POLYNOMIAL REMAINDERS AND PLANE AUTOMORPHISMS

Takis Sakkalis

This note relates polynomial remainders with polynomial automorphisms of the plane. It also formulates a conjecture, equivalent to the famous Jacobian Conjecture. The latter provides an algorithm for checking when a polynomial map is an automorphism. In addition, a criterion is presented for a real polynomial map to be bijective.

1. Introduction

Let $f(x, y), g(x, y)$ be polynomials with coefficients in the field of complex numbers C, of (total) positive degrees n and m, respectively. Consider the map $F:=(f, g)$: $\mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$. Let $J(F)=f_{x} g_{y}-f_{y} g_{x}$ be the determinant of the Jacobian matrix of $F . F$ is called a polynomial automorphism if it has a global polynomial inverse. In this case, an application of the chain rule and the fact that every nonconstant polynomial over \mathbf{C} has a root, implies that $J(F)$ is a nonzero constant. The Jacobian conjecture is that the converse is true. It is also known as Keller's problem, since it first appeared in the literature in [3], in which he proves the complex birational case.

In this note, we shall relate polynomial remainders and polynomial automorphisms. In addition, we shall formulate a conjecture which is equivalent to the Jacobian conjecture. The latter provides a relatively easy algorithmic way of checking when a polynomial map f is an automorphism. We conclude with a criterion for a real polynomial map to be bijective.

2. Polynomial Remainders and Automorphisms

Polynomial Remainders. Let $p\left(x_{1}, \ldots, x_{n}\right) \in \mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ of (total) degree k. We say that p is regular in x_{i}, for some $1 \leqslant i \leqslant n$, if $\operatorname{deg}_{x_{i}} p=k$.

Let F, n, m be as above. We may, after a linear change of coordinates, assume that f, g are regular in x, and of the form

$$
\begin{align*}
& f(x, y)=x^{n}+a_{1}(y) x^{n-1}+\cdots+a_{n-1}(y) x+a_{n}(y) \\
& g(x, y)=x^{m}+b_{1}(y) x^{m-1}+\cdots+b_{m-1}(y) x+b_{m}(y) \tag{1}
\end{align*}
$$

Received 19th November, 2002
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

Now suppose that F satisfies the Jacobian condition

$$
\begin{equation*}
J(F)=f_{x} g_{y}-f_{y} g_{x}=1 \tag{2}
\end{equation*}
$$

Let $f_{n}(x, y), g_{m}(x, y)$ be the homogeneous terms of f, g of degrees n, m, respectively. Since $J(F)=1$, we get that [5],

$$
\begin{equation*}
f_{n}^{m}=g_{m}^{n} \tag{3}
\end{equation*}
$$

Note that $H=(f, g-f)$ satisfies (2). Therefore, in the case where $n=m$, we may replace $g-f$ by g, and assume that $m<n$ and f, g are of the form (1).

Now we observe that $a_{1}(y)=a^{1} y+a^{2}$ and $b_{1}(y)=b^{1} y+b^{2}$. We may, after a linear change of coordinates, assume that

$$
a_{1}^{\prime}(y)=a^{1} \neq 0, \quad \text { and } \quad b_{1}^{\prime}(y)=b^{1} \neq 0
$$

To see that, let

$$
\begin{aligned}
& f_{n}(x, y)=x^{n}+a^{1} y x^{n-1}+\text { lower degree terms in } x \\
& g_{m}(x, y)=x^{m}+b^{1} y x^{m-1}+\text { lower degree terms in } x
\end{aligned}
$$

Condition (3) implies that $n\left(x^{m-1}\right)^{n-1} \cdot b^{1} y=m\left(x^{n-1}\right)^{m-1} \cdot a^{1} y$ and thus $n b^{1}=m a^{1}$. Therefore, in the case where $b^{1}=0$-and thus $a^{1}=0$-, we may replace x with $x+y$ and y with y to get $b^{1}=m$ and $a^{1}=n$. Then, the polynomials $f_{x}, f_{y}, g_{x}, g_{y}$ are all regular in x. Now, consider the resultant of g_{x} and g_{y} with respect to x,

$$
\operatorname{Res}_{x}\left(g_{x}, g_{y}\right)=-g_{x} B+g_{y} A=c
$$

where $A, B \in \mathbf{C}[x, y]$ of degrees-(in x)-at most $m-2$. Since $J(F)=1$, we see that c is a non zero constant. Replace A / c with A and B / c with B. The latter, together with (2), gives

$$
g_{y}\left(f_{x}-A\right)=g_{x}\left(f_{y}-B\right)
$$

Since no factor of g_{x} divides g_{y}, we see that g_{x} divides $f_{x}-A$ and thus we get

$$
\begin{align*}
& f_{x}=g_{x} h+A \\
& f_{y}=g_{y} h+B \tag{4}
\end{align*}
$$

for some $h \in \mathbf{C}[x, y]$. Note in the above that $\operatorname{deg}_{x} B, \operatorname{deg}_{x} A \leqslant m-2$. Therefore, A and B are nothing but the remainders of the division of f_{x} by g_{x} and f_{y} and g_{y}, respectively, where the above polynomials are thought of as members of the ring $\mathbf{R}[y][x]$. For notational purposes, we denote $A=\operatorname{rem}_{x}\left(f_{x}, g_{x}\right)$ and $B=\operatorname{rem}_{x}\left(f_{y}, g_{y}\right)$.
Plane Automorphisms. Suppose now that $F: \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ is an automorphism. Then in this case it is possible to precisely find what the polynomials A and B look like. Indeed,
since F is an automorphism, we see that m divides n and thus $n=m k,[4]$. Note that $F_{1}=\left(g, f-g^{k}\right)$ is also an automorphism with $\operatorname{deg}\left(f-g^{k}\right)<\operatorname{deg} f$. Using an inductive procedure, we may find a polynomial $\phi(t) \in \mathbf{C}[t]$,

$$
\phi(t)=t^{k}+c_{1} t^{k-1}+\cdots+c_{k-1} t
$$

so that

$$
\operatorname{deg}(f-\phi(g))<m=\operatorname{deg} g
$$

Note that $G=(g, f-\phi(g))$ is also a polynomial automorphism with $J(G)=-1$. Also we have:

$$
\begin{align*}
& f_{x}=g_{x} \phi^{\prime}(g)+\left(f_{x}-g_{x} \phi^{\prime}(g)\right) \tag{5}\\
& f_{y}=g_{y} \phi^{\prime}(g)+\left(f_{y}-g_{y} \phi^{\prime}(g)\right)
\end{align*}
$$

In the above we have:

$$
\begin{aligned}
& \operatorname{deg}\left(\left(f_{x}-g_{x} \phi^{\prime}(g)\right) \leqslant m-2,\right. \\
& \operatorname{deg}\left(f_{y}-g_{y} \phi^{\prime}(g)\right) \leqslant m-2
\end{aligned}
$$

The above, combined with (4), gives us the nature of the polynomials A and B :

$$
\begin{align*}
& A=f_{x}-g_{x} \phi^{\prime}(g)=(f-\phi(g))_{x} \\
& B=f_{y}-g_{y} \phi^{\prime}(g)=(f-\phi(g))_{y} \tag{6}
\end{align*}
$$

Notice that in this case, A and B can also be obtained as follows: Since $F=(f, g)$ is an automorphism, f and g are both regular in x and y, [4], and thus if we set \mathcal{A} $=\operatorname{rem}_{x}\left(f_{x}, g_{x}\right)$ and $\mathcal{B}=\operatorname{rem}_{y}\left(f_{y}, g_{y}\right)$, a degree comparison shows that $A=\mathcal{A}$ and $B=\mathcal{B}$. The PR Conjecture. From (6) we observe that

$$
\begin{equation*}
A_{y}=B_{x} \tag{7}
\end{equation*}
$$

With the aid of the above we can formulate the following conjecture and show that it is equivalent to the Jacobian conjecture.
The Polynomial Remainder Conjecture. Suppose that $F, f_{x}, g_{x}, f_{y}, g_{y}, n, m$ are as above with $m<n, f, g, f_{x}, g_{x}, f_{y}, g_{y}$ regular in x and $J(F)=1$. Suppose also that $A=\operatorname{rem}_{x}\left(f_{x}, g_{x}\right), B=\operatorname{rem}_{x}\left(f_{y}, g_{y}\right)$. Then, $A_{y}=B_{x}$.

THEOREM 2.1. The polynomial remainder conjecture is equivalent to the Jacobian conjecture.

Proof: In view of (7), it only suffices to show that the polynomial remainder conjecture implies the Jacobian conjecture. Indeed the condition $A_{y}=B_{x}$ combined with (4) gives us $J(g, h)=0$. Since $J(f, g)=1$ we get that $h=\psi(g)$ for some $\psi(t) \in \mathbf{C}[t]$, [2]. Then

$$
\begin{aligned}
& A=f_{x}-g_{x} \psi(g) \\
& B=f_{y}-g_{y} \psi(g)
\end{aligned}
$$

Now let $\phi(t)=\int \psi(t) d t$ and consider $P(x, y)=f-\phi(g)$. Then,

$$
P_{x}=A, \quad \text { and } \quad P_{y}=B
$$

Notice that $J(F)=J(f-\phi(g), g)=1$, and thus [2, Lemma 9] shows that $\operatorname{deg}_{x}(f-\phi(g))$ $=\operatorname{deg}(f-\phi(g))$. Let now $k=\operatorname{deg} \phi(t)$. Since $\operatorname{deg}_{x}(f-\phi(g))=\operatorname{deg}_{x} A+1<m$, we see that the degree of $\phi(g)$ kills the degree of f. Therefore, $n-m k=0$ and thus m divides n. Repeating the procedure for the map $(g, f-\phi(g))$ and using simple induction on n, it is easily seen, $[4$, Theorem $6, \mathrm{p} .101]$ that F is a polynomial automorphism.

3. A Decision Procedure for a Map to be Bijective

In this section we shall first state an algorithm for deciding whether a polynomial $\operatorname{map} F$ over \mathbf{C}^{2} is an automorphism. Cheng and Wang in [1], have also given such an algorithm which is based on that fact that F is an automorphism if $J(F)=c \neq 0$ and F is injective on a line. Ours, on the other hand, is solely based on remainder sequences and it is motivated by the PR conjecture. In addition, we shall give a criterion for a polynomial map over \mathbf{R}^{2} to be a homeomorphism.
The Complex Case. Let $F=(f, g): \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ be a polynomial map. Suppose that the following (double) polynomial remainder sequence $A^{i}, B^{i}, i=1,2, \ldots, k$ can be created as follows:

1. $\quad A^{1}=\operatorname{rem}_{x}\left(f_{x}, g_{x}\right), B^{1}=\operatorname{rem}_{y}\left(f_{y}, g_{y}\right)$
2. If $A_{y}^{1}=B_{x}^{1}$, we set $A^{2}=\operatorname{rem}_{x}\left(g_{x}, A^{1}\right)$ and $B^{2}=\operatorname{rem}_{y}\left(g_{y}, B^{1}\right)$
3. Assume that $A^{1}, A^{2}, \ldots, A^{j}, B^{1}, \ldots, B^{j} j \geqslant 2$ have been defined. If $A_{y}^{j}=B_{x}^{j}$, we set $A^{j+1}=\operatorname{rem}_{x}\left(A^{j-1}, A^{j}\right)$ and $B^{j+1}=\operatorname{rem}_{y}\left(B^{j-1}, B^{j}\right)$
4. The sequence ends where one of A^{k}, B^{k} is a constant different than zero.

Observe that a necessary condition for the construction of such a sequence is that $\operatorname{deg}_{x} g_{x} \leqslant \operatorname{deg}_{x} f_{x}, \operatorname{deg}_{y} g_{y} \leqslant \operatorname{deg}_{y} f_{y}$, and f, f_{x}, A^{j}, are regular in x and f, f_{y}, B^{j} are regular in y. We then have:

Theorem 3.1. Suppose $F=(f, g): \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ is a polynomial map with m $=\operatorname{deg} g \leqslant n=\operatorname{deg} f$ and $J(F)=c \neq 0$. Then F is an automorphism if and only a sequence A^{j}, B^{j} can be created as above.

Proof: (\Leftarrow) From the proof of Theorem 2.1 we see that there exist polynomials $P^{j}(x, y), j=1, \ldots, k$ so that:
(1) $P_{x}^{j}=A^{j}, P_{y}^{j}=B^{j}$,
(2) $\operatorname{deg}_{x} P^{1}<\operatorname{deg}_{x} g, \operatorname{deg}_{x} P^{j+1}<\operatorname{deg}_{x} P^{j}, j=2, \ldots, k-1, \operatorname{deg}_{y} P^{1}$ $<\operatorname{deg}_{y} g, \operatorname{deg}_{y} P^{j+1}<\operatorname{deg}_{y} P^{j}, j=2, \ldots, k-1$.
Now, let $F^{1}=\left(g, P^{1}\right), F^{j}=\left(P^{j}, P^{j+1}\right), j=1, \ldots, k-1$. It is easy to see that $J\left(F^{j}\right)= \pm 1$ and F is an automorphism if and only F^{j} is an automorphism, $j=1, \ldots, k-1$. Finally,
let us look at $F^{k-1}=\left(P^{k-1}, P^{k}\right)$. Since $\min \left\{\operatorname{deg}_{x} P^{k}, \operatorname{deg}_{y} P^{k}\right\}=1$ and $J\left(F^{k-1}\right)= \pm 1$, we may assume that $P^{k}(x, y)=a x+b y+c$. Then, [2, Lemma 19, p. 9] shows that this last map F^{k-1} is an automorphism.
(\Rightarrow) From the discussion proceeding (6) we see that polynomials $A^{1}=\operatorname{rem}_{x}\left(f_{x}, g_{x}\right)$ $B^{1}=\operatorname{rem}_{y}\left(f_{y}, g_{y}\right)$ can be defined and they satisfy $A_{y}^{1}=B_{x}^{1}$. In addition, the proof of Theorem 2.1 shows that there exists a polynomial $P(x, y)$ of degree less than m so that (g, P) is an automorphism. Since g, P are regular in x and y, a repetition of the above procedure produces the required sequence A^{j}, B^{j}.

Suppose now that f, g are regular in x, y, and let u, v be indeterminates. Consider

$$
\begin{align*}
& A(x, u, v)=\operatorname{Res}_{y}(f-u, g-v)=A_{k}(u, v) x^{k}+\cdots+A_{1}(u, v) x+A_{0}(u, v) \\
& B(y, u, v)=\operatorname{Res}_{x}(f-u, g-v)=B_{r}(u, v) y^{r}+\cdots+B_{1}(u, v) y+B_{0}(u, v) \tag{8}
\end{align*}
$$

In [5, Lemma 1, p. 479, Proposition 1, p. 480] a simple theoretical criterion and formula for the inversion of $F=(f, g)$ is given in terms of $A(x, u, v), B(y, u, v)$, which for the sake of completeness we shall state it here, along with a new proof that will serve as a motivation for the real case.

Proposition 3.1. Let $F=(f, g): \mathbf{C}^{2} \rightarrow \mathbf{C}^{2}$ with f, g regular in x, y. Then F is an automorphism if and only if $A(x, u, v)=a x+A_{0}(u, v)$ and $B(y, u, v)=b y+B_{0}(u, v)$, where $a, b \in \mathbf{C}, a b \neq 0$. In that case the inverse $F^{-1}(x, y)=\left(-A_{0}(x, y) / a,-B_{0}(x, y) / b\right)$.

Proof: (\Rightarrow) In view of [5, Theorem 1, p. 475] we see that $k \geqslant 1$. We shall first show that A_{k} is a non zero constant. For if not, there exists a $z_{0}=\left(u_{0}, v_{0}\right)$ so that $A_{k}\left(z_{0}\right)=0$. Then, in this case either $A_{k}\left(z_{0}\right)=\cdots=A_{0}\left(z_{0}\right)=0$ or there exists $r<k$ such that $A_{\mathrm{r}}\left(z_{0}\right) \neq 0$. In the first case, $f-u_{0}$ and $g-v_{0}$ would have a common factor of positive degree, a contradiction to F being one to one. In the second case, by the lifting property of the resultant, [5, Property 2, p.474], it follows that there exists a sequence $\left\{z_{j}\right\}$ so that $\left|z_{j}\right| \rightarrow \infty$ and $F\left(z_{j}\right) \rightarrow z_{0}$, again a contradiction to F being a proper map. Finally, if $k>1$ we see that this contradicts the fact that F is one to one.
$\left(\Leftarrow\right.$) From (8) we observe that $A(x, f, g)=B(y, f, g)=0$, and thus $a x+A_{0}(f, g)$ $=0$, by $+B_{0}(f, g)=0$, and upon solving for x, y the desired result follows.
The Real Case. Suppose now that $f(x, y), g(x, y) \in \mathbf{R}[x, y]$ and consider $F=(f, g)$: $\mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$. In this paragraph we are going to give a somewhat similar criterion to the above for F to be a homeomorphism.

Suppose first that F is a homeomorphism. Note that F is a proper map (a map is proper if the inverse image of a compact set is compact]. Also F is locally one to one, and thus its Jacobian $J(F)(x, y)$ does not change sign over \mathbf{R}^{2}. With loss of little generality, we shall here deal with the case where $J(F)(x, y)$ is a real non vanishing polynomial over \mathbf{R}^{2}.

PROPOSITION 3.2. Let $F=(f, g): \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ be a real polynomial map with f, g regular in y, and $J(F)$ a non constant and non vanishing polynomial over \mathbf{R}^{2}. Then
F is a homeomorphism of \mathbf{R}^{2} onto \mathbf{R}^{2} if and only if either A_{k} is equal to a nonzero constant, or A_{k} does not change sign in \mathbf{R}^{2}, and if it vanishes at $w_{0}=\left(u_{0}, v_{0}\right)$, then either $A_{j}\left(w_{0}\right)=0$ for $j=0, \ldots, k$ or there exists an $r<k$ with $A_{r}\left(w_{0}\right) \neq 0$ and near w_{0}, A_{k} and A_{r} have the same sign and $k=r \bmod 2$.

Proof: (\Rightarrow) As in the complex case, we observe that $k \geqslant 1$. Now suppose that A_{k} vanishes at $w_{0}=\left(u_{0}, v_{0}\right)$ and A_{k} and A_{r} have different signs near w_{0} and/or $k \neq r \bmod 2$. Let N be a disk around w_{0} so that $A_{r} \neq 0$ on N. In the first case, for any $b>0$, the image of the $\operatorname{map} A: N \times[b, \infty] \rightarrow \mathbf{R}, A(u, v, x)=A(x, u, v)$ contains 0 , and thus by the lifting property of the resultant and the fact that F is a homeomorphism, there exists a real sequence $\left|\left(x_{j}, y_{j}\right)\right| \rightarrow \infty$ and $F\left(x_{j}, y_{j}\right) \rightarrow w_{0}$. But this contradicts the fact that F is proper. The case where $k \neq r \bmod 2$ is treated similarly. Finally, in the case where $A_{j}\left(w_{0}\right)=0$ for $j=0, \ldots, k$, note that the number of such points w_{0} is finite, since any such w_{0} corresponds to a non trivial factor of $J(F)$.
(\Leftarrow) Now suppose that A_{k} is a non zero constant and let K be a compact subset of \mathbf{R}^{2}. Consider the set $M=\{x \in \mathbf{R} \mid A(x, u, v)=0,(u, v) \in K\}$. Since A_{k} is a non zero constant, M is a compact subset of \mathbf{R}. In addition, since f, g are both regular in y, the set $\left\{(x, y) \in \mathbf{R}^{2} \mid F(x, y)=z, z \in K\right\}$ is also compact. The latter implies that F is a proper map, and since F is locally one to one, we deduce that F is a homeomorphism of \mathbf{R}^{2} onto \mathbf{R}^{2}. Finally, the case where K contains a zero of A_{k} is treated similarly.

Example 1. Let

$$
\begin{aligned}
& f=x+y+(x-y)^{3} \\
& g=x-y-(x+y)^{3}
\end{aligned}
$$

Then, $J(F)=-18\left(x^{2}-y^{2}\right)^{2}-2$ and

$$
\begin{aligned}
& A(x, u, v)=512 x^{9}-192(u-v) x^{6}+384 x^{5}-288(u+v) x^{4}+\left(24 v^{2}+24 u^{2}+168 u v\right) x^{3} \\
& \quad+(24 u-24 v) x^{2}+\left(-18 u^{2}+8+18 v^{2}\right) x+\left(-u^{3}-4 v-4 u-3 v^{2} u+3 u^{2} v+v^{3}\right)
\end{aligned}
$$

Example 2. Let

$$
\begin{aligned}
& f=\left(y+y^{3}\right)\left(1+(x+y)^{2}+y^{2}\right) \\
& g=\left(x+y+(x+y) y^{2}\right)\left(1+(x+y)^{2}+y^{2}\right)
\end{aligned}
$$

Then,

$$
J(F)=-\left(1+y^{2}\right)\left(1+x^{2}+2 x y+2 y^{2}\right)\left(5 x^{2} y^{2}+3 x^{2}+10 y^{3} x+6 x y+1+10 y^{4}+9 y^{2}\right)
$$

and

$$
\begin{aligned}
& A(x, u, v)=\left(32 u^{4}+32 u^{2} v^{2}\right) x^{5}+\left(32 v^{4}+96 u^{2} v^{2}-128 u^{3} v-64 u v^{3}+64 u^{4}\right) x^{3} \\
& +\left(-128 u v^{3}+32 v^{4}-128 u^{3} v+192 u^{2} v^{2}+32 u^{4}\right) x \\
& \quad+\left(-32 v^{5}+32 u^{5}-160 u^{4} v+320 u^{3} v^{2}-320 u^{2} v^{3}+160 u v^{4}\right)
\end{aligned}
$$

It is easily seen that in both examples $F=(f, g)$ satisfies the conditions of the above Proposition, and thus F is a homeomorphism of \mathbf{R}^{2} onto \mathbf{R}^{2}.

References

[1] C. Cheng and S. Wang, 'An algorithm that determines whether a polynomial map is bijective', in Automorphisms of Affine Spaces, (A. van den Essen, Editor) (Kluwer Academic Publishers, Netherlands 123, 1995), pp. 169-176.
[2] C. Ching-An Cheng, J. McKay and S. Sui-Sheng Wang, 'Younger mates and the Jacobian conjecture', Proc. Amer. Math. Soc. 123 (1995), 2939-2947.
[3] O.H. Keller, 'Ganze Cremona-Tranformationen', Monatshefte der Mathematischen Physik 47 (1939), 299-306.
[4] J.H. McKay and S. Sui-Sheng Wang, 'An elementary proof of the automorphism theorem in two variables', J. Pure Appl. Algebra 52 (1988), 91-102.
[5] T. Sakkalis, 'On relations between Jacobians and resultants of polynomials in two variables', Bull. Austral. Math. Soc. 47 (1993), 473-481.

Department of Mathematics
Agricultural University of Athens
Athens 11855
Greece
e-mail: takis@aua.gr

