
Genet. Res., Camb. (1971), 18, pp. 81-84 8 1

Printed in Great Britain

An invariant property of a structured population*

B Y TAKEO MARUYAMA

National Institute of Genetics, Mishima, Japan

{Received 26 March 1971)

SUMMARY

Considering a single mutant gene in a geographically subdivided finite
population, it is shown that the average number of heterozygotes, due
to this gene, that appear in the population before fixation or loss of this
gene is equal to twice the total population number. This is invariant
under the geographical structure of the population.

The genetic variability and the number of heterozygotes maintained in a finite
population are of considerable interest in population genetics. If a population
has geographic structure and is not a panmictic unit as a whole, these quantities
may depend on its structure. For example, suppose that the frequency of an
allele is x in the whole population, but the occurrence of the allele is localized.
Then we should expect more than x2 homozygotes for this allele.

Consider a locus, and assume that there is an allele present only once in the
whole population. We may ask how many heterozygotes due to this allele will
appear in the population before the allele becomes fixed in the population or lost
from it, provided that no mutation occurs at this locus before fixation or loss of
the allele and that no complete splitting of the population occurs. In this report,
I shall show that this number is equal to twice the population number and that
it is invariant under the population structure. The only assumptions necessary
for this property to hold are (1) that the total population number (NT) is constant
with time and (2) that the allele is selectively neutral. Under these assumptions,
the average number (HT) of heterozygotes that appear in the population is

HT = 2NT. (1)

This was first obtained by Kimura & Crow (1963) for a situation where every
individual contributes exactly two gametes to the next generation. In that case,
however, HT = 4NT. Their argument may be generalized to a situation where
every individual has an equal expectation of the variance of offspring number
throughout the habitat and in all generations. However, taking a different
approach, I shall show that formula (1) holds for the following model in which
the only biologically essential assumption is the neutrality of alleles under natural
selection.

Model. Generation time is discrete. At the end of each generation the population
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is divided into nesting colonies where each colony produces exactly the same
number of offspring as parents by random mating within the colony. Therefore
the total population number (NT) is constant over time. However, the number
of colonies and the number of individuals in a colony may vary arbitrarily over
time. Thus the expectation of the variance of offspring number may vary,
depending upon the position of individual, and may also vary with time. Let
NW be the number of individuals in colony i in some generation t, and let m^J be
the probability that one born in colony i in generation t will participate in
reproduction hi colony j in the next generation, t + 1. We assume that

S m(# = 1 for all i.

This assumes that the migration does not change the genetic composition in
the entire population, though it will often change the local composition. Let f$
be the probability that two randomly chosen homologous genes, one each from
colonies i and j , are the same allele (with i = j the two genes are chosen without
replacement). Define

F(t) = i 4
T a

and

Then F(t) is the probability that two homologous genes randomly chosen from
the entire population are the same allele in some generation t, and F0(t) is the
frequency of homozygotes. We assume no mutation during the time considered.
The fraction of colony i which comes from colony k is

and

is the probability that two homologous genes, one each from colonies i and j , are
the same allele and they come from colonies k and I, provided k =j= I. With k = I,
two homologous genes coming from a single colony are an identical gene in the
previous generation with probability 1/21^, and they are two different genes
with probability (1 —1/2^*'). Thus the probability that two homologous genes
in colonies i and j are the same allele and both come from colony k is

2 IJkJV(.t+1)

Summing over all possible combinations of k and I we have

«) 4- v
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https://doi.org/10.1017/S001667230001243X Published online by Cambridge University Press

https://doi.org/10.1017/S001667230001243X


An invariant property of a structured population 83

Multiplying the left side and the right side of (2) by N^+^Nf+^/N^. and summing
over i and j we have

F(t +1) = ^ 2
T k

Therefore
1_l-F(t + l) = J_l-F0(t)^

1—F(t) 2NT 1—F(t)

This formula was first given by Robertson (1964) for the general model in which
the number of offspring is assumed to be exactly two for every individual.
Equation (3) can be written as

2NT{F(t+l)-F(t)} = 1-Fo(t).

The right side of the above equation is the frequency of heterozygotes, and thus

HT = 2 NT{1-Fo(t)} = 2N*T{F(co)-F{0)}. (4)

If there is initially one mutant gene in the entire population, F(0) = 1 — (1[NT),
and if complete splitting of the whole population does not occur, -F(oo) = 1.
Thus, substituting, these quantities into (4), we have HT — 2NT.

We next state a formula analogous to (3) for a continuous generation model:

1 dF(t) = J _ 1-Fo(t)
1-F{t) dt 2NT 1-F(t) '

Consider many such loci. Assume that every mutation occurs at a locus which is
homallelic in the entire population, and let U be the rate of occurrence of a
mutation in the entire population. Then the average probability that a locus in
an individual is heterozygous is

Vx2NTx^- = 2U.

Therefore, if the mutation rate per gene per generation is sufficiently low, the
average number of heterozygous loci is invariant under the population structure.

In order to demonstrate the validity of formula (1), I have performed several
computer simulations using the following two different models. Model I: individuals
are distributed uniformly on a linear habitat with unit density; at the end of
each discrete generation, each individual is replaced by a union of two gametes
chosen randomly from its neighbourhood according to a normal distribution
with variance or2. Model I I : the population is divided into ten colonies and an
individual moves from its native colony to another colony with probability
m and it stays in its native colony with probability 1 — TO. At the end of each
generation, each colony produces exactly the same number of individuals as
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there were parents by random mating within the colony. Thus colony sizes vary
with time. In both models a mutant gene is introduced when and only when the
whole population becomes homallelic. The total number of heterozygotes due to
each mutant gene is counted, and in order to see the effect of the population
structure, the average number of generations required for fixation of a mutant
gene is recorded. All the probabilistic events are simulated by drawing pseudo-
random numbers. The results of the simulations are presented in Table 1.

Table 1. Results of simulations on the number of heterozygotes
due to a single mutant gene

Case NT m or tr2 HT T Model

1
2
3
4
5
6

100
100
100
100
200
200

10
1
0-5
01
0-05
0-005

194-1
202-4
212-7
195-8
420-2
404-6

539-3
1622-9
4049-1
533-4
947-8
3425-5

I
I
I
II
II
II

(Note NT = the total population number, cr2 — the dispersion variance in model / ,
m = the migration rate in model II, HT = the average number of heterozygotes that
appeared, T = the average fixation time. The number of repetition for each case is
1000 ~ 5000.)

The results on HT agree well with the theoretical expectation 2NT in all cases.
It is remarkable to note that, despite the large differences in the fixation time,
the number of heterozygotes are approximately the same in cases 2 and 3 and
in cases 5 and 6.
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