$\operatorname{PSL}\left(2,2^{n}\right)$-Extensions Over $\mathbb{F}_{2^{n}}$

Arne Ledet

Abstract. We construct a one-parameter generic polynomial for $\operatorname{PSL}\left(2,2^{n}\right)$ over $\mathbb{F}_{2^{n}}$.

1 Introduction

Let F be a field, and let G be a finite group. A polynomial $P(\mathbf{s}, X) \in F(\mathbf{s})[X]$, where $\mathbf{s}=\left(s_{1}, \ldots, s_{n}\right)$ are indeterminates, is then called a generic polynomial for G over F, if it satisfies the following two conditions:
(a) The splitting field for $P(\mathbf{s}, X)$ over $F(\mathbf{s})$ is a Galois extension with Galois group isomorphic to G;
(b) Whenever M / L is a G-extension over F, i.e., M / L is a Galois extension with Galois group isomorphic to G, and $L \supseteq F$, there exists $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right) \in L^{n}$ such that M is the splitting field over L of $P(\mathbf{a}, X)$.
The s_{i} 's are referred to as the parameters, and a as a specialisation.
Generic polynomials have been considered in a number of papers, e.g., [KM, JLY, HM]. Also, there is the closely related concept of a generic extension, introduced by Saltman [Sa].

In this paper, we prove

Theorem 1 Let $n \geq 1$ be a natural number, and let $\mathbb{F}_{2^{n}}$ denote the finite field with 2^{n}

 elements. Then the polynomial$$
X^{2^{n}+1}+s X^{2^{n}}+X+1
$$

is generic for the projective special linear group $\operatorname{PSL}\left(2,2^{n}\right)$ over $\mathbb{F}_{2^{n}}$, with parameter s.
In particular, $X^{3}+s X^{2}+X+1$ is generic for the symmetric group S_{3} over \mathbb{F}_{2}, and $X^{5}+s X^{4}+X+1$ is generic for the alternating group A_{5} over \mathbb{F}_{4}, $c f$. [Hu, II Satz 6.14].

2 Proof of Theorem 1

Let M / L be a $\operatorname{PSL}\left(2,2^{n}\right)$-extension over $\mathbb{F}_{2^{n}}$. The group $\operatorname{PSL}\left(2,2^{n}\right)$ is equal to the special linear group $\operatorname{SL}\left(2,2^{n}\right)$, i.e., it consists of 2×2 matrices.

By a standard argument (see e.g., [JLY, 1.1]), we can match the Galois action with a matrix action. In fact, if we let $(A x)_{A \in \operatorname{PSL}\left(2,2^{n}\right)}$ be a normal basis for M / L, the map

$$
\varphi: \mathbf{u} \mapsto \sum_{A \in \operatorname{PSL}\left(2,2^{n}\right)} \pi\left(A^{-1} \mathbf{u}\right) A x
$$

Received by the editors April 26, 2004; revised May 25, 2005.
AMS subject classification: Primary: 12F12; secondary: 12E10.
(C)Canadian Mathematical Society 2006.
where $\pi: \mathbb{F}_{2^{n}}^{2} \rightarrow \mathbb{F}_{2^{n}}$ is the first coordinate function, will be an injective $\operatorname{PSL}\left(2,2^{n}\right)$ equivariant $\mathbb{F}_{2^{n}}$-vector space homomorphism from $\mathbb{F}_{2^{n}}^{2}$ into M.

Thus, we have elements $x=\varphi\left((1,0)^{t}\right)$ and $y=\varphi\left((0,1)^{t}\right)$ in M, linearly independent over $\mathbb{F}_{2^{n}}$, such that $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{PSL}\left(2,2^{n}\right)$ acts by $x \mapsto a x+c y$ and $y \mapsto b x+d y$. Letting $t=x / y$, we get $t \mapsto(a t+c) /(b t+d)$. This action on $\mathbb{F}_{2^{n}}(t)$ is faithful. Of necessity, t is then transcendental over $\mathbb{F}_{2^{n}}$, and we restrict our attention to $\mathbb{F}_{2^{n}}(t) / \mathbb{F}_{2^{n}}(t)^{\operatorname{PSL}\left(2,2^{n}\right)}$.

We will need to make use of Lüroth's theorem (see [Ja, 8.14]), and in particular the following facts from it: If $u=p(t) / q(t) \in F(t)$ is a rational function written in reduced form, i.e., with $\operatorname{gcd}(p, q)=1$, then t is algebraic over $F(u)$ of degree $\max \{\operatorname{deg} p, \operatorname{deg} q\}$; also, if K is an intermediate field $F \subsetneq K \subseteq F(t)$, then t is algebraic over K, and $K=F(u)$ for any non-constant coefficient u in the minimal polynomial for t over K.

We will construct an s such that $\mathbb{F}_{2^{n}}(t)^{\operatorname{PSL}\left(2,2^{n}\right)}=\mathbb{F}_{2^{n}}(s)$, and show that for this s, the polynomial in the theorem has $\mathbb{F}_{2^{n}}(t)$ as its splitting field. The s in the theorem must then simply be specialised to this s in order to produce a polynomial with splitting field $M=L(t)$ over L.

First, we note that $\left|\operatorname{PSL}\left(2,2^{n}\right)\right|=2^{n}\left(2^{n}-1\right)\left(2^{n}+1\right)$.
The matrix $\left(\begin{array}{cc}1 & 0 \\ a & 1\end{array}\right)$ acts by $t \mapsto t+a$, for $a \in \mathbb{F}_{2^{n}}$. These matrices form a subgroup isomorphic to the additive group $\left(\mathbb{F}_{2^{n}},+\right)$, and clearly the fixed field is

$$
\mathbb{F}_{2^{n}}\left(t^{2^{n}}+t\right)
$$

since

$$
\begin{aligned}
\prod_{a \in \mathbb{F}_{2^{n}}}(X-(t+a)) & =\prod_{a \in \mathbb{F}_{2^{n}}}((X-t)-a) \\
& =(X-t)^{2^{n}}-(X-t)=X^{2^{n}}-X-\left(t^{2^{n}}-t\right)
\end{aligned}
$$

Next, the matrix $\left(\begin{array}{cc}a & 0 \\ 0 & 1 / a\end{array}\right)$ acts by $t \mapsto a^{2} t$, for $a \in \mathbb{F}_{2^{n}}^{*}$. The effect on $t^{2^{n}}+t$ is multiplication by a^{2}, since $a^{2^{n}}=a$. These matrices form a subgroup isomorphic to the multiplicative group $\mathbb{F}_{2^{n}}^{*}$, and together with the subgroup above produce a group isomorphic to the semi-direct product $\mathbb{F}_{2^{n}} \rtimes \mathbb{F}_{2^{n}}^{*}$, where $\mathbb{F}_{2^{n}}^{*}$ acts on $\mathbb{F}_{2^{n}}$ by multiplication. The fixed field is

$$
\mathbb{F}_{2^{n}}\left(\left(t^{2^{n}}+t\right)^{2^{n}-1}\right)
$$

as

$$
\prod_{a \in \mathbb{F}_{2^{*}}}(X-a u)=X^{2^{n}-1}-u^{2^{n}-1}
$$

Now, $\left(t^{2^{n}}+t\right)^{2^{n}-1}$ is algebraic over $\mathbb{F}_{2^{n}}(t)^{\operatorname{PSL}\left(2,2^{n}\right)}$ of degree $2^{n}+1$, and we claim that its minimal polynomial is of the form $X^{2^{n}+1}+s X^{2^{n}}+X+1$ given in the theorem. This allows us to solve for s :

$$
s=\frac{1+\left(t^{2^{n}}+t 2^{2^{n}-1}+\left(t^{2^{n}}+t\right)^{4^{n}-1}\right.}{\left(t^{2^{n}}+t\right)^{2^{n}\left(2^{n}-1\right)}}
$$

It is obvious that this s is in reduced form, and therefore that $\mathbb{F}_{2^{n}}(t)$ has degree $2^{n}\left(2^{n}-1\right)\left(2^{n}+1\right)$ over $\mathbb{F}_{2^{n}}(s)$. This ensures that s in fact generates $\mathbb{F}_{2^{n}}(t)^{\operatorname{PSL}\left(2,2^{n}\right)}$, provided that s is invariant under the action of $\operatorname{PSL}\left(2,2^{n}\right)$. In which case the minimal polynomial will be as claimed.

We already know that s is invariant under the subgroup $\mathbb{F}_{2^{n}} \rtimes \mathbb{F}_{2^{n}}^{*}$ described above. For the rest, there is a matrix A in $\operatorname{PSL}\left(2,2^{n}\right)$ of order $2^{n}+1$, obtained from $\mathbb{F}_{4^{n}}$ by expressing multiplication by an element of order $2^{n}+1$ in terms of a basis over $\mathbb{F}_{2^{n}}$. Together with $\mathbb{F}_{2^{n}} \rtimes \mathbb{F}_{2^{n}}^{*}$, it generates $\operatorname{PSL}\left(2,2^{n}\right)$. Conjugating if necessary, we may assume $A=\left(\begin{array}{ll}0 & 1 \\ 1 & a\end{array}\right)$ for some $a \in \mathbb{F}_{2^{n}}$. Since

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & a
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
a & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

this means that $\operatorname{PSL}\left(2,2^{n}\right)$ is generated by $\mathbb{F}_{2^{n}} \rtimes \mathbb{F}_{2^{n}}^{*}$ and $\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$. This last matrix acts by $t \mapsto 1 / t$, so to prove $s \in \mathbb{F}_{2^{n}}(t)^{\operatorname{PSL}\left(2,2^{n}\right)}$ it is enough to show that s is invariant under $t \mapsto 1 / t$. To see this, we rewrite

$$
\begin{aligned}
s & =\frac{1+\left(t^{2^{n}}+t 2^{2^{n}-1}+\left(t^{2^{n}}+t\right)^{4^{n}-1}\right.}{\left(t^{2^{n}}+t\right)^{2^{n}\left(2^{n}-1\right)}}=\frac{\left(t^{2^{n}}+t\right)+\left(t^{2^{n}}+t\right)^{2^{n}}+\left(t^{2^{n}}+t\right)^{4^{n}}}{\left(t^{2^{n}}+t\right)^{2^{n}\left(2^{n}-1\right)+1}} \\
& =\frac{t+t^{8^{n}}}{\left(t^{2^{n}}+t\right)^{2^{n}\left(2^{n}-1\right)+1}}
\end{aligned}
$$

and find

$$
\begin{aligned}
s(1 / t) & =\frac{1 / t+1 / t^{8^{n}}}{\left(1 / t^{2^{2}}+1 / t\right)^{2^{n}\left(2^{n}-1\right)+1}}=\frac{t^{8^{n}+1}\left(1 / t+1 / t^{8^{n}}\right)}{t^{8^{n}+1}\left(1 / t^{2^{n}}+1 / t\right)^{2^{n}\left(2^{n}-1\right)+1}} \\
& =\frac{t^{8^{n}}+t}{\left(t+t^{2^{n}}\right)^{2^{n}\left(2^{n}-1\right)+1}}=s .
\end{aligned}
$$

Hence, s is $\operatorname{PSL}\left(2,2^{n}\right)$-invariant, and generates the fixed field.
The polynomial $X^{2^{n}+1}+s X^{2^{n}}+X+1$ is irreducible and has $\left(t^{2^{n}}+t\right)^{2^{n}-1}$ as a root. Its splitting field is all of $\mathbb{F}_{2^{n}}(t)$, since the conjugates of $\mathbb{F}_{2^{n}} \rtimes \mathbb{F}_{2^{n}}^{*}$ in $\operatorname{PSL}\left(2,2^{n}\right)$ have trivial intersection. This completes the proof of the theorem.

Remark It is not hard to see that the splitting field for $X^{2^{n}+1}+s X^{2^{n}}+X+1$ over \mathbb{F}_{2} is also $\mathbb{F}_{2^{n}}(t)$, with Galois group $\operatorname{PSL}\left(2,2^{n}\right) \rtimes C_{n}$, where C_{n} acts entry-wise on $\operatorname{PSL}\left(2,2^{n}\right)$ as the Galois group of $\mathbb{F}_{2^{n}} / \mathbb{F}_{2}$. For instance, $X^{5}+s X^{4}+X+1$ has Galois group S_{5} over \mathbb{F}_{2}. However, $X^{2^{n}+1}+s X^{2^{n}}+X+1$ is not generic for $\operatorname{PSL}\left(2,2^{n}\right) \rtimes C_{n}$ over $\mathbb{F}_{2^{n}}$, since the C_{n}-subextension of $\mathbb{F}_{2^{n}}(t) / \mathbb{F}_{2}(s)$ is $\mathbb{F}_{2^{n}}(s) / \mathbb{F}_{2}(s)$.

References

[HM] K. Hashimoto and K. Miyake, Inverse Galois problem for dihedral groups.In: Number Theory and Its Applications, Developments in Mathematics 2, Kluwer Academic Publishers, 1999, pp. 165-181.
[Hu] B. Huppert, Endliche Gruppen. I. Grundlehren der mathematischen Wissenschaften 134, Springer-Verlag, Berlin, 1967.
[Ja] N. Jacobson, Basic Algebra. II. W. H. Freeman, New York, 1989.
[JLY] C. U. Jensen, A. Ledet, and N. Yui, Generic Polynomials: Constructive Aspects of the Inverse Galois Problem. Mathematical Sciences Research Institute Publication 45, Cambridge University Press, Cambridge, 2002.
[KM] G. Kemper and E. Mattig, Generic polynomials with few parameters. J. Symbolic Comput. 30(2000), no. 6, 843-857.
[Sa] D. J. Saltman, Generic Galois extensions and problems in field theory. Adv. in Math. 43 (1982), no. 3, 250-283.

Department of Mathematics and Statistics
Texas Tech University
Lubbock, TX 79409-1042
U.S.A.
e-mail: arne.ledet@ttu.edu

