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Abstract: We show that, representing the descending fluid in a convection zone by a 
porous medium, the differential rotation of the (rising) fluid is very close to that in an 
axisymmetric model of the convection zone with anisotropic viscosity. 

1. Introduction 

The computation of large scale convective flows in astrophysical objects is certainly 
one of the great challenge of contemporary astrophysics. The computation of such 
flows is a basic requirement for understanding the dynamical behaviour of stars or 
planets. The huge Reynolds number of the flow, due to the large size of the objects, 
makes the flow highly turbulent and so very difficult to compute. The main problem 
is that we do not have, for the moment, a complete theory of turbulence. 

Until now two approaches have been considered: firstly the mean field approach 
and secondly direct numerical simulations. These two approaches possesses some 
major drawbacks which need to be recapitulated. 

The mean field approach (see Rudiger, 1989 and references therein) is con­
cerned, in the case of stars, with the determination of the long term evolution of 
the mean axisymmetric fields. Indeed, we wish to know the nature of the mecha­
nism that maintains the differential rotation or governs the magnetic activity. The 
mean is thus defined as to smooth out longitudinal and short-time dependence of 
the phenomena. For instance, if we are interested in the velocity field, we set : 

u = U + u', (1) 

where u' stands for the fluctuation around the mean U — (u). The evolution of 
the mean U can be derived, and, in the case of an incompressible fluid, gives the 
Reynolds equation 

dtUi + UjVjUi = -ViP + vAUi - djRih (2) 
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where Rij = (u'jUj) is the Reynolds stress tensor. This last quantity cannot be 
computed unless we have a theory of turbulence that tells us the relation between 
this tensor and U. In the case where separation of scales applies (i.e. \u'\ •< \U\), 
then the equation for u' can be made linear and solved for some given forcing. An 
expression for Rij is then obtained. The main question is then about the validity 
of such an approximation. Indeed, it is questionable if this approximation can be 
applied to large scale non-axisymmetric modes. This is the main drawback of the 
method. 

The second approach, the numerical one, is still concerned with solving (2), 
but now the mean is taken on a much smaller scale: essentially it is a smoothing 
of all the small scales not resolved by the numerical scheme. Here, as above, the 
relation between the Reynolds stress tensor and the mean velocity field is not 
known. However, such relation may be easier to obtain, since we are now dealing 
with small scales which have certainly been derived and nothing proves to be 
satisfactory in all cases. Let us recall a few existing (subgrid) models. 

First, Smagorinski's model (1963) where : 

Rij = -CsA
2yJSijSiiSij, (3) 

with Sij = (diUj + djUi). This model has been tested against direct numerical 
simulations and turned out to be able to represent only 16% of the true Rij 
(Fertziger, 1985). We can also mention the Ke model (see Peyret and Taylor, 
1983), the renormalization group approach (Yakhot and Orszag, 1986) and a new 
version of Smagorinski's approach by Leith (1989). The main drawback with these 
models is their lack of predictability: either because, like the Ke model, they have 
constants that need adjusting or, like Smagorinski's, they lack universality, leaving 
their predictions questionable. 

2. The role of coherent structures? 

Coherent structures (we refer here mainly to vortex tubes) play an important 
role which remains to be understood. It is well known that their presence reflects 
the nongaussianity of the turbulence statistics which creates all the difficulties of 
the statistical approaches. One of the difficulties of modelling the action of such 
objects is due to their "two-scaledness", that is to say that such an object as a 
vortex tube has a length of the order of the integral scale whilst it has a width of 
a few dissipation scales (see for instance Vincent and Meneguzzi, 1990). In large 
eddy simulations, such objects would appear as singularities of the flow since their 
thickness is not resolved while their length is. We may also note, from the spectral 
point of view, that such structures constitute a direct link between small and large 
scales and thus allow a direct exchange of energy. 

We shall model these structures in a very crude way. We assume that they are 
purely passive. First we make them solid and we fix them in space (no advection 
by the flow). They thus make a porous medium through which the fluid passes. 
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To see the first consequences of such an assumption we computed the differential 
rotation of the solar convection zone (SCZ) when it is modeled by such a medium. 
We note that a porous medium was also used by Bretherton and Spiegel (1968) to 
model the SCZ for studying the solar spin-down. titlea3.The solar convection zone 
as a porous medium? Let us make the following assumptions : the SCZ is a porous 
medium where the solid part stands for the descending fluid (the plumes) and the 
fluid saturating this porous medium stands for the rising fluid; it is injected at the 
base of the SCZ and extracted at the top (which is our boundary conditions on 
the flow). 

Fig. 1. Contours of constant angular velocity obtained with the porous medium model. 
The scaling factor E=f/2Qke=10. The shape of the contours is only slightly modified 
when kr/ke or E are changed. 

We shall assume in addition that the fluid is incompressible and that the motion 
is steady and axisymmetric. Such flow obeys the following equations: 

divi> = 0, 
(4) 

where v[k] 1w is the Darcy force characteristic of porous media (see Cushman 
1990). [k] is the permeability tensor which we take in the form 

K 0 0 
0 kg 0 
0 0 k^ 

(5) 

The anisotropy of the medium is then characterized by the ratio kr/k$ (kg = k$) 
which we take to 10: the medium is more permeable in the vertical direction 
than in the horizontal one. The resulting differential rotation is plotted on Fig. 1. 
The shape of the contours only slightly depends on the anisotropy. In Fig. 2 we 
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Fig. 2. Contours of constant angular velocity obtained with a numerical integration 
of anelastic axisymmetric equations of motion, using an anisotropic viscosity (20% of 
anisotropy). 

The anisotropy of the medium is then characterized by the ratio kr/k$ (k$ = fc^) 
which we take to 10: the medium is more permeable in the vertical direction 
than in the horizontal one. The resulting differential rotation is plotted on Fig. 1. 
The shape of the contours only slightly depends on the anisotropy. In Fig. 2 we 
plotted the differential rotation obtained by Brandenburg and Rieutord (1990) 
using an axisymmetric, anelastic model with an anisotropic viscous tensor (the 
horizontal viscosity being larger than the vertical one). The two calculations give 
a similar distribution of angular velocity with a positive gradient {dQ/dr > 0). In 
both models the Coriolis force is the main contributor to the distribution, but the 
remarkable fact is that the model presented here is extremely simple. The next 
steps in this direction of investigation will include relaxing the restriction to a solid 
porous medium (coherent structures should be advected by the flow), computing 
their statistics, and allowing the structures to interact as a source of field. 
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