# HITTING TIME DISTRIBUTIONS WHEN $\sum X_{k} / d^{k}$ HAS A SMOOTH DENSITY 

BY<br>DUDLEY PAUL JOHNSON


#### Abstract

In this paper we construct the hitting time distributions for stochastic processes $X_{k}$, taking on values amongst the integers $0,1, \ldots, d-1$ for which $\sum_{k=1}^{\infty} X_{k} / d^{k}$ has a smooth polynomial density with respect to the Lebesgue measure on $[0,1]$.


Suppose that $X_{k}, k=0,1,2, \ldots$ is a stochastic process on the integers 0 , $1, \ldots, d-1$. Clearly the distribution of the stochastic process is uniquely determined by the distribution of the single random variable $Y=\sum_{k=0}^{\infty} X_{k} / d^{k}$ so long as the probability that $X_{n+k}=d-1$ for all $k$ is zero for each $n \geq 0$. That is to say, one can generate the stochastic process by picking a point $Y$ from the interval $[0,1]$ according to a fixed distribution and then letting $X_{k}$ be the $k$ th decimal in the $d$-adic expansion of $Y$. In this paper we prove the following Theorem.

Theorem. Suppose that $X_{k}, k=0,1,2, \ldots$, is a stochastic process taking on values amongst the integers $0, \ldots, d-1$. Suppose that $U$ is a subset of $0, \ldots, d-1$ with $d_{0}$ elements, that $a(\cdot)$ is a function mapping $U^{c}$ into the reals and $\tau_{U}$ is the time that $X_{k}$ first leaves $U$.
I. If $\sum_{k=0}^{\infty} X_{k} / d^{k}$ has a density $f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}$, absolutely convergent in $[0,1]$, then

$$
E a\left(X_{\tau_{U}}\right)=\sum_{n=0}^{\infty} a_{n} c_{n}
$$

where

$$
a_{0}=\frac{1}{d-d_{0}} \sum_{i \notin U} a(i)
$$

and in general $a_{j}$ can be found from $a_{0}, \ldots, a_{j-1}$ via

$$
\begin{aligned}
a_{\mathrm{j}}= & {\left[1-d_{0} d^{-j-1}\right]^{-1}\left\{\sum_{i \notin U} \frac{1}{j+1}\left[\left(\frac{i+1}{d}\right)^{i+1}-\left(\frac{i}{d}\right)^{i+1}\right] a(i)\right.} \\
& \left.+d^{-j-1} \sum_{k=0}^{i-1}\binom{j}{k} \sum_{i \in U} i^{i-k} a_{k}\right\} .
\end{aligned}
$$

II. If $\sum_{k=0}^{\infty} X_{k} / d^{k}$ has a density $f(x)=\sum_{n=0}^{\infty} \alpha_{n} \cos 2 \pi d^{n} x+\beta_{n} \sin 2 \pi d^{n} x$

Received by the editors February 17, 1978 and, in revised form, September 14, 1978.
then

$$
E a\left(X_{\tau}\right)=\sum_{n=0}^{\infty} \alpha_{n} a_{n}+\beta_{n} b_{n}
$$

where

$$
a_{0}=E \cos 2 \pi X_{\tau}, \quad b_{0}=E \sin 2 \pi X_{\tau}
$$

and in general $a_{n}, b_{n}$ can be found from $a_{n-j}, b_{n-j}$ via

$$
\begin{aligned}
& a_{n}=\sum_{i \notin U} a(i) \int_{i / d}^{(i+1) / d} \cos \left(2 \pi x d^{j}\right) d x+\left(d^{-1} \sum_{i \in U} \cos 2 \pi i d^{n-1}\right) a_{n-1} \\
&-\left(d^{-1} \sum_{i \in U} \sin 2 \pi i d^{n-1}\right) b_{n-1} \\
& b_{n}=\sum_{i \notin U} a(i) \int_{i / d}^{(i+1) / d} \sin \left(2 \pi x d^{j}\right) d x+\left(d^{-1} \sum_{i \in U} \sin 2 \pi i d^{n-1}\right) a_{n-1} \\
&+\left(d^{-1} \sum_{i \in U} \cos 2 \pi i d^{n-1}\right) b_{n-1}
\end{aligned}
$$

Proof. The stochastic process $X_{k}, k=0,1,2, \ldots$ induces a measure $\varphi$ in the Banach space $\mathcal{M}(\Omega, \mathscr{F})$ of all bounded measures on the measurable space $(\Omega, \mathscr{F})$ of all functions $\omega$ mapping the nonnegative integers into the set $\{0, \ldots, d-1\}$ with $\varphi$ defined on the cylinder sets $\left[X_{0}=i_{0}, \ldots, X_{N}=i_{N}\right]$, $X_{k}(\omega)=\omega(k)$, generating the $\sigma$-field $\mathscr{F}$, via

$$
\varphi\left[X_{0}=i_{0}, \ldots, X_{N}=i_{N}\right]=P\left[X_{0}=i_{0}, \ldots, X_{N}=i_{N}\right]
$$

We define the linear operators $T$ and $E(i), i=0, \ldots, d-1$ and the linear functional $p^{*}$ on $\mathcal{M}(\Omega, \mathscr{F})$ via

$$
\begin{gathered}
T \psi\left[X_{o}=i_{o}, \ldots, X_{N}=i_{N}\right]=\psi\left[X_{1}=i_{o}, \ldots, X_{N+1}=i_{N}\right] \\
E(i) \psi[\Lambda]=\psi\left[X_{o}=i, \Lambda\right] \\
p^{*} \psi=\psi(\Omega)
\end{gathered}
$$

and then we let $\Phi$ be the smallest linear subspace of $\mathcal{M}(\Omega, \mathscr{F})$ which contains $\varphi$ and is invariant under the operators $T$ and $E(i), i=0, \ldots, d-1$. The collection $\left(\Phi, T, E, p^{*}\right)$ will be called the algebraic representation of the stochastic process $X_{k}, k=0,1, \ldots$. We will use the algebraic representation to find $E a\left(X_{\tau_{U}}\right)$ by showing that the linear functional $p^{*}$ on $\Phi$, defined by

$$
a^{*} \varphi=\int a\left(X_{\tau_{\mathrm{U}}}\right) d \varphi
$$

is a solution of the linear equations

$$
\begin{aligned}
\left(I^{*}-T^{*}\right) a^{*} & =0 \quad \text { on } \quad E(i) \Phi, \quad i \in U \\
a^{*} & =a(i) p^{*}
\end{aligned} \quad \text { on } \quad E(i) \Phi, \quad i \notin U,
$$

where the second equation is obvious and the first holds since for $\varphi \in E(i) \Phi$, $i \in U$ we have

$$
\begin{aligned}
\left(I^{*}-T^{*}\right) a^{*} \varphi & =a^{*}(I-T) \varphi \\
& =\int a\left(X_{\tau_{U}}\right) d \varphi-\int a\left(X_{\tau_{U}}\right) d T \varphi \\
& =\int a\left(X_{\tau_{U}}\right) d \varphi-\int a\left(X_{\tau_{U}\left(\omega_{1}^{+}\right)}\left(\omega_{1}^{+}\right)\right) \varphi(d \omega) \\
& =\int\left[a\left(X_{\tau_{U}(\omega)}(\omega)\right)-a\left(X_{\tau_{U}\left(\omega_{1}^{+}\right)}\left(\omega_{1}^{+}\right)\right] \varphi(d \omega)\right. \\
& =0
\end{aligned}
$$

since $\omega(0) \in U$ and so $X_{\tau_{U}(\omega)}(\omega)=X_{\tau_{U}\left(\omega_{1}^{+}\right)}\left(\omega_{1}^{+}\right)$.
Now in our case, each $\omega \in \Omega$ can be identified with a real number $x=x(\omega)=$ $\sum_{k=0}^{\infty} \omega(k) / d^{k} \in[0,1]$ so that each $\psi \in \Phi$ can be identified with a density $f$ on $[0,1]$. This generates a linear space $\mathscr{X}$ of densities on $[0,1]$. Since $T \psi$ will be identified with the density $d^{-1} \sum_{k=0}^{d-1} f((k+x) / d)$ and $E(i) \psi$ with the density $I_{[i / d,(i+1) / d]}(x) f(x)$, where $I_{U}$ is the indicator function of $U$; it follows that the algebraic representation $\left(\Phi, T, E, p^{*}\right)$ is isomorphic to the collection $\left(I, T, E, p^{*}\right)$ where
(i) $\mathscr{X}$ is a linear space of densities on $[0,1]$.
(ii) $T f=d^{-1} \sum_{k=0}^{d-1} f((k+x) / d)$
(iii) $E(i) f=I_{[i / d,(i+1) / d]}(x) f(x)$
(iv) $p^{*} f=\int_{0}^{1} f(x) d x$.

Thus we can find the linear functional $a^{*}$ on $\Phi$ by looking for a linear functional $a^{*}$ on $\mathscr{X}$ which satisfies

$$
\begin{aligned}
\left(I^{*}-T^{*}\right) a^{*} & =0 \quad \text { on } \quad \\
a^{*} & =a(i) \mathscr{X}, \quad i \in U \\
& \text { on } \quad E(i) \mathscr{X}, \quad i \notin U .
\end{aligned}
$$

In case $I$ of our theorem we take as a basis for $\mathscr{X}$ the functions $f_{i j}$, where $i=0, \ldots, d-1$ and $j=0,1,2 \ldots$, defined by

$$
f_{i j}(x)=I_{[i / d,(i+1) / d]}(x) x^{i} .
$$

Then, letting

$$
f_{k}(x)=x^{k}=\sum_{i=0}^{d-1} f_{i k}(x)
$$

we have

$$
E(k) f_{i j}=\left\{\begin{array}{cc}
f_{i j}, & i=k \\
0, & i \neq k
\end{array}\right.
$$

and

$$
\begin{aligned}
T f_{i j}(x) & =d^{-1} \sum_{k=0}^{d-1} f_{i j}\left(\frac{k+x}{d}\right) \\
& =d^{-1} \sum_{k=0}^{d-1} I_{[i / d,(i+1) / d]}\left(\frac{k+x}{d}\right)\left(\frac{k+x}{d}\right)^{i} \\
& =d^{-1}\left(\frac{i+x}{d}\right)^{j} \\
& =d^{-j-1} \sum_{k=0}^{i}\binom{j}{k} i^{i-k} x^{k}
\end{aligned}
$$

and

$$
p^{*} f_{i j}=\int_{0}^{1} f_{i j}(x) d x=\frac{1}{j+1}\left[\left(\frac{i+1}{d}\right)^{j+1}-\left(\frac{i}{d}\right)^{i+1}\right]
$$

Thus the linear functional $a^{*}$ on $\mathscr{X}$ satisfies

$$
\begin{aligned}
& a^{*} f_{i j}=a^{*} T f_{i j}=d^{-j-1} \sum_{k=0}^{j}\binom{j}{k} i^{i-k} a^{*} f_{k}, \quad i \in U \\
& a^{*} f_{i j}=a(i) p^{*} f_{i j}, \quad i \notin U
\end{aligned}
$$

Summing over $i$ now gives us

$$
a^{*} f_{j}=\sum_{i \notin U} \frac{1}{j+1}\left[\left(\frac{i+1}{d}\right)^{j+1}-\left(\frac{i}{d}\right)^{i+1}\right] a(i)+a^{-j-1} \sum_{k=0}^{i}\binom{j}{k} \sum_{i \in U} i^{i-k} a^{*} f_{k} .
$$

For $j=0$ this last equation becomes

$$
a^{*} f_{o}=\frac{1}{d-d_{o}} \sum_{i \notin U} a(i)
$$

For $j>0$ we have

$$
\begin{aligned}
a^{*} f_{j}=\left[1-d_{o} d^{-j-1}\right]^{-1}\left\{\sum_{i \notin U} \frac{1}{j+1}\left[\left(\frac{i+1}{d}\right)^{i+1}-\left(\frac{i}{d}\right)^{i+1}\right] a(i)\right. & \\
& \left.+d^{-j-1} \sum_{k=0}^{i-1}\binom{j}{k} \sum_{i \in U} i^{i-k} a^{*} f_{k}\right\} .
\end{aligned}
$$

Thus if

$$
f(x)=\sum_{n=0}^{\infty} c_{n} x^{n}=\sum_{n=0}^{\infty} c_{n} f_{n}(x)
$$

then by the dominated convergence theorem we have

$$
\begin{aligned}
a^{*} f & =\int f\left(X_{\tau}\right) d \varphi_{f} \\
& =\int \sum_{n=0}^{\infty} c_{n} f_{n}\left(X_{\tau}\right) d \varphi_{f} \\
& =\sum_{n=0}^{\infty} c_{n} \int f_{n}\left(X_{\tau}\right) d \varphi_{f} \\
& =\sum_{n=0}^{\infty} c_{n} a^{*} f_{n} \\
& =\sum_{n=0}^{\infty} c_{n} a_{n}
\end{aligned}
$$

where $a_{n}=a^{*} f_{n}$ and $\varphi_{f}$ is the measure on $(\Omega, \mathscr{F})$ induced by $f$. This concludes the proof of $I$.
To prove II, we take as our basis for $I$ the functions

$$
\begin{aligned}
& f_{i j}(x)=I_{[i / d,(i+1) / d]}(x) \cos 2 \pi x d^{j} \\
& g_{i j}(x)=I_{[i / d,(i+1) / d]}(x) \sin 2 \pi x d^{j}
\end{aligned}
$$

where $i=0, d-1$ and $j=0,1,2, \ldots$ Letting $f_{j}=\sum_{i=0}^{d=1} f_{i j}=\cos 2 \pi x d^{j}$ and $\mathrm{g}_{\mathrm{j}}=\sum_{i=0}^{d-1} \mathrm{~g}_{i j}=\sin 2 \pi x d^{j}$, we have

$$
\begin{aligned}
T f_{i j}(x) & =d^{-1} \sum_{k=0}^{d-1} f_{i j}\left(\frac{k+x}{d}\right) \\
& =d^{-1} \sum_{k=0}^{d-1} I_{[i / d,(i+1) / d]}\left(\frac{k+x}{d}\right) \cos 2 \pi\left(\frac{k+x}{d}\right) d^{j} \\
& =d^{-1} \cos 2 \pi\left(i d^{i-1}+x d^{j-1}\right) \\
& =d^{-1} \cos 2 \pi i d^{j-1} \cos 2 \pi x d^{j-1}-d^{-1} \sin 2 \pi i d^{j-1} \sin 2 \pi x d^{j-1} \\
& =d^{-1} \cos 2 \pi i d^{j-1} f_{j-1}(x)-\left(d^{-1} \sin 2 \pi i d^{j-1}\right) g_{j-1}(x) .
\end{aligned}
$$

Similarly,

$$
T g_{i j}(x)=\left(d^{-1} \sin 2 \pi i d^{j-1}\right) f_{j}(x)+\left(d^{-1} \cos 2 \pi i d^{j-1}\right) g_{j}(x)
$$

Thus $a^{*}$ is a solution of

$$
\begin{aligned}
\left(I^{*}-T^{*}\right) a^{*} f_{i j} & =0, & & i \in U \\
a^{*} f_{i j} & =a(i) p^{*} f_{i j}, & & i \notin U
\end{aligned}
$$

and

$$
\begin{aligned}
\left(I^{*}-T^{*}\right) a^{*} g_{i j} & =0, & & i \in U \\
a^{*} g_{i j} & =a(i) p^{*} g_{i j}, & & i \notin U .
\end{aligned}
$$

which becomes

$$
\begin{aligned}
& a^{*} f_{i j}=\left(d^{-1} \cos 2 \pi i d^{i-1}\right) f_{j-1}-\left(d^{-1} \sin 2 \pi i d^{j-1}\right) g_{i-1}, \quad i \in U \\
& a^{*} f_{i j}=a(i) \int_{0}^{1} I_{[i / d,(i+1) / d]}(x) \cos \left(2 \pi x d^{j}\right) d x, \quad i \notin U
\end{aligned}
$$

and

$$
\begin{aligned}
& a^{*} g_{i j}=\left(d^{-1} \sin 2 \pi i d^{i-1}\right) f_{j-1}+\left(d^{-1} \cos 2 \pi i d^{j-1}\right) g_{j-1}, \quad i \in U \\
& a^{*} g_{i j}=a(i) \int_{0}^{1} I_{[i / d,(i+1) / d]}(x) \sin \left(2 \pi x d^{j}\right) d x, \quad i \notin U .
\end{aligned}
$$

Summing over $i$ now yields

$$
\begin{aligned}
& a^{*} f_{j}=\sum_{i \notin U} a(i) \int_{i / d}^{(i+1) / d} \cos \left(2 \pi x d^{j}\right) d x+d^{-1}\left(\sum_{i \in U} \cos 2 \pi i d^{j-1}\right) f_{j-1} \\
& \\
& -d^{-1}\left(\sum_{i \in U} \sin 2 \pi i d^{j-1}\right) g_{j-1} \\
& a^{*} g_{j}=\sum_{i \notin U} a(i) \int_{i / d}^{(i+1) / d} \sin \left(2 \pi x d^{j}\right) d x+d^{-1}\left(\sum_{i \in U} \sin 2 \pi i d^{j-1}\right) f_{j-1} \\
& \\
& +d^{-1}\left(\sum_{i \in U} \cos 2 \pi i d^{i-1}\right) g_{j-1}
\end{aligned}
$$

Thus if

$$
f(x)=\sum_{n=0}^{\infty} \alpha_{n} \cos 2 \pi d^{n} x+\beta_{n} \sin 2 \pi d^{n} x
$$

then, as in $I$, we have

$$
a^{*} f=\sum_{n=0}^{\infty} \alpha_{n} a_{n}+\beta_{n} b_{n}
$$

when $a_{n}=a^{*} f_{n}$ and $b_{n}=a^{*} \mathrm{~g}_{n}$ thus concluding the proof of II and the theorem.

## References

1. N. Dunford and S. Schwartz (1958). Linear Operators I: General theory. Pure and Appl. Math., Vol. 7, Interscience, New York.
2. Dudley Paul Johnson (1970). Markov Process representations of general stochastic processes. Proc. Amer. Math. Soc. 24, 735-738.
3. Dudley Paul Johnson (1972). Hitting time distributions for general stochastic processes, Ann. Math. Statist. 43 (1972), 1716-1718.
4. Dudley Paul Johnson (1974). Representations and classifications of stochastic processes. Trans. Amer. Math. Soc. 188 (1974), 179-197.
5. P. A. Meyer (1966). Probability and potentials. Blaisdell, Waltham, Mass.

Department of Mathematics
University of Calgary
Calgary, Alberta T2N 1N4

