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1. Introduction

Loy and Miller [4] have studied tight Riesz groups (G, g ) , without pseudo-
zeros, and with (G, = )̂ an /-group. In this paper we study abelian /-groups (G, = )̂
on which a tight Riesz order can be denned, such that =̂  is precisely the associ-
ated order. Such an order we call a CTRO (compatible tight Riesz order).

We give certain sufficient conditions for an /-group to have a CTRO, a useful
necessary and sufficient condition, and some negative results concerning necessary
conditions. The class of CTRO of a given /-group, ordered by set inclusion of
positive cones, is directed downwards, has a maximal element, but usually is not
directed upwards and has no smallest or greatest elements.

2. Preliminaries

DEFINITION [5]. A tight Riesz group(G, ^)is a partially ordered abelian
group which is directed and satisfies the following interpolation property:

if a1,a2,b1,b2eG are such that

at < bj for i, j = 1,2

then there exists ceG such that

at< c < bj for i, j = 1 , 2 .

We write TRG to mean tight Riesz group.

Let (G, ^ ) be a partially ordered abelian group. We say xeG is pseudopos-
itive if x ^ 0 and x + p > 0 for all p > 0. We say x is a pseudozero if x and — x
are pseudopositive. If (G, ^ ) has no pseudozeros we write x>- 0 to mean x > 0
or x is pseudopositive. Then (G, =^) is a partially ordered group and we say =̂  is
the associated order. We note that if a < b < c then a < c. By taking intervals
(a, b) = {x: a < x < b}, where a, b eG a < b, as a subbase we define the open-
interval topology "U on G.
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106 A. Wirth [2]

THEOREM 1 [4]. Let (G, ^ ) be a TRG. Then (G,^,<%) is a topological
group, which is Hausdorjf if and only if (G, :£) has no pseudozeros. The family
{ ( - a, a): a > 0} form a base for % at 0. (G, ^ ) is an antilattice (i.e. a A b
exists if and only if a and b are comparable), and contains small elements (i.e.
if a > 0 and n > 0 then there exists b > 0 such that a > nb > 0). If (G, =0 is an
l-group then ^ is isolated, and a, b > 0 implies a A & > 0.

We now present some elementary results about archimedean classes, follow-
ing Loonstra's work in [3]. We assume that (G, =^) is an abelian /-group.

We define an equivalence relation ~ on G+ = {x: x!>0}. If a, ft]>0 we
write a ~ b if there exist positive integers m, n such that

a =̂  mb and b =̂  na.

If a ]>0 we write a to mean the set {x: x ~ a}. The family of these archimedean
classes will be denoted by stf. We write a0 =< b°, if there exists some positive n such
that a =̂  nb. We write a0 <̂  b° if na =̂  & for each positive n.

LEMMA 1 [3]. (si, = )̂ is a distributive lattice with smallest element
0°, i i 0 v 6 0 = (aV ft)0 and a0 A b° = (a A ft)0- C^, « ) is a posef.

We say a0 is divisible if ft/n e G for each ft e a0 and each positive n. We say
a0 is dense if a0 = a0 + a0. An /-group (G, =̂ [) is said to be archimedean if
nx < y for each integer n implies that x = 0. We denote s/ \ {0°} by si*.

3. Compatible tight Riesz orders

From now on we assume that (G, = )̂ is a non-trivial abelian /-group.

DEFINITION. A compatible tight Riesz order (abbreviated CTRO) on (G, < )
is a non-trivial partial order :g making (G, ^ ) a TRG without pseudozeros,
and having ^ as its associated order.

LEMMA 2. Let ^ be a CTRO. Then

t + x > 0 for all t > 0 implies that x > 0.

PROOF. Let * > 0, then by Theorem 1 there exists u > 0 such that t > 2u > 0.
So f + x > 2u + x = u + (u + x) > u > 0, hence t + x > 0 for all t > 0, and thus
by the definition of the associated order x =̂ 0.

THEOREM 2. There is a one-one correspondence between CTROs on (G,
and sets T with the properties:

(i) T is a proper dual ideal of (G+, = )̂
(ii) T=T+T
(iii) AT = 0.
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In fact the set of strictly positive elements of a CTRO satisfies conditions (i)~(iii)
and vice versa.

PROOF. Suppose that T is the strictly positive cone of a CTRO ^ , then by
Theorem 1 a, beT implies that a AbeT. If a < ft and aeT then beT, also
0 £ T and by definition T is not empty, hence (i) follows. If a e Tthen there exists
beT such that a > b > 0, by Theorem 1. Since a = (a — b) + b (ii) is satisfied.
If x =̂  t for all t e T then by Lemma 2 — x > 0, and so (iii) is satisfied.

Now suppose that conditions (i)-(iii) are satisfied, and write x > 0 to mean
x e T. By (i) (G, ^ ) is a partially ordered group. If x, y e G, choose some a > 0,
then x, y =̂  | x | + | y | < | x | + | y | + a, so (G, :S) is directed. If flj, a2 < bu b2

then

b% Ab2-a1\/ a2 = (bt - a t ) A (bt - a2) A (b2 - «i) A (b2 - ai)

belongs to T, by (i). So by (ii) there exist c, d > 0 such that bt A &2 — ai V «2
= c + J. Hence

a u f l j ^ f l ! V ^2 < «i V a2 + c < ^i A b2=4b,, b2

and so (G, g ) is a TRG. If x + t> 0 for all t e T, then by (i) and (iii) x > 0. Hence
(G, ^ ) has no pseudozeros and =̂  is its associated order.

Fuchs [1] has studied, in another context, the case where (G, =<) is divisible.
It will prove useful to restate the above theorem in terms of archimedean

classes.

THEOREM 2'. There is a one-one correspondence between CTROs on (G, = )̂
and sets 5" with the properties:

(i) IF is a proper dual ideal of {stf, = )̂
(ii) i / a ° 6 J then there exist b°, c° e^ such that a = b + c
(iii) ifx°<Sr (i.e. if x° « y° for all y°e^~) then x = 0.

In fact the set of archimedean classes of the strictly positive elements of a CTRO
satisfies conditions (i)-(iii) and vice versa.

PROOF. Suppose that g is a CTRO. If a0 = b° and a > 0 then for some
positive n, nb > a > 0, so by Theorem 1 b > 0. Also if x < t for all t > 0, then
by the existence of small elements nx < t for all t > 0 and all positive n. The
rest of the proof follows from that of Theorem 2.

NOTE. In Theorem 2' (iii) cannot be replaced by "if x ° < ^ then x = 0".
For example, in R2 with (x, y)^ 0 if and only if x, y ^ 0 let (x, y) > 0 mean that
x > 0 and y > 0. Then ^ is a CTRO and P = {(1,1)°}, but (0,0)° # (0,1)°

By an abuse of language we shall call ^ , T, 3~ a CTRO as the need arises.
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THEOREM 3. Each of the following is separately a sufficient condition for
(G, < ) to posses a CTRO:

(i) G is divisible
(ii) (s/, -4) contains a dense atom
(iii) (s/*, <̂ ) contains a maximal descending chain each of whose elements

is dense.

PROOF. Firstly we show that (iii) is sufficient. Let # be the chain and let
y = {x°: x°>c° for some coetf}. Then & satisfies conditions (i) and (iii) of
Theorem 2'. If x ° e J then for some positive n and some c°&c€, nx^c. By
Lemma 1 and the denseness of c° there exists Cj^ec0 such that c^=2/icx. So
x^=2c1( and x = (x — c j + cu hence condition (ii) of Theorem 2' is satisfied.

The sufficiently of (ii) follows immediately from the above. If G is divisible
then (iii) is satisfied, by Hausdorff's maximal principle.

COROLLARY 1. If G is divisible and a>0, there exists a CTRO, ^ , with
a>0.

PROOF. There exists a maximal descending chain in (s/*, <̂ ) through a0;
define the CTRO as in the proof above.

COROLLARY 2. / / (G, < ) is archimedean and divisible, then every proper
dual ideal of{stf, < ) is a CTRO. In particular if a >- 0, then ST = {x°: x° > a0}
is a CTRO.

We will show in Lemma 3 that there exists an archimedean /-group with a
CTRO, which does not have any dense archimedean classes, except for 0°.

Let {(F(, =^): i e 1} be a non-empty family of fully ordered non-trivial abelian
groups. We denote the full direct product by II.F; and the direct sum by Ef;.
If x e HFt we write its ith component as x(i) and we write x > 0 to mean x{i) ^ 0
for all i. We call this the pointwise order.

THEOREM 4. The l-group (ITF,-, < ) has a CTRO if and only if either I
is infinite or at least one (Fh =̂ ) is dense. The l-group (Zfj, =0 has a CTRO if
and only if at least one (Fh^) is dense.

PROOF. Suppose / is infinite, then select a countably infinite subset j £ / ,
and write J = {1,2,3, •••}. Choose any kn>0 knsFn, and if xeUFt, write
x > 0 to mean that x >~ 0 and there exist positive integers mn such that
x(n) > mnkn and limn mn = oo. Then ^ is a CTRO on (IIF,, <), by Theorem 2.

Suppose (Fio, = )̂ is dense and for x e I1F; write x > 0 to mean that x >- 0 and
x(i0) >- 0. Then ^ is a CTRO on (TlFh <).

Suppose that / is finite, none of the (Fh =<) are dense, and ^ is a CTRO on
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j, < ) . There exist atoms at in (F*,=4). Suppose that for each i there exists
Xi > 0 with Xi(i)° =̂  a?. Then by the existence of small elements there exist yt > 0
with yi(i) = 0. So A yi = 0, but by Theorem 1 /\yt>0. So in fact there exists io such
that, if x > 0 then x(i0) > aio. Now define q > 0 by, q(i) = 0 if j ^ i0 and
q(j0) = aio. Then q is a pseudozero, and so ^ is not a CTRO.

The result for ZFf follows easily from the above.

COROLLARY. A fully ordered group (G, ^ ) has either no CTRO, or is dense
and has exactly one CTRO, < itself.

LEMMA 3. There exists an archimedean l-group with a CTRO but without
a dense archimedean class, save 0°. There exists an l-group with the set
{x°: x° > a 0 } a CTRO but a0 not divisible.

PROOF. Let (G, =0 be the /-group of all sequences of integers with pointwise
order. By Theorem 4 (G, < ) has a CTRO. If a > 0 and a{i) > 0, say, let b be
denned by b(j) = a(J) if j + i, and b(i) = 1. Then b e a0, but clearly if b = c + d
then either c i b° or d $ b°.

Let (G, =O be the subgroup of R, with the usual order, generated by

U , - i , | , - - - J . By Theorem 4 Corollary (G ,<) has a CTRO but | - | does not

belong to G.

THEOREM 5. If T is a CTRO with open-interval topology W, then the fol-
lowing are equivalent:

(i) (G, °ll) is first countable.
(ii) There exists a countable descending chain a j ^ f l " ^ ' " in {^~, =Q with

F = {x°: x° > a° for some n}.
(iii) (G, °lt) has a translation-invariant metric, p, satisfying:

| x | < | y | implies p(x, 0) ^ p(y, 0).

PROOF, (i) implies (ii). If (G, ^ is first countable then by Theorem 1 there
exists a sequence {pn} such that, if x > 0 then x > pn for some n, and pn > 0 for
all «. Let an = Pi A ••• A pn, then c^ > a2 > ••• > 0, and 2~ = {x°: x° > a° for
some n}.

(ii) implies (i). Suppose ^ = { x ° : x ° ^ = a ° for some n} and a?^=a2°^= "•>
then by Theorem 1, there exist pin > 0, such that at > npin > 0. If x > 0, then
there exist integers j and n such that nx ^ at, so x > pjn.

(i) implies (iii). If |x |°=^p° define pr(x) by

p£x) = inf I : — mpr =< nx =̂  mpr, m ^ 0, n > 0 >.
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Otherwise write pr(x) — oo. Now let

p(x,y) = S min |pn(x - y),— j ,

then p is the required metric.
Any Hausdorff abelian topological group which is first countable has a

translation-invariant metric [2].

NOTE. It can be shown that in a Banach lattice with strong unit the metric,
corresponding to the CTRO consisting precisely of the strong units, is equivalent
to the original metric.

4. The class of CTROs

Let (G, =^) be a non-trivial abelian /-group with a CTRO. Denote the family
of CTROs by {Ra} and partially order it by set inclusion (of the strictly positive
cones).

THEOREM 6. The poset {Rx, £ } is directed downwards. If G is divisible then
{Rx, £ } is directed upwards if and only if (G, =<!) is fully ordered; and
Ti AT2 = T1nT2.

PROOF. Suppose that Tt and T2 are CTROs, and let 73 = 7^ + 72 = {t3: t3

= t! + t2, tleTut2e T2}. If x > tt + t2, with 11 e Tu t2 e T2, then x - <! > f2, so
x - ti e T2 and x e T3. If tu u t e Tt and t2, u2 e T2 then (tt + t2) A (Mi + u2)
^ (i A «i + '2 A «2- So T3 satisfies condition (i) of Theorem 2, and also condition
(ii). If tt + t2 > x for all t1 e Tu t2 e T2, then 0 < x - ft for all tx e Tu since
A T2 = 0. So in fact x =̂  0, since A Ti = 0. Hence T3 satisfies condition (iii) of
Theorem 2, and clearly T3 £ 7\, T2.

Suppose that (G, =<[) is divisible and not fully ordered. Then there exist
au a2 >• 0 such that a t A a2 = 0. By Theorem 3 Corollary 1 there exist CTROs
Tu T2 with a1eT1,a2ea2. If there exists a CTRO To such that To 3 7\, T2 then
0 = at A «2 6 ?c» by Theorem 1. Hence {Rx, £ } is not directed upwards.

If (G, =<) is divisible and fully ordered, then by Theorem 4 Corollary {Ra} is
a singleton.

Suppose that G is divisible and T1? T2 are CTROs. Then Tt n T2 satisfies
conditions (i) and (ii) of Theorem 2. Since ^ + T2^T! n T2, hence by the above
Ti n T2 satisfies condition (iii) of Theorem 2.

NOTE. The fact that {Rx, s } is directed downwards will be used in [6]
paper to define a convergence (in terms of the order) on any abelian partially
ordered group, which agrees with relative uniform convergence on directed
integrally closed partially ordered vector spaces, and with order convergence on
fully ordered abelian groups.
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LEMMA 4. Let (G, = )̂ be divisible and archimedean, then it has a smallest
CTRO if and only if (G, < ) has a strong unit. In fact the smallest CTRO
consists precisely of the strong units.

PROOF. Suppose that a belongs to the smallest CTRO. Then by Theorem 3
Corollary 2 a ° ^ x ° for all x>- 0. Hence a is a strong unit and the rest follows
easily.

The /-group R x Z (pointwise order) is archimedean and has exactly one
CTRO, containing elements other than strong units. The group of real-valued
sequences with finitely many non-zero terms can be fully ordered, by letting its
strictly positive cone consist of sequences whose last non-zero term is positive.
By Theorem 4 Corollary this group has exacly one CTRO, but does not contain
any strong units.

LEMMA 5. The poset {Rx, c } has a maximal element.

PROOF. The standard Zorn's Lemma argument proves the existence of a
maximal element.
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