POLYNOMIAL REMAINDERS AND PLANE AUTOMORPHISMS

TAKIS SAKKALIS

This note relates polynomial remainders with polynomial automorphisms of the plane. It also formulates a conjecture, equivalent to the famous Jacobian Conjecture. The latter provides an algorithm for checking when a polynomial map is an automorphism. In addition, a criterion is presented for a real polynomial map to be bijective.

1. INTRODUCTION

Let f(x, y), g(x, y) be polynomials with coefficients in the field of complex numbers C, of (total) positive degrees n and m, respectively. Consider the map $F := (f,g) : \mathbb{C}^2 \to \mathbb{C}^2$. Let $J(F) = f_x g_y - f_y g_x$ be the determinant of the Jacobian matrix of F. F is called a polynomial automorphism if it has a global polynomial inverse. In this case, an application of the chain rule and the fact that every nonconstant polynomial over C has a root, implies that J(F) is a nonzero constant. The Jacobian conjecture is that the converse is true. It is also known as Keller's problem, since it first appeared in the literature in [3], in which he proves the complex birational case.

In this note, we shall relate polynomial remainders and polynomial automorphisms. In addition, we shall formulate a conjecture which is equivalent to the Jacobian conjecture. The latter provides a relatively easy algorithmic way of checking when a polynomial map f is an automorphism. We conclude with a criterion for a real polynomial map to be bijective.

2. POLYNOMIAL REMAINDERS AND AUTOMORPHISMS

POLYNOMIAL REMAINDERS. Let $p(x_1, \ldots, x_n) \in \mathbb{C}[x_1, \ldots, x_n]$ of (total) degree k. We say that p is regular in x_i , for some $1 \leq i \leq n$, if deg_x, p = k.

Let F, n, m be as above. We may, after a linear change of coordinates, assume that f, g are regular in x, and of the form

(1)
$$f(x,y) = x^{n} + a_{1}(y)x^{n-1} + \dots + a_{n-1}(y)x + a_{n}(y)$$
$$g(x,y) = x^{m} + b_{1}(y)x^{m-1} + \dots + b_{m-1}(y)x + b_{m}(y)$$

Received 19th November, 2002

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/03 \$A2.00+0.00.

T. Sakkalis

Now suppose that F satisfies the Jacobian condition

Let $f_n(x, y), g_m(x, y)$ be the homogeneous terms of f, g of degrees n, m, respectively. Since J(F) = 1, we get that [5],

$$f_n^m = g_m^n$$

Note that H = (f, g - f) satisfies (2). Therefore, in the case where n = m, we may replace g - f by g, and assume that m < n and f, g are of the form (1).

Now we observe that $a_1(y) = a^1y + a^2$ and $b_1(y) = b^1y + b^2$. We may, after a linear change of coordinates, assume that

$$a'_1(y) = a^1 \neq 0$$
, and $b'_1(y) = b^1 \neq 0$

To see that, let

 $f_n(x,y) = x^n + a^1 y x^{n-1}$ + lower degree terms in x $g_m(x,y) = x^m + b^1 y x^{m-1}$ + lower degree terms in x

Condition (3) implies that $n(x^{m-1})^{n-1} \cdot b^1 y = m(x^{n-1})^{m-1} \cdot a^1 y$ and thus $nb^1 = ma^1$. Therefore, in the case where $b^1 = 0$ -and thus $a^1 = 0$ -, we may replace x with x + y and y with y to get $b^1 = m$ and $a^1 = n$. Then, the polynomials f_x, f_y, g_x, g_y are all regular in x. Now, consider the resultant of g_x and g_y with respect to x,

$$\operatorname{Res}_x(g_x, g_y) = -g_x B + g_y A = c$$

where $A, B \in \mathbb{C}[x, y]$ of degrees-(in x)-at most m-2. Since J(F) = 1, we see that c is a non zero constant. Replace A/c with A and B/c with B. The latter, together with (2), gives

$$g_y(f_x - A) = g_x(f_y - B)$$

Since no factor of g_x divides g_y , we see that g_x divides $f_x - A$ and thus we get

(4)
$$f_x = g_x h + A$$
$$f_y = g_y h + B$$

for some $h \in \mathbb{C}[x, y]$. Note in the above that $\deg_x B$, $\deg_x A \leq m-2$. Therefore, A and B are nothing but the *remainders* of the division of f_x by g_x and f_y and g_y , respectively, where the above polynomials are thought of as members of the ring $\mathbb{R}[y][x]$. For notational purposes, we denote $A = \operatorname{rem}_x(f_x, g_x)$ and $B = \operatorname{rem}_x(f_y, g_y)$.

PLANE AUTOMORPHISMS. Suppose now that $F : \mathbb{C}^2 \to \mathbb{C}^2$ is an automorphism. Then in this case it is possible to precisely find what the polynomials A and B look like. Indeed, since F is an automorphism, we see that m divides n and thus n = mk, [4]. Note that $F_1 = (g, f - g^k)$ is also an automorphism with $\deg(f - g^k) < \deg f$. Using an inductive procedure, we may find a polynomial $\phi(t) \in \mathbb{C}[t]$,

$$\phi(t) = t^{k} + c_{1}t^{k-1} + \dots + c_{k-1}t$$

so that

$$\mathrm{deg}\big(f - \phi(g)\big) < m = \mathrm{deg}\,g$$

Note that $G = (g, f - \phi(g))$ is also a polynomial automorphism with J(G) = -1. Also we have:

(5)
$$f_x = g_x \phi'(g) + (f_x - g_x \phi'(g))$$
$$f_y = g_y \phi'(g) + (f_y - g_y \phi'(g))$$

In the above we have:

$$\deg((f_x - g_x \phi'(g)) \leq m - 2$$

 $\deg(f_y - g_y \phi'(g)) \leq m - 2$

The above, combined with (4), gives us the nature of the polynomials A and B:

(6)
$$A = f_x - g_x \phi'(g) = (f - \phi(g))_x$$
$$B = f_y - g_y \phi'(g) = (f - \phi(g))_y$$

Notice that in this case, A and B can also be obtained as follows: Since F = (f, g) is an automorphism, f and g are both regular in x and y, [4], and thus if we set $\mathcal{A} = \operatorname{rem}_x(f_x, g_x)$ and $\mathcal{B} = \operatorname{rem}_y(f_y, g_y)$, a degree comparison shows that $A = \mathcal{A}$ and $B = \mathcal{B}$. THE PR CONJECTURE. From (6) we observe that

(7)
$$A_y = B_x$$

With the aid of the above we can formulate the following conjecture and show that it is equivalent to the Jacobian conjecture.

THE POLYNOMIAL REMAINDER CONJECTURE. Suppose that $F, f_x, g_x, f_y, g_y, n, m$ are as above with $m < n, f, g, f_x, g_x, f_y, g_y$ regular in x and J(F) = 1. Suppose also that $A = \operatorname{rem}_x(f_x, g_x), B = \operatorname{rem}_x(f_y, g_y)$. Then, $A_y = B_x$.

THEOREM 2.1. The polynomial remainder conjecture is equivalent to the Jacobian conjecture.

PROOF: In view of (7), it only suffices to show that the polynomial remainder conjecture implies the Jacobian conjecture. Indeed the condition $A_y = B_x$ combined with (4) gives us J(g, h) = 0. Since J(f, g) = 1 we get that $h = \psi(g)$ for some $\psi(t) \in \mathbf{C}[t]$, [2]. Then

$$A = f_x - g_x \psi(g)$$
$$B = f_y - g_y \psi(g)$$

Now let $\phi(t) = \int \psi(t) dt$ and consider $P(x, y) = f - \phi(g)$. Then,

$$P_x = A$$
, and $P_y = B$

Notice that $J(F) = J(f - \phi(g), g) = 1$, and thus [2, Lemma 9] shows that $\deg_x(f - \phi(g)) = \deg(f - \phi(g))$. Let now $k = \deg\phi(t)$. Since $\deg_x(f - \phi(g)) = \deg_x A + 1 < m$, we see that the degree of $\phi(g)$ kills the degree of f. Therefore, n - mk = 0 and thus m divides n. Repeating the procedure for the map $(g, f - \phi(g))$ and using simple induction on n, it is easily seen, [4, Theorem 6, p. 101] that F is a polynomial automorphism.

3. A DECISION PROCEDURE FOR A MAP TO BE BIJECTIVE

In this section we shall first state an algorithm for deciding whether a polynomial map F over \mathbb{C}^2 is an automorphism. Cheng and Wang in [1], have also given such an algorithm which is based on that fact that F is an automorphism if $J(F) = c \neq 0$ and F is injective on a line. Ours, on the other hand, is solely based on remainder sequences and it is motivated by the PR conjecture. In addition, we shall give a criterion for a polynomial map over \mathbb{R}^2 to be a homeomorphism.

THE COMPLEX CASE. Let $F = (f,g) : \mathbb{C}^2 \to \mathbb{C}^2$ be a polynomial map. Suppose that the following (double) polynomial remainder sequence $A^i, B^i, i = 1, 2, ..., k$ can be created as follows:

- 1. $A^1 = \operatorname{rem}_x(f_x, g_x), B^1 = \operatorname{rem}_y(f_y, g_y)$
- 2. If $A_y^1 = B_x^1$, we set $A^2 = \operatorname{rem}_x(g_x, A^1)$ and $B^2 = \operatorname{rem}_y(g_y, B^1)$
- 3. Assume that $A^1, A^2, \ldots, A^j, B^1, \ldots, B^j \ j \ge 2$ have been defined. If $A^j_y = B^j_x$, we set $A^{j+1} = \operatorname{rem}_x(A^{j-1}, A^j)$ and $B^{j+1} = \operatorname{rem}_y(B^{j-1}, B^j)$
- 4. The sequence ends where one of A^k, B^k is a constant different than zero.

Observe that a necessary condition for the construction of such a sequence is that $\deg_x g_x \leq \deg_y f_x$, $\deg_y g_y \leq \deg_y f_y$, and f, f_x, A^j , are regular in x and f, f_y, B^j are regular in y. We then have:

THEOREM 3.1. Suppose $F = (f,g) : \mathbb{C}^2 \to \mathbb{C}^2$ is a polynomial map with $m = \deg g \leq n = \deg f$ and $J(F) = c \neq 0$. Then F is an automorphism if and only a sequence A^j, B^j can be created as above.

PROOF: (\Leftarrow) From the proof of Theorem 2.1 we see that there exist polynomials $P^{j}(x, y), j = 1, ..., k$ so that:

- (1) $P_x^j = A^j, P_y^j = B^j,$
- (2) $\deg_x P^1 < \deg_x g, \deg_x P^{j+1} < \deg_x P^j, j = 2, \dots, k 1, \ \deg_y P^1 < \deg_y g, \deg_y P^{j+1} < \deg_y P^j, j = 2, \dots, k 1.$

Now, let $F^1 = (g, P^1)$, $F^j = (P^j, P^{j+1})$, j = 1, ..., k-1. It is easy to see that $J(F^j) = \pm 1$ and F is an automorphism if and only F^j is an automorphism, j = 1, ..., k-1. Finally, let us look at $F^{k-1} = (P^{k-1}, P^k)$. Since $\min\{\deg_x P^k, \deg_y P^k\} = 1$ and $J(F^{k-1}) = \pm 1$, we may assume that $P^k(x, y) = ax + by + c$. Then, [2, Lemma 19, p. 9] shows that this last map F^{k-1} is an automorphism.

 (\Rightarrow) From the discussion proceeding (6) we see that polynomials $A^1 = \operatorname{rem}_x(f_x, g_x)$ $B^1 = \operatorname{rem}_y(f_y, g_y)$ can be defined and they satisfy $A_y^1 = B_x^1$. In addition, the proof of Theorem 2.1 shows that there exists a polynomial P(x, y) of degree less than m so that (g, P) is an automorphism. Since g, P are regular in x and y, a repetition of the above procedure produces the required sequence A^j, B^j .

Suppose now that f, g are regular in x, y, and let u, v be indeterminates. Consider

(8)
$$A(x, u, v) = \operatorname{Res}_{y}(f - u, g - v) = A_{k}(u, v)x^{k} + \dots + A_{1}(u, v)x + A_{0}(u, v)$$
$$B(y, u, v) = \operatorname{Res}_{x}(f - u, g - v) = B_{r}(u, v)y^{r} + \dots + B_{1}(u, v)y + B_{0}(u, v)$$

In [5, Lemma 1, p. 479, Proposition 1, p. 480] a simple theoretical criterion and formula for the inversion of F = (f, g) is given in terms of A(x, u, v), B(y, u, v), which for the sake of completeness we shall state it here, along with a new proof that will serve as a motivation for the real case.

PROPOSITION 3.1. Let $F = (f, g) : \mathbb{C}^2 \to \mathbb{C}^2$ with f, g regular in x, y. Then F is an automorphism if and only if $A(x, u, v) = ax + A_0(u, v)$ and $B(y, u, v) = by + B_0(u, v)$, where $a, b \in \mathbb{C}$, $ab \neq 0$. In that case the inverse $F^{-1}(x, y) = (-A_0(x, y)/a, -B_0(x, y)/b)$.

PROOF: (\Rightarrow) In view of [5, Theorem 1, p. 475] we see that $k \ge 1$. We shall first show that A_k is a non zero constant. For if not, there exists a $z_0 = (u_0, v_0)$ so that $A_k(z_0) = 0$. Then, in this case either $A_k(z_0) = \cdots = A_0(z_0) = 0$ or there exists r < ksuch that $A_r(z_0) \ne 0$. In the first case, $f - u_0$ and $g - v_0$ would have a common factor of positive degree, a contradiction to F being one to one. In the second case, by the lifting property of the resultant, [5, Property 2, p.474], it follows that there exists a sequence $\{z_j\}$ so that $|z_j| \rightarrow \infty$ and $F(z_j) \rightarrow z_0$, again a contradiction to F being a proper map. Finally, if k > 1 we see that this contradicts the fact that F is one to one.

(\Leftarrow) From (8) we observe that A(x, f, g) = B(y, f, g) = 0, and thus $ax + A_0(f, g) = 0$, $by + B_0(f, g) = 0$, and upon solving for x, y the desired result follows. THE REAL CASE. Suppose now that $f(x, y), g(x, y) \in \mathbf{R}[x, y]$ and consider $F = (f, g) : \mathbf{R}^2 \to \mathbf{R}^2$. In this paragraph we are going to give a somewhat similar criterion to the above for F to be a homeomorphism.

Suppose first that F is a homeomorphism. Note that F is a proper map [a map is proper if the inverse image of a compact set is compact]. Also F is locally one to one, and thus its Jacobian J(F)(x, y) does not change sign over \mathbb{R}^2 . With loss of little generality, we shall here deal with the case where J(F)(x, y) is a real non vanishing polynomial over \mathbb{R}^2 .

PROPOSITION 3.2. Let $F = (f,g) : \mathbb{R}^2 \to \mathbb{R}^2$ be a real polynomial map with f, g regular in y, and J(F) a non constant and non vanishing polynomial over \mathbb{R}^2 . Then

T. Sakkalis

F is a homeomorphism of \mathbb{R}^2 onto \mathbb{R}^2 if and only if either A_k is equal to a nonzero constant, or A_k does not change sign in \mathbb{R}^2 , and if it vanishes at $w_0 = (u_0, v_0)$, then either $A_j(w_0) = 0$ for j = 0, ..., k or there exists an r < k with $A_r(w_0) \neq 0$ and near w_0 , A_k and A_r have the same sign and $k = r \mod 2$.

PROOF: (\Rightarrow) As in the complex case, we observe that $k \ge 1$. Now suppose that A_k vanishes at $w_0 = (u_0, v_0)$ and A_k and A_r have different signs near w_0 and/or $k \ne r \mod 2$. Let N be a disk around w_0 so that $A_r \ne 0$ on N. In the first case, for any b > 0, the image of the map $A: N \times [b, \infty] \rightarrow \mathbf{R}$, A(u, v, x) = A(x, u, v) contains 0, and thus by the lifting property of the resultant and the fact that F is a homeomorphism, there exists a real sequence $|(x_j, y_j)| \rightarrow \infty$ and $F(x_j, y_j) \rightarrow w_0$. But this contradicts the fact that F is proper. The case where $k \ne r \mod 2$ is treated similarly. Finally, in the case where $A_j(w_0) = 0$ for $j = 0, \ldots, k$, note that the number of such points w_0 is finite, since any such w_0 corresponds to a non trivial factor of J(F).

(\Leftarrow) Now suppose that A_k is a non zero constant and let K be a compact subset of \mathbf{R}^2 . Consider the set $M = \{x \in \mathbf{R} \mid A(x, u, v) = 0, (u, v) \in K\}$. Since A_k is a non zero constant, M is a compact subset of \mathbf{R} . In addition, since f, g are both regular in y, the set $\{(x, y) \in \mathbf{R}^2 \mid F(x, y) = z, z \in K\}$ is also compact. The latter implies that F is a proper map, and since F is locally one to one, we deduce that F is a homeomorphism of \mathbf{R}^2 onto \mathbf{R}^2 . Finally, the case where K contains a zero of A_k is treated similarly.

EXAMPLE 1. Let

$$f = x + y + (x - y)^{3},$$

$$g = x - y - (x + y)^{3}.$$

Then, $J(F) = -18(x^2 - y^2)^2 - 2$ and

$$\begin{aligned} A(x,u,v) &= 512x^9 - 192(u-v)x^6 + 384x^5 - 288(u+v)x^4 + (24v^2 + 24u^2 + 168uv)x^3 \\ &+ (24u-24v)x^2 + (-18u^2 + 8 + 18v^2)x + (-u^3 - 4v - 4u - 3v^2u + 3u^2v + v^3). \end{aligned}$$

EXAMPLE 2. Let

$$f = (y + y^3)(1 + (x + y)^2 + y^2),$$

$$g = (x + y + (x + y)y^2)(1 + (x + y)^2 + y^2).$$

Then,

$$J(F) = -(1+y^2)(1+x^2+2xy+2y^2)(5x^2y^2+3x^2+10y^3x+6xy+1+10y^4+9y^2),$$

and

$$\begin{aligned} A(x, u, v) &= (32u^4 + 32u^2v^2)x^5 + (32v^4 + 96u^2v^2 - 128u^3v - 64uv^3 + 64u^4)x^3 \\ &+ (-128uv^3 + 32v^4 - 128u^3v + 192u^2v^2 + 32u^4)x \\ &+ (-32v^5 + 32u^5 - 160u^4v + 320u^3v^2 - 320u^2v^3 + 160uv^4). \end{aligned}$$

It is easily seen that in both examples F = (f, g) satisfies the conditions of the above Proposition, and thus F is a homeomorphism of \mathbb{R}^2 onto \mathbb{R}^2 .

References

- C. Cheng and S. Wang, 'An algorithm that determines whether a polynomial map is bijective', in *Automorphisms of Affine Spaces*, (A. van den Essen, Editor) (Kluwer Academic Publishers, Netherlands 123, 1995), pp. 169-176.
- [2] C. Ching-An Cheng, J. McKay and S. Sui-Sheng Wang, 'Younger mates and the Jacobian conjecture', Proc. Amer. Math. Soc. 123 (1995), 2939-2947.
- [3] O.H. Keller, 'Ganze Cremona-Tranformationen', Monatshefte der Mathematischen Physik 47 (1939), 299–306.
- [4] J.H. McKay and S. Sui-Sheng Wang, 'An elementary proof of the automorphism theorem in two variables', J. Pure Appl. Algebra 52 (1988), 91-102.
- [5] T. Sakkalis, 'On relations between Jacobians and resultants of polynomials in two variables', Bull. Austral. Math. Soc. 47 (1993), 473-481.

Department of Mathematics Agricultural University of Athens Athens 118 55 Greece e-mail: takis@aua.gr