Chemo-Kinematic Survey of $z \sim 1$ Star Forming Galaxies using Keck OSIRIS LGS-AO

Etsuko Mieda¹, Shelley A. Wright^{1,2}, James E. Larkin³, Lee Armus⁴, and Stephanie Juneau⁵

¹Department of Astronomy and Astrophysics, University of Toronto, ON, Canada, M5S3H4 email: mieda@astro.utoronto

²Dunlap Institute for Astronomy & Astrophysics, Toronto, ON, Canada, M5S3H4

³Department of Physics and Astronomy, University of California, Los Angeles, CA, USA, 90095

⁴Spitzer Science Center, California Institute of Technology, Pasadena, CA, 91125

⁵CEA Saclay, DSM/IRFU/Sap. F-91191 Gif-sur-Yvette, France

Abstract. We present first results from the Intermediate Redshift OSIRIS Chemo-Kinematic Survey (IROCKS) of $z \sim 1$ star forming galaxies (Mieda *et al.* in prep). We have targeted H α and [NII] emission lines in J-band and have spatially resolved the galaxies at sub-kilo parsec scale. We have combined our sample with deep HST continuum images, and are able to reveal the dynamics, morphologies, metallicity distribution, emission-line diagnostics, and star formation rates of galaxies spanning this crucial $z \sim 1$ epoch.

1. Introduction

The majority of high redshift galaxy studies using IFS + AO have focused on z > 1.3 and under-sampled $z \sim 1$ due to instrumental and AO performance. The $z \sim 1$ regime is a critical epoch to understand galaxy evolution; it is when the star formation rate density starts to rapidly drop (Hopkins & Beacom 2006), and the stellar mass density becomes more established to present-day values (e.g. Ilbert *et al.* 2013).

2. Conclusions

We have observed z ~ 1 star forming galaxies using Keck OSIRIS LGS-AO. We selected galaxies in many fields: GOODS-S, GOODS-S, DEEP2, and UDS. We detected over ten sources, and it is now the biggest IFS + AO z ~ 1 samples. Our samples span $0.83 \leq z \leq 0.98$. H α and [NII] emission lines show $50 \leq \sigma \leq 80$ km/s and $-0.7 \leq log_{10}([NII]/H\alpha) \leq -0.3$. Using Planck cosmology, Kennicutt (1998) + Chabrier (2003), and E(B-V) = 0.15, SFR of our samples span an order of magnitude, $2 \leq SFR_{H\alpha} \leq 20 M_{\odot}/yr$.

Acknowledgments

The Dunlap Institute is funded the through an endowment established by the David Dunlap family and the University of Toronto.

References

Chabrier, G., 2003, PASP, 115, 763 Hopkins, A. M. & Beacom, J. F., 2006, ApJ, 651, 142 Ilbert, O., *et al.* 2013, A & A & 556, A55 Kennicutt, Jr. R. C., 1998, ApJ, 498, 541 Planck Collaboration, 2013, arXiv