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Abstract

Given a sample of genes taken from a large population, we consider the neutral coalescent
genealogy and study the theoretical and empirical distributions of the size of the smallest
clade containing a fixed gene. We show that the theoretical distribution is strongly
related to a Yule distribution of parameter 2, and that the empirical count statistics are
asymptotically Gaussian as the number of genes grows to infinity. Then we consider
external branches of the coalescent tree, and describe their lengths. Using the infinitely
many sites model of mutation, we also describe the conditional distribution of the external
branch lengths, given the number of pairwise differences between a reference DNA
sequence and the sequence of one closest relative in the sample.
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1. Introduction

Coalescent theory associated with molecular information has proven to be an invaluable
tool for assessing the degree of relatedness between individuals. To date, these tools have
been successively applied by human geneticists to infer very deep relationships, of the order
of hundreds of generations [12]. For example, Donnelly et al. [5] estimated the time since the
most recent common ancestor of modern humans from DNA sequences of the ZFY intron (the
intron of the zinc finger protein on the Y chromosome).

In this article, we are concerned with the estimation of intermediate ancestry and, more
specifically, the relatedness of a given gene (or individual) to a sample of n − 1 weakly related
genes. The precise details of population history or geographic structure will not enter the
analysis, and the evolution of the population will be assumed to be selectively neutral. In
addition, we will consider genes that do not recombine. In other words, genetic drift will be the
only factor responsible for the allelic variation within the population. Under these assumptions,
the genealogy of n genes is well approximated by the coalescent model when the population size
N grows to infinity [10]. The approximation arises as a diffusion limit when time is measured
in units of N generations. See [17] and [6] for recent reviews on the subject.

The article is structured in two parts. In the first part, we give results about the numbers
of relatives of the reference gene, i.e. the smallest number of genes (minus one) that share
an ancestor with the reference gene. This subset of genes will be called a minimal clade of
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the coalescent tree. A minimal clade contains the reference gene plus the subset of its closest
relatives. We shall show that the number of closest relatives follows a Yule distribution of
parameter 2 (see [3]). Given the genealogy, we shall also study the limit probability distributions
of count statistics as n grows to infinity. The studied statistics correspond to the number of
genes with k relatives, k ≥ 2. We shall prove their asymptotic normality and, hence, provide
new statistical tests of neutral evolution based on the shape of trees [11].

In the second part of the article, we study the length of an external branch of the coalescent
tree [7]. This length corresponds to the time since the coalescence of an arbitrary lineage with the
other lineages, and constitutes a natural measure of the degree of relatedness of a gene with the
rest of the sample. Using the infinitely many sites model of the DNA molecule, we also describe
the conditional distribution of the coalescence time given the number of substitutions between
a reference DNA sequence and one of its closest relatives. This distribution corresponds to an
explicit mixture of gamma distributions, and extends results of Tajima [16]. We conclude the
article with an application to the human Y chromosome.

2. Background and notation

Consider a sample of n genes. In the coalescent, one wishes to record information both about
the number of ancestors at various times and about which genes share common ancestors. The
ancestral process An(t) records the number of distinct ancestors of the sample at a time t in the
past. It can be described as a continuous-time Markov chain on [n] := {1, . . . , n}, such that

An(0) = n,

1 is an absorbing state, and the rate of transition from k to k − 1 is equal to

λk = 1
2k(k − 1), k = n, . . . , 2.

This means that the times (Tk), k = n, . . . , 2, separating coalescence events are independent
and exponentially distributed with mean 2/k(k − 1). In the sequel, we shall also write

Sk = Tn + · · · + Tk.

To understand the topology of the tree, one possibility is to label genes in the sample from
the set [n] and define a random equivalence relation. In this relation, the genes i and j are
in the same class at time t if and only if they share a common ancestor at this time. Denote
by C(t) the random partition obtained from this equivalence relation at time t . According to
Kingman [10], the process C(t) is a continuous-time Markov chain on the set of all partitions
of [n] (denoted En) for which

C(0) ≡ {{1}, . . . , {n}}.
The transition rates of this Markov chain can be described as follows. For all α, β ∈ En,

qαβ =
{

1 if α ≺ β,

0 otherwise,

where the expression α ≺ β means that α and β are nested partitions such that β may be
obtained from α by merging two classes. The observation that 1 is an absorbing state of An(t)

means that C(t) converges almost surely to {[n]}, the final state in which a single class remains.
The embedded discrete-time Markov chain {Ck}, k = n, . . . , 1, moves through the sequence

Cn ≡ C(0) ≺ Cn−1 ≺ Cn−2 ≺ · · · ≺ C1 ≡ {[n]}
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and has transition probabilities

P(Ck−1 = αk−1 | Ck = αk) = 2

k(k − 1)
, k = n, . . . , 2.

Transitions happen if αk ≺ αk−1 and αk has exactly k classes; otherwise the transition
probability is 0.

In the coalescent tree, a clade is an equivalence class α� for some Ci , i = n − 1, . . . , 1,
such that the time since the most recent common ancestor of the genes in α� is exactly Si+1. In
this notation, i corresponds to the number of ancestors present in the sample at the instant of
coalescence.

3. Main results

In this article, we consider a specific realization of the random genealogy C(t). This
realization can hence be represented as a rooted tree with the genes at the tips and the most
recent common ancestor of the sample at the root. Consider an arbitrary gene in the sample,
and give to this gene the label 1. We then define the coalescence time of the lineage of gene 1
with the rest of the sample as

τn = sup{t ≥ 0 : {1} is an element of C(t)}.

The random variable τn corresponds to the length of a so-called external branch of the geneal-
ogy [7].

By definition, the smallest clade containing the gene 1 consists of the equivalence class α1
in the partition C(τn), meaning that {1} ⊂ α1. In turn, this means that α1 contains the reference
lineage 1 at the instant of coalescence with the rest of the sample. In the sequel, α1 is sometimes
called the minimal clade. Our interest is in the size Xn of the minimal clade. Formally, Xn is
then defined as

Xn = card(α1), α1 ∈ C(τn), {1} ⊂ α1.

The first result in this section gives the distribution of the random variable Xn.

Theorem 1. Let n ≥ 2. The random variable Xn has the probability distribution

P(Xn = x) = 4

(x − 1)x(x + 1)
, x = 2, . . . , n − 1,

and

P(Xn = n) = 2

n(n − 1)
.

The limiting distribution of Xn has mode 2 and is long tailed. This is an expected result
because this behaviour is a typical feature of the number of species in a genus in traditional
hierarchical phylogenetic taxonomy (see, e.g. [3]). In the Markov linear growth model or Yule
branching process, this number, denoted X′, is indeed distributed according to a Yule law,

P(X′ = x) = ρ�(1 + ρ)
�(x)

�(x + 1 + ρ)
, x ≥ 1,
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for some parameter ρ > 0 [23]. As n grows to infinity, the distribution of Mn = Xn − 1
converges to

P(M = m) = 4

m(m + 1)(m + 2)
, m ≥ 1,

and corresponds to theYule distribution of parameter ρ = 2. It is noteworthy that the distribution
of Xn coincides with the minimum of M +1 and n, and does not depend on n except through the
event (Xn = n). The small discrepancy between the finite and asymptotic probability values
is due to the possibility that the reference lineage might connect at the root of the tree. As a
corollary of Theorem 1, the expected size can be computed easily. We find that

E[Xn] = 3 − 2

n
, n ≥ 2,

and that the expected value converges to 3. In addition, the variance is equal to

var[Xn] = 4
n∑

i=3

1

i
− 6 + o(1), n ≥ 3,

which is of order log n and converges to infinity rather slowly.
Given a coalescent tree with n genes, we now consider the empirical frequencies of minimal

clades of fixed size

f x
n = card(i : Xi,n = x)

n
,

where Xi,n = card(αi) and αi is the equivalence class containing the gene i in C(τi,n). (Here,
the definition of τi,n is relative to gene i instead of gene 1.) The following result states that the
distribution of f x

n is approximatively Gaussian for large n.

Theorem 2. When n goes to infinity, we have

√
n

(
f x

n − 4

(x − 1)x(x + 1)

)
→ N (0, σ 2),

where σ 2 = 8
45 if x = 2 and

σ 2 = 4(11 + 4x4 − 27x2)

x(2x + 1)(2x − 1)(x − 1)2(x + 1)2 ,

for all x ≥ 3.

The case x = 2 is a direct consequence of McKenzie and Steel’s results [11] because nf 2
n

is twice the number of cherries in a coalescent or Yule tree. (A cherry is a pair of genes whose
lineages coalesce before sharing any ancestors with other genes.) McKenzie and Steel’s result
was derived from the analogy to extended Polya urns. Theorem 2 is based on a link to recent
results in theoretical computer science regarding binary search trees. Binary search trees appear
as formal representations for divide-and-conquer algorithms [13], [14]. The proof will exploit
the one-to-one correspondence between binary search trees and coalescent trees, and use the
stochastic recurrence equations involved in these data structures [2].

We will also superimpose a mutation process on the coalescent tree, and assume that DNA
sequences are observed at the tips of the genealogical tree. The times at which the mutations
occur are modelled as a Poisson process of constant rate 1

2θ , for some θ > 0. If a branch of
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the tree has length t , then the number of mutations has a Poisson distribution with mean 1
2θt ,

independently of the other branches. Among the various models that describe the mutation
types, the infinitely many sites model may be one of the most appropriate [20]. In this model,
each DNA sequence consists of completely linked sites (i.e. no recombination occurs). Each
mutation occurs at a site of the DNA sequence that has not mutated previously, meaning that a
new segregating site is produced. The number of segregating sites corresponds to the number
of substitutions of ancestral bases since the most recent common ancestor in the sample.

Under the infinitely many sites assumption, Tajima [16] studied a sample of size 2. After
observing 
 substitutions, it follows from Bayes’ theorem that the conditional distribution of
the coalescence time is a gamma distribution gamma(1 + 
, 1/(1 + θ)) of shape (1 + 
) and
scale 1/(1 + θ), where

gamma(a, λ)(t) = λa

�(a)
ta−1e−λt , t ≥ 0.

In this article, we shall describe the conditional distribution of the coalescence time τn given
that � = 
 substitutions are observed. In this notation, � is the number of substitutions found
when comparing the DNA sequence of the gene 1 to that of a closest parent in the coalescent
tree. The conditional distribution can be formulated as a mixture of gamma distributions. For
k = 2, . . . , n − 1 and k ≤ j ≤ n, let us write

c(j, k) =
∏

j≤
�=k≤n

(
(
 − 1) − k(k − 1)).

In addition, we set c(n, n) = 1. Define

ak = (n − 1)! (n − 2)!
λk

k∑
j=2

c(j, k)−1

((j − 2)!)2 for k = 2, . . . , n.

Let Gs(p, ·) be the shifted geometric distribution defined as follows:

Gs(p, 
) = p(1 − p)
, 
 = 0, 1, . . . .

Then, for the conditional probability density function of the coalescence time, we have

fτn | �=
(t) =
n∑

k=2

a(k, 
) gamma(1 + 
, λk + θ)(t), t ≥ 0,

where

a(k, 
) = akGs(pk, 
)

P(� = 
)
, 
 = 0, 1, . . . ,

and

P(� = 
) =
n∑

k=2

akGs(pk, 
), 
 = 0, 1, . . . ,

with Gs(pk, ·) the shifted geometric distribution of parameter

pk = 1

1 + θ/λk

, k = 2, . . . , n.
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4. The size of the minimal clade

4.1. Level of coalescence with the rest of the sample

The coalescence level K of the gene 1 with the rest of the sample is defined as a random
variable

K = k if and only if τn = Sk,

with k = n, n − 1, . . . , 2. More specifically, K is related to the ancestral process as follows:

K = 1 + An(τn).

We give the distribution of K below.

Proposition 1. For n ≥ 2, we have

P(K = k) = 2(k − 1)

n(n − 1)
for all k = 2, . . . , n.

Proof. Recall that, for all k = 2, . . . , n, we have

P(Ck = α) = (n − k)! k! (k − 1)!
n! (n − 1)! n1! · · · nk!, (1)

where α ∈ En is a partition in k classes, such that each class has cardinality card(αi) = ni and
n1 + · · · + nk = n. In the sequel, we shall use the notation |α| = k for the number of classes
of a partition. For a proof of this classical result, see [10], [9], or [17, p. 39, Proposition 2.2.2].

For k = 2, . . . , n, the probability that the coalescence occurs at a level of the genealogy
lower than k is equal to

P(K ≤ k) = P({1} ∈ Ck).

To compute the probability of this event, we can write

P(K ≤ k) =
∑

α : |α|=k−1

P(Ck = {1} ∪ α),

where the sum runs over all partitions of {2, . . . , n} into (k − 1) classes. Using (1), we find that

P(K ≤ k) =
∑

α : |α|=k−1

(n − k)! k! (k − 1)!
n! (n − 1)! n1! · · · nk−1!

and, since n1 + · · · + nk−1 = n − 1, we have

∑
α : |α|=k−1

(n − k)! (k − 1)! (k − 2)!
(n − 1)! (n − 2)! n1! · · · nk−1! = 1.

Therefore, we find that

P(K ≤ k) = k(k − 1)

n(n − 1)
, k = 2, . . . , n,

which yields the desired result.
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Note that the distribution of K could also be obtained in a less direct way using [22, p. 188,
Corollary 2]. The mean and the variance of K can be computed from elementary algebra. We
find that the expectation is equal to

E[K] = 2
3 (n + 1), n ≥ 2.

In order to compute the variance, recall that

n∑
k=2

k3 = 1
4 ((n + 1)4 − 2(n + 1)3 + (n + 1)2) − 1.

We then have
var[K] = 1

18 (n2 − n − 2).

The interpretation is that the average level at which the coalescence occurs is closer to the tips
of the tree than to the root. However, the variance is relatively large with respect to the mean
for large sample sizes.

4.2. Minimal clade size

This section deals with the size Xn of the minimal family of an arbitrary individual in the
sample. In it, we give a proof that the random variable Xn has a power law distribution

P(Xn = x) = 4

(x − 1)x(x + 1)
, x = 2, . . . , n − 1,

with

P(Xn = n) = 2

n(n − 1)
.

Before giving the proof of Theorem 1, we establish a useful combinatorial identity in the next
lemma.

Lemma 1. Let n ≥ 4 and let x be an integer such that n > x ≥ 3. We then have

n−3∑
k=x−2

k(k − 1) · · · (k − x + 3)(n − k − 1)(n − k − 2) = 2
n(n − 1) · · · (n − x)

(x − 1)x(x + 1)
.

Proof. First, use induction to prove that

n−1∑
k=x−2

k(k − 1) · · · (k − x + 3) = n(n − 1) · · · (n − x + 2)

x − 1
,

and then use a similar recursion argument to prove that

n−2∑
k=x−2

k(k − 1) · · · (k − x + 3)(n − k − 1) = n(n − 1) · · · (n − x + 1)

x(x − 1)
.

By applying the recursion again, we obtain the lemma from the above equations.
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Proof of Theorem 1. Consider the coalescent starting with n lineages. A standard result in
coalescent theory states that if we pick one lineage at random when there are k ≤ n lineages,
then the probability it will contain m of the n starting lineages is

P(Mn
k = m) =

(
n − m − 1

k − 2

)(
n − 1

k − 1

)−1

, 1 ≤ m ≤ n − k + 1.

For a proof of this result, see, e.g. [6, Chapter 1, Equation (3.14)].
At the moment of the coalescence with the rest of the sample, the lineage of individual 1

coalesces with a random subset of size Mn−1. Conditional on K = k, this means that Xn has
the same distribution as 1 + Mn−1

k−1 , i.e.

Xn ∼ 1 + Mn−1
k−1 ,

where the coalescent starts with (n − 1) lineages in Mn−1
k−1 . Then, for k = 3, . . . , n, we have

P(Xn = 1 + m | K = k) =
(

n − m − 2

k − 3

)(
n − 2

k − 2

)−1

, m = 1, . . . , n − k + 1,

and, for k = 2, we have
P(Xn = n | K = 2) = 1.

Then we have

P(Xn = n) = 2

n(n − 1)

and, for all m = 1, . . . , n − 2,

P(Xn = 1 + m) =
n−m+1∑

k=3

2(k − 1)

n(n − 1)

(
n − m − 2

k − 3

)(
n − 2

k − 2

)−1

.

For m = 1, we obtain

P(Xn = 2) =
n∑

k=3

2(k − 1)(k − 2)

n(n − 1)(n − 2)
,

which is equal to 2
3 . Similarly, for n > x ≥ 3, we obtain

P(Xn = x) =
n−3∑

k=x−2

2k(k − 1) · · · (k − x + 3)(n − k − 1)(n − k − 2)

n(n − 1)(n − 2) · · · (n − x)
.

Using Lemma 1, we find that

P(Xn = x) = 4

(x − 1)x(x + 1)

for all x = 2, . . . , n − 1.

We now turn to the proof of Theorem 2. Given a coalescent tree, we compute the number
of subtrees with x leaves (genes) and a lineage that connects to the root of the subtree. If we
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divide it by n, this leads to f x
n , which is an unbiased estimate of the probability P(Xn = x) for

all x = 2, . . . , n. When n goes to infinity, we obtain a Gaussian central limit theorem

√
n

(
f x

n − 4

(x − 1)x(x + 1)

)
→ N (0, σ 2),

where σ 2 = 8
45 if x = 2 and

σ 2 = 4(11 + 4x4 − 27x2)

x(2x + 1)(2x − 1)(x − 1)2(x + 1)2 (2)

for all x ≥ 3.

Proof of Theorem 2. Let Xx
n = nf x

n denote the number of minimal clades of size x. The
case x = 2 is a direct consequence of McKenzie and Steel’s results [11], because X2

n is twice
the number of cherries in a coalescent or Yule tree. For x ≥ 3, the proof follows from the fact
that the random variable Xx

n has a quicksort-like recurrence equation [8]

Xx
n = Xx

In
+ Xx∗

n−In
+ txn , (3)

where In is uniform over the set {1, . . . , n − 1} and the toll function txn is equal to

txn = δn,x(δIn,1 + δIn,n−1),

where δ denotes the Kronecker symbol. The expression for σ 2 is found by taking the variance
of both sides of (3). The induction part follows from an analytic lemma [8, Lemma 1] and a
symbolic algebra computer package. For n ≥ 2x + 1, we find that var[Xx

n] = σ 2n, with σ 2

given by (2). The final result is a consequence of Hwang and Neininger’s classification of toll
functions [8].

Remarks. Note that the proof of Theorem 2 contains an implicit proof of Theorem 1. Taking
expectations in (3) leads to recursive identities that can also be solved using [8, Lemma 1].
After short calculations, the results of Theorem 1 can again be recovered.

5. Some comparisons

5.1. Two random genes

For the sake of comparison, we will also describe the distribution of the level of coalescence
for two arbitrarily chosen genes. The two genes can be labelled 1 and 2. Let us denote their
coalescence time by τ̃n, and set K̃ = 1 + An(τ̃n). We wish to compare K̃ to K . A well-known
result in coalescence theory is that the coalescence time τ̃n of two lineages has exponential
distribution Exp(1). In Section 6, we will describe the result for τn. As far as the coalescence of
two random lineages in the sample is concerned, we have the following probability distribution:
for n ≥ 2,

P(K̃ = k) = n + 1

n − 1

2

k(k + 1)
for all k = 2, . . . , n.

The argument is based on the bivariate coalescent (see, e.g. [18, p. 87]) and a result of
Saunders et al. [15] that describes the joint distribution of

B(t) = (Am(t), An(t)), t ≥ 0,
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where An(t) is the ancestral process at time t and Am(t) is the ancestral process of a subsample
of size m ≤ n. Using [15], we find that

P(A2(t) = 1, An(t) = k − 1) = P(An(t) = k − 1)
2(n − k + 1)

k(n − 1)
, n ≥ k ≥ 2.

For 2 ≤ k ≤ n − 1, we have

P(τ̃n ≤ Sk) = P(A2(Sk) = 1) =: F(k) = 2

k

n − k + 1

n − 1

and, so,

P(K̃ = k) = P(τ̃n = Sk) = F(k) − F(k + 1) = n + 1

n − 1

2

k(k + 1)
.

For k = n, we have

P(K̃ = n) = P(τ̃n ≤ Sn) = F(n) = 2

n(n − 1)
.

Note that the probability that two individuals share their most recent ancestor with the whole
sample was calculated by Watterson [21], whose result agrees with the fact that

P(K̃ = 2) = 1

3

n + 1

n − 1
.

In conclusion, the distribution of K̃ is very different from that of K . The nodes close to the
root are given more important weights in the distribution of K . This can also be seen from the
average level E[K̃], which is O(log n) in contrast with the O(n) result obtained for E[K].
5.2. A random clade

A useful comparison to Theorem 1 may be given by the distribution of the number of
individuals in a random clade of the coalescent tree. Choose I = i from the uniform distribution
on [n−1] and consider the number of genes Yn in the (unique) clade of CI . We have the following
result.

Proposition 2. Let n ≥ 2 and Yn be the number of individuals in a random clade of the
coalescent. We have

P(Yn = y) = n

n − 1

2

y(y + 1)
for all y = 2, . . . , n − 1,

with

P(Yn = n) = 1

n − 1
.

Proof. Using arguments similar to those of Theorem 1, we deduce the conditional distribu-
tion of Yn given that I = i, for i = 2, . . . , n − 1. We obtain

P(Yn = y | I = i) = (y − 1)

(
n − y − 1

i − 2

)(
n − 1

i

)−1

, y = 2, . . . , n − i + 1.

Hence, for 2 ≤ y ≤ n − 2, we have

P(Yn = y) = n(y − 1)

(n − 1)

n−2∑
j=y−1

(j − 1)(j − 2) · · · (j − y + 2)(n − j)(n − j − 1)

n(n − 1) · · · (n − y)
,

which yields the result.
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This distribution can be found in a different manner by using results on binary search trees
introduced in theoretical computer science. Aldous [1] and Devroye [4] described the number
of occurrences of subtrees of a given size. The above proposition is strongly connected to their
results.

Let us remark that the average size of a random clade grows as log n, i.e.

E[Yn] = 2n

n − 1
(Hn − 1), n ≥ 3,

where Hn is the nth harmonic number, while E[Xn] remains bounded by 3. The variance of Yn

grows as n. The asymptotic distribution of Yn is given by

P(Y = y) = 2

y(y + 1)
, y ≥ 2,

which corresponds to the conditional Yule distribution of parameter ρ = 1, given that the
number of species is greater than 2. According to Devroye’s result and the correspondence
with binary search trees, the frequencies of subtrees in a coalescent tree are asymptotically
Gaussian for large n. Denoting by f

y
n the frequency of subtrees of size y, 2 ≤ y ≤ n, we have

√
n

(
f

y
n − 2

y(y + 1)

)
→ N (0, σ 2),

where the convergence holds in distribution. Modifying Devroye’s result, we obtain

σ 2 = 2(y − 1)(4y2 − 3y − 4)

y(2y + 1)(2y − 1)(y + 1)2 , y ≥ 2.

6. External branch lengths

6.1. Unconditional distribution

The main result of this section is the description of the distribution of the coalescence time τn.
This random variable corresponds to the length of an external branch, in the terminology of Fu
and Li [7]. Before giving the distribution of τn, we remark that the mean and variance of this
random variable follow from Proposition 1. Fu and Li [7] provided a different proof for these
results. Here, we use the fact that

τn = Tn + · · · + TK.

Proposition 3. Let n ≥ 2. Consider the coalescence time τn. We have

E[τn] = 2

n
and var[τn] = 4

n2 .

Now recall that, for k = 2, . . . , n − 1 and k ≤ j ≤ n,

c(j, k) =
∏

j≤
�=k≤n

(
(
 − 1) − k(k − 1)), c(n, n) = 1.

We have the following result.
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Theorem 3. Let n ≥ 2. The Laplace transform of τn is given by

Lτn(s) = E[e−sτn ] =
n∑

k=2

ak

λk

s + λk

, s ≥ 0,

where

ak = (n − 1)! (n − 2)!
λk

k∑
j=2

c(j, k)−1

((j − 2)!)2 . (4)

The probability density function can be described as a mixture of exponential distributions:

fτn(t) =
n∑

k=2

akλke−λkt , t ≥ 0.

Proof. According to Proposition 1, we have

E[e−sτn ] =
n∑

k=2

2(k − 1)

n(n − 1)

n∏
j=k

λj

s + λj

.

Using fractional decomposition, we have

n∏
j=k

1

s + λj

=
n∑

j=k

2n−k−1c(k, j)−1

s + λj

.

Let

b(k, j) = c(k, j)−1 k − 1

n(n − 1)

n∏

=k


(
 − 1).

Reordering the sums, we find that

n∑
k=2

n∑
j=k

b(k, j)

s + λj

=
n∑

k=2

( k∑
j=2

b(j, k)

)
1

s + λk

and

λkak =
k∑

j=2

b(j, k).

6.2. Conditional distributions

We now study the number of substitutions � in the DNA sequence of an arbitrary gene,
compared with the sequence of a closest relative. Recall that, for two arbitrary genes, the
number of pairwise differences has a shifted geometric distribution of parameter p = 1/(1+θ).
The mean is θ and the variance is θ + θ2. We obtain the following result.

Proposition 4. Let n ≥ 2 and assume that the infinitely many sites model of mutation in the
coalescent is being used. Then the number of substitutions � between a gene and a closest
relative is distributed as a mixture of shifted geometric distributions, i.e.

P(� = 
) =
n∑

k=2

akGs(pk, 
), 
 = 0, 1, . . . ,
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where ak is as given in (4),

Gs(pk, 
) = (1 − pk)

pk, 
 = 0, 1, . . . ,

and

pk = 1

1 + θ/λk

, k = 2, . . . , n.

Proof. Let θ > 0. Conditional on τn = t , t ≥ 0, we have

P(� = 
 | τn = t) = θ
t



! e−θt , 
 = 0, 1, . . . ,

and, so,

P(� = 
) = (−1)
θ



! L(
)
τn

(θ),

where L
(
)
τn is the 
th derivative of the Laplace transform Lτn . The proof then follows from

Theorem 3.

The moments of � were found by Fu and Li using a different method [7]: we find that

E[�] = 2

n
θ and var[�] = 2

n
θ + 4

n2 θ2,

using the facts that

E[τn] =
n∑

k=2

ak

λk

= 2

n
and E[τ 2

n ] = 2
n∑

k=2

ak

λ2
k

= 8

n2 .

The conditional distribution of the coalescence time τn, given that 
 substitutions are
observed, can be deduced from the Bayes formula as follows:

fτn | �=
(t) = θ



! P(� = 
)
t
e−θtfτn(t), t ≥ 0,

Using Proposition 4, the conditional density can be reformulated as a mixture of gamma
distributions, i.e.

fτn | �=
(t) =
n∑

k=2

a(k, 
) gamma(1 + 
, λk + θ)(t), t ≥ 0,

where, for k = 2, . . . , n,

a(k, 
) = akGs(pk, 
)

P(� = 
)
, 
 = 0, 1, . . . .

In Figure 1, we display the curves of fτn and fτn | �=
 for 
 = 0, 1, 2, 5 and θ = 10. In
Table 1, we report the values of P(� = 
) for n = 10, 30, 
 = 0, . . . , 9 and θ = 1, 10.
Exact computations of the conditional expectation are reported in Table 2 for θ = 1, 10 and

 = 0, . . . , 10. In order to provide numerical values, we used the following formula:

E[τn | � = 
] = (1 + 
)

θ

P(� = 
 + 1)

P(� = 
)
, 
 = 0, 1, . . . .
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Figure 1: The unconditional coalescence time distribution (solid) and the conditional distributions, given
that � = 
 = 1, 2, 5 segregating sites are observed. The mode of the conditional distributions increases

with �. The sample size is n = 10 and the mutation rate is θ = 10.

Table 1: Probability distribution of the number of segregating sites �. Where not shown, values are
below 0.001. The last row gives the sum of the ten probabilities.

θ = 1 θ = 10

� n = 10 n = 30 n = 10 n = 30

0 0.852 0.942 0.426 0.673
1 0.114 0.050 0.218 0.193
2 0.022 0.005 0.120 0.067
3 0.006 0.001 0.071 0.028
4 0.001 — 0.044 0.013
5 — — 0.029 0.007
6 — — 0.020 0.004
7 — — 0.014 0.002
8 — — 0.010 0.001
9 — — 0.007 0.001

Sum 0.999 0.999 0.963 0.994

Table 2: Conditional expectations of the coalescence time, given the number of segregating sites
� = 0, . . . , 10.

θ = 1 θ = 10

� n = 10 n = 30 n = 10 n = 30

0 0.13 0.05 0.05 0.02
1 0.39 0.20 0.11 0.07
2 0.84 0.59 0.17 0.12
3 1.46 1.23 0.25 0.19
4 2.12 1.98 0.32 0.27
5 2.76 2.68 0.41 0.35
6 3.36 3.31 0.49 0.44
7 3.92 3.89 0.58 0.53
8 4.45 4.44 0.67 0.63
9 4.97 4.96 0.76 0.72

10 5.48 5.48 0.86 0.82
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We remark that the distribution of � is concentrated on small integers, with a rapid decrease
as the number of substitutions increases. Also, larger sample sizes lead to more concentrated
distributions. On the other hand, the conditional expectations become rather independent of
the sample size as the number of substitutions increases.

6.3. Application: multilocus haplotypes

In this section, we compute posterior distributions for the time to the most recent common
ancestor for a non-recombining segment of DNA and its closest relative in a sample of n − 1
other sequences of the same segment, given that they match at 
 out of m scored markers. The
results presented here extend those of Walsh for two segments [19].

We consider m completely linked markers, and score their allelic states, assuming a perfect
match if and only if no mutation has occurred since the most recent common ancestor. For

 = 0, . . . , m, the conditional probability of observing 
 matches out of m is then binomial,
i.e. for t > 0,

p(
 | τn = t) = n!

! (m − 
)!e−θ
t (1 − e−θt )m−
,

where e−θt is the probability of a perfect match at one locus. Using the Bayes formula, we
obtain the conditional density of τn given that 
 matches are observed: for t > 0,

pτn(t | 
) ∝ e−θ
t (1 − e−θt )m−
fτn(t).

The normalizing constant can be computed using a symbolic algebra package, or deduced
from [19]. We find that

p(τn = t | 
) =
∑n

k=2 akλk

(
m



)
e−(θ
+λk)t (1 − e−θt )m−
∑n

k=2 akλk

(
m



)
I (m, 
, θ, k)

,

where

I (m, 
, θ, k) = θm−
(m − 
)!∏m−

i=0 (λk + θ(m − i))−1

.

Given a perfect match at 
 = m markers, we find that

pτn(t | m) =
∑n

k=2 akλke−(θn+λk)t∑n
k=2 akλk(λk + θn)−1

. (5)

Walsh [19] used a mutation rate per generation equal to µ = 1
500 , motivated by estimates on

the human Y chromosome, and the effective size was estimated as Ne ≈ 5000. These values
led to an estimate of θ = 20, using the fact that θ = 2Neµ. Considering a perfect match at
m = 20 markers and n = 2 individuals, the 95% Bayesian credible region was computed to be
(6 × 10−5, 0.009 22), which corresponded to an interval of (0.3, 46.1) generations for the most
recent common ancestor. One conclusion was that the forensic use of the Y chromosome is
rather limited [19]. Here, we reexamine the upper bound of the 95% Bayesian credible region,
given n = 40, 60, 80, 100 individuals. From (5), we find in each case that the upper bound
decreases to �tNe +1� = 40, 30, 8, 7 generations, respectively. Using m = 100 markers, these
numbers further reduce to �tNe + 1� = 9, 7, 5, 4 generations, respectively.
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