable or unpredictable by the trained network.

To complete the cross-validation, we repeat the whole

procedure, but this time use the first of the two subsamples

for testing and the second one for training and validation. In

addition, we re-run the entire cross validation R = 5 times,

each time randomly re-partitioning the data into the K = 2

subsamples.

Evaluating model performance. We report the overall

average cross-validated accuracy of the classification algo-

rithm. We evaluate it both against the chance level and

against the accuracy achieved by the canonical logistic re-

gression model with the same independent variables and

subject to an identical cross-validation process (including an

identical partitioning of the data). We use the 5-by-2 re-

peated cross-validation test (Dietterich, 1998) to assess the

statistical significance of the latter comparison.

2.4.3 Classifying aggregated Stage One trials

We also wish to explore the possibility that aggregating data

over time may reduce noise and improve accuracy. To this

end, we proceed in the same way as described above, except

that instead of treating each subject’s 30 trials, 15 for each

kind of task, as 30 separate data points, we take the average

values of reaction time, gaze dispersion and pupil deviation

over the 15 trials of each type, turning them into a single,

averaged, data point. Thus, we obtain a pair of data points for

each subject: one representing the subject’s average profile

during the predictable task, the other corresponding to the

unpredictable task.

Using the resulting, reduced dataset of 92 × 2 cases, we

carry out the same K-fold cross validation procedure (of the

same neural network model) that was described and con-

ducted for single-trial classification above. Once again, we

report the overall average cross-validated accuracy of clas-

sification, comparing it against the chance level and against

the accuracy of the logistic regression model.

2.4.4 Analyzing the Stage Two strategic tasks

For each of the 92 subjects we proceed as follows. We collect

the subject’s data (reaction time, gaze dispersion and pupil

deviation) corresponding to the first 40 trials of the study,

drop the first 5 instances of both the predictable and unpre-

dictable tasks, and perform within-subject standardization.

In case of multi-trial classification, each subject’s data for

each type of task is additionally averaged. Thus, for both

single- and multi-trial classification we use the same data as

in Section 2.4.2.

The difference is that we now use the entire Stage One

data (rather than just one fold amounting to half of it) for

the purpose of training and validation of the neural network.

This is to maximize the accuracy of the trained model when

dealing with the unseen Stage Two data.

As with both Stage One tasks, the first 5 trials of the Stage

Two strategic task are dropped, and the rest of the data stan-

dardized using the same mean and standard deviation as the

training and validation data. In case of the multi-trial clas-

sifier, the data from the remaining 15 trials of the Stage Two

task is averaged to constitute a single data point for each sub-

ject. The trained neural network then predicts whether each

data point in the testing data (trials 46− 60) is an instance of

the predictable or unpredictable class.2 Specifically, for each

subject we compute the overall average proportion of Stage

Two task data points classified as predictable rather than un-

predictable. We will refer to this proportion as “similarity

to predictable task”. Note that, in the Coordination × Full

Feedback and Matching-Pennies×Full Feedback conditions,

we further average the proportions for each pair of matched

subjects. This is because, playing against each other, each

pair of subjects then constitutes an independent observation

for the purpose of statistical analysis.

We compare the values of similarity to predictable task

between the conditions, using non-parametric two-tailed

Mann-Whitney tests to assess significance, and report the

test statistic and p-value for each comparison. We do this

separately for each of the two classifiers (single- and multi-

trial).

3 Results

3.1 Stage One

3.1.1 Comparing the overall characteristics of Stage

One tasks

To indicate how our three variables may be used to classify

trials, we compared the average value of each variable for

every subject, separately for the 20 Stage One trials of each

2We repeat the training and prediction procedure 100 times and con-

sider the average prediction results across these 100 repetitions. This is to

minimize the effect of random factors on the training process (the neural

network is randomly initialized on each occasion).
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type (thus obtaining 3× 92 matched pairs of values), and the

resulting median value of each set of 92 averages. To this

end, we used non-parametric matched-pair Wilcoxon tests.

• The reaction time for “predictable rival” trials (Mdn

= 2.86s) was significantly longer than for unpredictable

trials (Mdn = 1.72s), W = 302, p < .001.

• The gaze dispersion for predictable trials (Mdn =

12.5%) was significantly larger than for unpredictable

trials (Mdn = 8.9%), W = 451, p < 0.001.

• The pupil deviation for predictable trials (Mdn =

0.176mm) was significantly larger than for unpre-

dictable trials (Mdn = 0.105mm), W = 156, p < 0.001.

Thus, compared with unpredictable rival trials, during

predictable trials subjects’ reaction times are longer, their

gaze is more evenly distributed across the two options, and

they exhibit greater unexpected increases in pupil dilation.

3.1.2 Evaluating the classification accuracy

Single-trial model. Based on reaction time, gaze disper-

sion and pupil deviation, the neural network model can pre-

dict whether a single Stage One trial is played against a pre-

dictable or unpredictable computer player with an accuracy

of 0.67. This value is significantly above chance level (bino-

mial test p-value < 0.001), and is also significantly higher

than the 0.65 accuracy achieved by the logistic regression

model (5-by-2 paired t(5) = 3.80, p = 0.012).

Multi-trial model. Based on the average reaction time,

gaze dispersion and pupil deviation from all Stage One tri-

als of the same type of task by the same subject, the neural

network model can predict whether those trials are played

against a predictable or unpredictable computer player with

an accuracy of 90%. This value is significantly above chance

level (binomial test p-value < 0.001), and is significantly

higher than the 0.88 accuracy achieved by the logistic re-

gression model (5-by-2 paired t(5) = 3.94, p = 0.011).

3.2 Stage Two

We begin by comparing the four experimental conditions

separately in terms of each of our independent variables: re-

action time, gaze dispersion and pupil deviation. For each

variable, we report all four pairwise comparisons between

the conditions and the associated Mann-Whitney test re-

sults. In each case, we evaluate the statistical significance of

the four comparisons using the step-wise Bonferroni-Holm

correction (where the successive p−values, in descend-

ing order, are evaluated against respective α−thresholds of

0.05, 0.025, 0.017 and 0.0125).

• Reaction time in the Coordination × No Feedback con-

dition (Mdn = 1.45) was not significantly different

than in the Matching-Pennies × No Feedback condi-

tion (Mdn = 1.80), U = 53, p = .145, or in the Co-

ordination × Full Feedback condition (Mdn = 1.47),

U = 131, p = .794.

• Reaction time in the Matching-Pennies× Full Feedback

condition (Mdn = 1.86) was not significantly different

than in the Coordination × Full Feedback condition

(Mdn = 1.47), U = 39, p = .053, or in the Matching-

Pennies × No Feedback condition (Mdn = 1.80), U =

146, p = .959.

• Gaze dispersion in the Coordination × No Feedback

condition (Mdn = 9.0%) was significantly smaller than

in the Matching-Pennies × No Feedback condition

(Mdn = 12.0%), U = 153, p = .009, but not signifi-

cantly different than in the Coordination × Full Feed-

back condition (Mdn = 9.9%), U = 135, p = .903.

• Gaze dispersion in the Matching-Pennies × Full Feed-

back condition (Mdn = 13.4%) was significantly larger

than in the Coordination × Full Feedback condition

(Mdn = 9.9%), U = 31, p = .016, but not significantly

different than in the Matching-Pennies × No Feedback

condition (Mdn = 12.0%), U = 114, p = .306.

• Pupil deviation in the Coordination×No Feedback con-

dition (Mdn = 0.04mm) was not significantly different

than in the Matching-Pennies ×No Feedback condition

(Mdn = 0.06mm), U = 64, p = .624, but was signifi-

cantly smaller than in the Coordination× Full Feedback

condition (Mdn = 0.13mm), U = 24, p = .005.

• Pupil deviation in the Matching-Pennies × Full Feed-

back condition (Mdn = 0.23mm) was not significantly

different than in the Coordination × Full Feedback con-

dition (Mdn = 0.13mm), U = 34, p = .026, but was

significantly larger than in the Matching-Pennies × No

Feedback condition (Mdn = 0.06mm), U = 14, p =

.001.

Thus, we see that pupil deviation is generally higher under

full feedback than under no feedback, while gaze dispersion

is higher in the matching-pennies game than in the coordi-

nation game. In addition, under full feedback both reaction

time and pupil deviation are almost significantly higher in

matching pennies than in the coordination game.

In other words, giving subjects access to feedback at Stage

Two has a similar effect on pupil deviation as giving them

information about how the computer player would make its

choice at Stage One. It may be that sudden increases in

pupil dilation can be a sign of an “Aha! moment”, i.e., of a

subject realizing that she has arrived at the correct answer

to the problem, something that is only possible if enough

information is available.

As for the gaze dispersion, in this respect the matching-

pennies game is more similar to the predictable task than

the coordination game. This could reflect the fact that in
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matching pennies more effort is put into comparing the two

numbers subject to choice. In contrast, in the coordination

game, without feedback, people might tend to choose the first

option that catches the eye, hoping that the counterpart will

do the same. Even when feedback is given, subjects might

quickly determine the rule based on which the counterpart

makes her choice, reducing the number of eye transitions

between the numbers.

More generally, it appears that different predictor variables

are best at discriminating between different experimental fac-

tors (the presence of feedback and type of strategic game).

Thus, it is interesting to see if combining all three variables in

a neural network algorithm will result in being able to better

discriminate between all four factor combinations in terms of

their similarity to the Stage One tasks. Specifically, we con-

sider the proportion of Stage Two trials classified as instances

of playing against a predictable opponent (“similarity to pre-

dictable task”). We report all pairwise comparisons between

the conditions and the associated Mann-Whitney test results,

separately for single- and multi-trial classification.

3.2.1 Single-trial Classification

• The similarity to predictable task in the Coordination ×

No Feedback condition (Mdn = 0.09) was significantly

smaller than in the Matching-Pennies × No Feedback

condition (Mdn = 0.32), U = 150.5, p = .008.

• The similarity to predictable task in the Coordination ×

Full Feedback condition (Mdn= 0.35) was significantly

smaller than in the Matching-Pennies × Full Feedback

condition (Mdn = 0.63), U = 20, p = .002.

• The similarity to predictable task in the Coordination ×

No Feedback condition (Mdn = 0.09) was significantly

smaller than in the Coordination × Full Feedback con-

dition (Mdn = 0.35), U = 48, p = .002.

• The similarity to predictable task in the Matching-

Pennies × No Feedback condition (Mdn = 0.35) was

significantly smaller than in the Matching-Pennies ×

Full Feedback condition (Mdn = 0.63), U = 20, p =

.002.

The four differences are jointly significant based on the

step-wise Bonferroni-Holm correction. In addition, as seen

in Figure 3, the above relationships between conditions are

stable over time.

3.2.2 Multi-Trial Classification

• The similarity to predictable task in the Coordination

× No Feedback condition (Mdn = 0) was significantly

smaller than in the Matching-Pennies × No Feedback

condition (Mdn = 0.51), U = 136, p = .001.

• The similarity to predictable task in the Coordination ×

Full Feedback condition (Mdn= 0.38) was significantly
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Figure 3: Changes in average similarity to predictable task

for each of the four experimental conditions throughout trials

46 − 60 of stage two of the study, split into 5 time bins of 3

trials each (recall the first 5 trials of stage two are dropped).

smaller than in the Matching-Pennies × Full Feedback

condition (Mdn = 0.91), U = 12, p = .001.

• The similarity to predictable task in the Coordination

× No Feedback condition (Mdn = 0) was significantly

smaller than in the Coordination × Full Feedback con-

dition (Mdn = 0.38), U = 61.5, p = .004.

• The similarity to predictable task in the Matching-

Pennies × No Feedback condition (Mdn = 0.51) was

significantly smaller than in the Matching-Pennies ×

Full Feedback condition (Mdn = 0.91), U = 83.5, p =

.038.

As in the case of the single-trial classifier, the four reported

differences are jointly significant based on the Bonferroni-

Holm correction. Thus, irrespective of whether we use

single-trial or multi-trial classification, and other things be-

ing equal, similarity to predictable task is significantly larger

under full feedback than under no feedback, and significantly

larger in the matching-pennies game than in the coordination

game.

3.2.3 Behavioral Results

We also report the results of two Mann-Whitney tests per-

formed on behavioral data, which will be useful in the inter-

pretation of the eye-tracking findings in the following section.

• The fraction of rounds of the strategic task won by

the subject who scored more points than the other in

total over all rounds was not significantly different in

the Matching-Pennies × No Feedback condition (Mdn

https://doi.org/10.1017/S1930297500006720 Published online by Cambridge University Press

https://doi.org/10.1017/S1930297500006720


Judgment and Decision Making, Vol. 12, No. 6, November 2017 Strategic decisions, eye tracking, and machine learning 605

= 0.55) than in the Matching-Pennies × Full Feedback

condition (Mdn = 0.55), U = 76, p = .83.

• The frequency of selecting the same number by both

players in the strategic task was significantly smaller

in the Coordination × No Feedback condition (Mdn

= 0.50) than in the Coordination × Full Feedback con-

dition (Mdn = 0.60), U = 30.5, p = 0.014.

4 Discussion

A crucial result for the purpose of evaluating the method

proposed in this paper is that it is indeed possible to predict

the Stage One task a person attempted in a given trial based

on the associated values of the independent variables. Recall

that the only difference between the two tasks is the infor-

mation about the behavior of the computer player. Thus,

eye-tracking data can potentially discriminate between two

scenarios: 1) where the human player is unsure of the coun-

terpart’s behavior, and therefore also of her own optimal

strategy; 2) where the human player is able to work out the

action that the counterpart is likely to take, and to choose her

own strategy accordingly.

To justify the above statement, let us compare the ob-

tained single- and multi-trial classification accuracy rates to

those reported by related existing studies. In particular, Mar-

shall (2007) considered a similar problem of neural network

discrimination, based on eye-tracking data, between an arith-

metic problem-solving task and a doing-nothing task. When

using data from four-second time intervals (longer than the

median duration of both of our tasks, equal to 1.72 and 2.86

sec. respectively), and combining data from different sub-

jects to build a general model (as we do here), the obtained

classification accuracy rate was 70%. For one-second time

intervals (slightly shorter than the duration of our tasks) the

figure was 65%.When comparing this with our (similar) fig-

ure of 67% in the single-trial model, one needs to note that the

current classification problem was considerably harder, since

both tasks entailed a visually identical problem of choosing

between two numbers and differed only in terms of the in-

formation about the computer player behavior. In this sense,

the current problem bears more resemblance to the more

recent study by Borji and Itti (2014), who distinguished be-

tween different information extraction tasks performed while

looking at the same picture, and obtained an accuracy rate

approximately 10% above chance.

Similarly, the 90% accuracy of our multi-trial classifier

is comparable to the top accuracy rates reported by exist-

ing papers dealing with analogous problems of classifying

subjects’ overall performance in a study. For example, Rich-

stone et al. (2010) use neural networks in a way similar to the

present study to classify surgeons into expert and non-expert

cohorts based on their eye-data gathered during simulated

and live surgical environments. They too report classifica-

tion accuracy rates of around 90%, albeit obtained in a small

and highly unbalanced sample.

In summary, we consider the performance of both single-

and multi-trial classification algorithms to be satisfactory.

The first part of our contribution is therefore to show

that eye-tracking data can be used to discriminate between

strategic decision tasks that differ only in terms of the in-

formation about the counterpart’s behavior that players are

provided with. The second part of the contribution is to

demonstrate, through results reported in Section 3.2, how

the results of such analysis may in turn be used to investigate

the effect of various external factors on players’ expecta-

tions and decision-making processes when playing against

another human player. Specifically, in our example we fo-

cus on changes in the payoff structure of the game and the

availability of feedback about the counterpart’s past actions.

We establish how these factors affect the similarity of sub-

jects’ stage-two play, in terms of the concurrent eye-tracking

data, to their stage-one involvement against predictable vs.

unpredictable computer players.

On the one hand, the proposed method may be related

to the previously mentioned existing studies that classify

subjects into groups (types) based on their recorded gaze or

lookup patterns. The types can be either defined a priori, as

in Costa-Gomes and Crawford (2006), or cluster analysis can

be performed, as in Polonio et al. (2015), and the obtained

clusters can then be associated with different types (e.g., the

level-2 type in the cognitive hierarchy typology of Camerer,

Ho, & Chong, 2004) based on their characteristics.

On the other hand, the difference from these studies is

that here the types are not derived from existing models,

but defined indirectly via similarity to the visual process-

ing of other, related tasks by many different subjects, es-

tablished by virtue of machine learning pattern recognition

analysis of their eye-data. Thus, the present approach is

more model-free in this sense, and of more practical use in

some circumstances, specifically when it is difficult to spec-

ify the eye-movement patterns that would distinguish one

mode of decision-making from others. In the context of the

present example, we could characterize the underlying ratio-

nale as: “We do not know what patterns in the eye-tracking

data would reflect predicting the strategic action of the other

human player. However, we do expect that these patterns

should be more similar to ones accompanying play against a

predictable computer player, than to ones accompanying play

against a computer player choosing its actions at random.”

At this point, it should be stressed that we do not see the

proposed method as a replacement for scan-path analysis,

but rather as an approach that might incorporate it (and many

other techniques). For instance, suppose we used tasks with

more than two AOIs, allowing for potentially meaningful

complex scanpaths. One could then use a machine learning

algorithm appropriate for sequential scan-path data (e.g., a

hidden Markov model) to classify a scanpath recorded in
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a given Stage Two trial as similar to playing against a pre-

dictable or unpredictable computer player at Stage One. The

reason why we used simple tasks, and only three predic-

tor variables, was mainly to demonstrate the first use of the

method in a relatively straightforward context.

We should also consider the potential susceptibility of the

proposed approach to p-hacking, specifically, to manipulat-

ing the set of predictors and data analysis techniques until

desired results are obtained. In particular, a useful feature

of our method is that the accuracy of distinguishing between

the different types of proxy choice trials (at Stage One) can

serve as a relatively objective standard by which alternative

ways of analyzing the data can be compared and the optimal

one selected and motivated. In our relatively simple case

of short tasks with two AOIs, the set of possible predic-

tors is quite narrow and the differences between Stage Two

tasks are clear-cut and intuitive (as further discussed below).

Hence, we restricted to comparing the accuracy of a neural

network and a canonical logistic regression. However, in

more nuanced situations researchers can use the proxy tasks

to compare a wider range of predictors and techniques before

choosing the combination to use for analyzing the original

tasks. While the specification of the proxy tasks themselves

is still a relatively arbitrary aspect of the design, it has to be

done prior to collecting the data, thereby leaving less room

for manipulation. In contrast, the traditional approach of a

priori specifying the eye patterns that should occur if a given

model was accurate leaves plenty of space for hypothesizing

after the results are known (“HARKing”).

At the same time, a caveat associated with the proposed

method is that one should be careful when interpreting the

results, and not forget that subjects’ thought processes are

not elicited directly. To illustrate, in our example we found

that similarity to predictable task is higher in the matching-

pennies game than in the coordination game, even though the

former is a classic example of a ‘competitive’ constant-sum

game in the sense of Schelling (1960), in which it is essential

to conceal one’s actions from the counterpart (consistent

with this, its only Nash Equilibrium is in mixed-strategies).

In contrast, in the coordination game it is essential to be as

predictable as possible.

The observed tendency could therefore be seen as evi-

dence against the classic interpretation of the mixed-strategy

Nash Equilibrium (MSE) concept due to von Neumann and

Morgenstern, according to which in competitive games with

unique MSE players use randomization to prevent rivals from

predicting their actions. Here, we see that subjects play the

matching-pennies game as if they were up against a highly

predictable computer player.

Nevertheless, to underline the point about the need for

careful interpretation, one could counterargue that what is

really captured by “similarity to predictable task” is the over-

all complexity of the task. Thus, matching-pennies resem-

bles playing a predictable computer player merely because

both involve a higher degree of working out the correct so-

lution compared with the coordination game and playing an

unpredictable computer player respectively. This illustrates

the need for a careful design of the proxy (Stage One) tasks

on which the machine-learning classifier is to train itself, so

that, if possible, they do not differ in aspects other than the

one subject to investigation.

In the present case, the interpretation of the results can

be clarified by examining the impact of the other factor,

namely the availability of feedback, which we find to increase

similarity to predictable task. If the observed differences

were merely due to changes in task complexity, then they

should diminish over time, particularly when feedback is

available, allowing subjects to better learn the task. However,

we see from Figure 3 that the differences in similarity to

predictable task across all four conditions remain stable over

the course of Stage Two of the experiment.

What is more, the first of our behavioral results in Section

3.2.3 is robust to restricting to trials closer to the end of the

study. Thus, it appears that in the matching-pennies game

subjects persist in believing that they can use past feedback

to predict the rival’s present choices. This happens even as

they find themselves to be repeatedly unsuccessful in this

endeavor (the margin between the winning and losing player

is 5%, the same as in the absence of feedback). It appears that

each subject thinks she can predict and outsmart the other by

using the feedback information, but ultimately they cancel

each other out and end up in the same situation as in the

absence of feedback. This is particularly interesting, given

that the two numbers subject to choice change randomly (and

are re-positioned) in each round, whilst no number appears

more than once. This suggests that people will attempt to

make use of even very limited feedback information, and

persist in doing so even as they repeatedly fail to make the

right strategic choices as a result.

Similarity to predictable task also increases with feed-

back in the coordination game. In contrast with matching-

pennies, in this case the apparent increase in predictability or

confidence is justified by observable outcomes of the game.

Specifically, the coordination rate is at randomness level

(50%)) in the absence of feedback, but significantly higher

(60%) when feedback becomes available.

These findings can also add to the debate on the discrep-

ancy between the behavior of amateur subjects in the lab and

that of professionals in the field. It appears that the former

do not exhibit the serial independence of actions in repeated

play, which is a prerequisite for MSE (Brown & Rosenthal,

1990; Mookherjee & Sopher, 1994; Scroggin, 2007; Roth

& Erev, 1998). In contrast, studies such as Walker and

Wooders (2001), Hsu, Huang, and Tang (2007), Chiappori,

Levitt, and Groseclose (2002) and Palacios-Huerta (2003)

show that the behavior of professional players in the field,

such as penalty-kick takers in soccer, can be consistent with

the MSE, though the same players no longer exhibit serial
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independence when tested in a lab setting (Wooders, 2010;

Levitt et al., 2010).

Our results suggest that the specific aspect of laboratory

testing which might be causing this change is the fact that

feedback about the counterpart’s past actions is readily avail-

able to both parties (in contrast, a soccer player in the field

may for instance find it hard to recall the specific part of her

penalty-kick history which could have been observed by the

rival keeper). Even though information about past actions

that we provide is limited by between-trial variation in avail-

able choices, it still turns out to have a significant effect on

the players’ processing of the task. In fact, from our com-

parison of the coordination and matching-pennies games, it

seems that the fact that subjects do not share a common in-

terest, and only a mixed-strategy equilibrium exists, makes

them not less, but more likely to try to use any information

they have to predict a rival’s likely strategy, and possibly play

a best-response to it rather than randomize. In the words of

Rubinstein (1991), “We prefer to be able to point to a reason

for each action we take. Outside of Las Vegas we do not spin

roulettes.”

5 Conclusion

This paper demonstrated a new way of using eye-tracking to

study strategic decisions. The behavior observed in experi-

ments can often be explained by different modes of decision

making. Although eye-tracking often provides an answer to

the problem, existing studies often rely on an a priori specifi-

cation of the eye-movement patterns that should accompany

a given decision-making strategy, in order to compare the

observed and assumed patterns. Such an a priori specifica-

tion is usually difficult and not based on objective criteria,

while the assumed patterns do not allow for individual dif-

ferences between decision-makers or for the often difficult

to anticipate visual attention biases.

To address these problems, we propose to expose subjects

to variants of the investigated strategic task that should in-

duce a particular manner of processing, and then check if the

original and modified tasks are similar in terms of the accom-

panying process-tracing data. To measure the similarity of

tasks, we propose to analyze the eye-data using model-free

machine-learning pattern recognition techniques like neural

networks. This flexible approach can capture any unforeseen

relationships in the data, while requiring less theorizing on

behalf of the researcher.

We present an example application of the method. Sub-

jects first interact with a predictable or unpredictable com-

puter player, before playing a strategic game against another

human. We manipulate the features of the latter task to see

how they affect the similarity of the accompanying process-

tracing data to that accompanying play against a predictable

vs. unpredictable computer player. Our findings have im-

plications for the interpretation of the mixed-strategy Nash

Equilibrium concept, and indicate that the method may be

applied to other similar problems.
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