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Abstract Let L2 = L2(D, rdrdθ/π) be the Lebesgue space on the open unit disc D and let
L2

a = L2 ∩ Hol(D) be a Bergman space on D. In this paper, we are interested in a closed subspace
M of L2 which is invariant under the multiplication by the coordinate function z, and a Hankel-type
operator from L2

a to M⊥. In particular, we study an invariant subspace M such that there does not
exist a finite-rank Hankel-type operator except a zero operator.
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1. Introduction

Let D be the open unit disc in C and Hol(D) be the set of all holomorphic functions on
D. Let dµ = rdrdθ/π and L2 = L2(D, dµ) the Lebesgue space. The Bergman space L2

a

on D is defined by L2
a = L2 ∩ Hol(D). Then L2

a is the closed subspace of L2. When M
is a closed subspace of L2 and zM ⊆ M, M is called an invariant subspace. For ϕ in
L∞ = L∞(D, dµ), a Hankel-type operator is defined by

HM
ϕ f = (I − PM)(ϕf) (f ∈ L2

a),

where PM is the orthogonal projection from L2 onto M. When M = L2
a, HM

ϕ is called
a big Hankel operator and when M = (z̄L2

a)⊥, HM
ϕ is called a small Hankel operator.

When L2
a ⊆ M ⊆ (z̄L2

a)⊥, HM
ϕ is called an intermediate Hankel operator.

It is easy to see that there does not exist a finite-rank big Hankel operator except a
zero one (see [3,6]). On the other hand, there exist a lot of finite-rank non-zero small
Hankel operators (see [6]). In fact, it is easy to see the results. Strouse [7] described
completely all finite-rank intermediate Hankel operators for some invariant subspace. In
the previous paper [6], we began to study finite-rank intermediate Hankel operators for
arbitrary invariant subspace. In [6, Theorem 3.2], we gave three necessary and sufficient
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conditions for M such that there does not exist a finite-rank intermediate Hankel operator
except a zero one. In this paper, without the hypothesis on an invariant subspace M, we
give a new necessary and sufficient condition for M which have a finite-rank Hankel-type
operator except a zero one.

For an invariant subspace M in L2, ker HM
ϕ denotes the kernel of HM

ϕ and then
ker HM

ϕ = {f ∈ L2
a; ϕf ∈ M}. Hence ker HM

ϕ is also an invariant subspace in L2
a. Thus

each invariant subspace M in L2 is related to an invariant subspace in L2
a by a Hankel-

type operator. In this paper, the following property of invariant subspaces in L2 is impor-
tant.

Definition 1.1. Let M be an invariant subspace of L2. M is called weakly divisible
if whenever f ∈ M and |f(z)| � γ|z − a| for some a ∈ D and some γ � 0 then
f(z) = (z − a)g(z) and g is a function in M.

In § 2, we generalize a theorem of Axler and Bourdon [1], which will be used later on.
In § 3, we show that there does not exist a finite-rank Hankel-type operator HM

ϕ except
a zero one if and only if M is weakly divisible. In § 4, we give several examples of weakly
divisible invariant subspaces.

In this paper [S]∗ denotes the weak∗ closed linear span of a subset S in L∞ and [S]2
denotes the closed linear span of a subset S in L2.

2. An invariant subspace and the index

In this section, for a given invariant subspace M we are interested in two invariant
subspaces M′ and M′′ such that M′ ⊆ M ⊆ M′′, dimM�M′ < ∞ and dimM′′�M <

∞. Under some conditions on M, M′ and M′′, we describe M′ and M′′ using M.
Corollary 2.4 will be used in §§ 3 and 4. Corollary 2.4 (i) is known from [1].

When M is an invariant subspace of L2, for a ∈ C put inda M = dim{M�(z−a)M}.
inda M is called the index of M at a. It is known (cf. [1]) that for each n (0 � n � ∞)
and for any a (∈ D) there exists an invariant subspace M with inda M = n.

Theorem 2.1. Let M, M1 and M2 be invariant subspaces of L2 and M1 ⊆ M2.

(i) inda M = 0 for any a /∈ D.

(ii) If dim M2 � M1 < ∞, then there exists a polynomial b such that bM2 ⊆ M1,
Z(b) ⊂ D and the degree of b � dim M2 � M1 and

∑
(inda M2; a ∈ Z(b)) � dim M2 � M1.

Proof. (i) If |a| > 1, then (z − a)−1 ∈ H∞ and M = (z − a)M. Hence inda M = 0.
If |a| = 1, then (z − a)M = (z − a){z − a(1 + ε)}−1M. For any f ∈ M, it is easy to see
that ∫

D

∣∣∣∣ z − a

z − a(1 + ε)
f − f

∣∣∣∣
2

dµ → 0 (ε → 0)

by Lebesgue’s convergence theorem. This implies that (z − a)M is dense in M and so
inda M = 0 for |a| = 1.
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(ii) Put N = M2 � M1 and Sz = PMz|N , where Mz is a multiplication operator
on L2 by the coordinate function z and P is the orthogonal projection from L2 to
N . If n = dimN < ∞, then there exists a polynomial b of degree n such that Sb =
b(Sz) = 0 and so bM2 ⊆ M1. By (i), we may assume that Z(b) ⊂ D. We will prove
that

∑
(inda M2; a ∈ Z(b)) � n. We can write that b = a0

∏n
j=1(z − aj) and so Z(b) =

{a1, a2, . . . , an}, where a0 ∈ C. If
∑

(inda M2; a ∈ Z(b)) � n − 1, then we may assume
inda1 M2 = 0. Since [(z − a1)M2]2 = M2,

n∏
j=2

(z − aj)M2 ⊆ M1 ⊂ M2.

Then it is easy to see that dim M2 � [
∏n

j=2(z − aj)M2]2 � n − 1 because indaj
M2 � 1

for 2 � j � n. This contradicts that dimM2 � M1 = n. �

Corollary 2.2. Let M1 and M2 be invariant subspaces of L2 and M1 ⊆ M2. If
dim M2 � M1 = 1, then (z − a)M2 ⊆ M1 � M2 for some a ∈ D and inda M2 � 1. If
inda M1 = 1 or inda M2 = 1, then M1 = [(z − a)M2]2.

Proof. By Theorem 2.1, (z − a)M2 ⊆ M1 for some a ∈ D and so inda M2 � 1.
Since (z − a)M1 ⊆ (z − a)M2 ⊆ M1 � M2,M1 = [(z − a)M2]2 if inda M1 = 1 or
inda M2 = 1. �

Corollary 2.3. Let M1 and M2 be invariant subspaces such that M1 � M2 and
dim M2 �M1 = n < ∞. Suppose that (z −a)Mj is closed for any a in D when j = 1, 2.
If inda M1 = 1 for any a in D or inda M2 = 1 for any a in D, then M1 = bM2 and
M2 = 〈f1/b, . . . , fn/b〉 ⊕ M1, where b =

∏n
j=1(z − aj), {aj} ⊂ D and {fj} ⊂ M1.

Proof. By Theorem 2.1 there exists a polynomial b such that bM2 ⊆ M1 and Z(b) ⊂
D and the degree of b � n. Hence b =

∏�
j=1(z − aj) and {aj} ⊂ D and � � n. When

inda M2 = 1 for any a in D, dimM2�bM2 = � because (z−aj)M2 is closed for 1 � j � �

and so � = n. Hence M1 = bM2. When inda M1 = 1 for any a in D, dimM1 � bM1 = �

by the same reason. Since bM1 ⊆ bM2 ⊆ M1 and dim bM2 � bM1 = n, � = n and so
M1 = bM2. Put M2 = 〈ϕ1, . . . , ϕn〉 ⊕ M1, where {ϕj} are orthogonal to M1. What
was just proved above, bM2 = M1 and so bM2 = 〈bϕ1, . . . , bϕn〉 ⊕ bM1 = M1. Put
fj = bϕj for j = 1, . . . , n, then {fj} are in M1 and M2 = 〈f1/b, . . . , fn/b〉 ⊕ M1. �

Corollary 2.4. Let M be an invariant subspace of L2.

(i) If dim L2
a � M = n < ∞ and n �= 0, then M = bL2

a, where b =
∏n

j=1(z − aj) and
{aj} ⊂ D.

(ii) If dim M � L2
a = n < ∞, then M = L2

a.

Proof. It is known that inda L2
a = 1 and (z − a)L2

a is closed for each a ∈ D. Hence
we can apply Corollary 2.3 to M1 = L2

a or M2 = L2
a. If M1 = M and M2 = L2

a,
then (i) follows. If M1 = L2

a and M2 = M, then M = 〈f1/b, . . . , fn/b〉 ⊕ L2
a, where

b =
∏n

j=1(z − aj), {aj} ⊂ D and {fj} ⊂ L2
a. For each 1 � � � n, f�/b ∈ L2 and so
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f�(aj) = 0 for 1 � j � n. Then f�/b belongs to L2
a and so f�/b = 0 for each �. Thus

M = L2
a and so (ii) follows. �

3. Finite-rank Hankel-type operators

In this section, we study the relation between finite-rank Hankel-type operators and
invariant subspaces.

Theorem 3.1. Let M be an invariant subspace of L2. Then there does not exist
a finite-rank Hankel-type operator HM

ϕ except a zero one if and only if M is weakly
divisible.

Proof. Suppose M is weakly divisible. If HM
ϕ is of finite rank, then kerHM

ϕ

is an invariant subspace in L2
a and dimL2

a/ ker HM
ϕ < ∞. By (i) of Corollary 2.4,

ker HM
ϕ = bL2

a for some polynomial b with Z(b) ⊂ D and so bϕ belongs to M. Put
f = bϕ, then |f(z)| � γ|b(z)| (z ∈ D), where γ = ‖ϕ‖∞. Suppose b(z) = a0

∏n
j=1(z − aj),

where {aj} ⊂ D. For any � with 1 � � � n,
∣∣∣∣ f(z)
z − a�

∣∣∣∣ � γ|a0|
∏
j �=�

|z − aj | (z ∈ D)

and f(z)/(z − a�) belongs to M because a� ∈ D and M is weakly divisible. Thus
ϕ(z) = f(z)/b(z) belongs to M. Hence HM

ϕ = 0.
Conversely, if M is not weakly divisible, then there exists a function f in M and a

point a in D such that |f(z)| � γ|z − a| (z ∈ D) and f(z)/(z − a) does not belong to M.
Put ϕ = f(z)/(z − a), then ϕ ∈ L∞ and HM

ϕ is not zero because ϕ /∈ M. On the other
hand, (z − a)ϕ ∈ M and so the kernel of HM

ϕ contains (z − a)L2
a. This implies that HM

ϕ

is of rank one because L2
a/(z − a)L2

a = C. �

Proposition 3.2. If there exists a symbol ϕ such that r(HM
ϕ ) = n � 1, then there

exists a symbol ϕj such that r(HM
ϕj

) = j for any j with 0 � j � n − 1.

Proof. Suppose 1 � n = r(HM
ϕ ) < ∞. Then kerHM

ϕ = the kernel of HM
ϕ is an

invariant subspace of L2
a and L2

a/ ker HM
ϕ is of finite dimension n. By Corollary 2.4,

ker HM
ϕ = bL2

a, where b =
∏n

�=1(z − a�) and (a�) ⊂ D. Hence bϕ belongs to M. Put

ϕj = ϕ

n∏
�=j+1

(z − a�) for 1 � j � n − 1,

then ϕj /∈ M for 1 � j � n − 1 and ϕ0 = bϕ. Since kerHM
ϕj

= bjL
2
a for 1 � j � n − 1,

where bj =
∏j

�=1(z − a�), HM
ϕj

is of finite rank j for 0 � j � n − 1. �

Corollary 3.3. The following two expressions are equivalent for an invariant subspace
M.

(i) If r(HM
ϕ ) < ∞, then r(HM

ϕ ) = 0.
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(ii) If r(HM
ϕ ) � 1, then r(HM

ϕ ) = 0.

Proof. (i) ⇒ (ii). This is clear.

(ii) ⇒ (i). If (i) is not true, then there exists a symbol ϕ with r(HM
ϕ ) = n � 2. By

Proposition 3.2 there exists a symbol ϕ1 such that r(HM
ϕ1

) = 1. This contradicts (ii). �

4. Weakly divisible invariant subspaces

For a function f in L2
a, put Z(f) = {a ∈ D; f(a) = 0} and Z(G) = ∩{Z(f); f ∈ G}

for a subset G in L2
a. For 1 � p � ∞, if E is an open set in D, Hp

E denotes the set of
all functions in Lp that are analytic on E. In Corollary 4.2, a weakly divisible invariant
subspace M is described completely when M is in L2

a. There exists a non-zero invariant
subspace M in L2

a such that M ∩ L∞ = 〈0〉. For it is known (see [5]) that there exists a
non-zero function f in L2

a such that Z(f) does not satisfy the Blaschke condition.

Theorem 4.1. Let M be an invariant subspace of L2.

(i) If M ∩ L∞ ⊆ H∞ and Z(M ∩ L∞) = ∅, then M is weakly divisible.

(ii) If M ∩ L∞ = H∞
E for some open set E, then M is weakly divisible.

(iii) If M ∩ L∞ = 〈0〉, then M is weakly divisible.

Proof. (i) If {fn} is a sequence in M ∩ L∞ which converges pointwise boundedly to
f , then f ∈ M. By the Krein–Schmulian criterion (see [4, IV 2.1]), M ∩ L∞ is weak∗

closed. Hence, by a well-known theorem of Beurling [2] M ∩ L∞ = qH∞ for some inner
function q. Hence if f ∈ M and |f(z)| � γ|z − a| (z ∈ D) for some a ∈ D, then f = qh

for some h ∈ H∞. Since Z(M ∩ L∞) = ∅, |q(z)| > 0 (z ∈ D) and so h(a) = 0. Hence
f(z)/(z − a) = q(z) × (h(z)/(z − a)) ∈ qH∞. Thus f(z)/(z − a) belongs to M.

(ii) If f ∈ H∞
E and |f(z)| � γ|z−a| (z ∈ D) for some a ∈ D, then f(z)/(z−a) ∈ L∞ and

f(z)/(z − a) is analytic on E. Hence f(z)/(z − a) belongs to H∞
E and so M is weakly

divisible.

(iii) This is clear. �

Corollary 4.2. Let M be an invariant subspace of L2
a. Then M is weakly divisible if

and only if M ∩ L∞ = 〈0〉 or Z(M ∩ L∞) = ∅.

Proof. The part of ‘if’ is a result of (i) and (iii) of Theorem 4.1. Conversely, suppose
that M is weakly divisible. If M ∩ L∞ �= 〈0〉, then by a theorem of Beurling there exists
an inner function q with M ∩ L∞ = qH∞. If q(a) = 0 for some a ∈ D, then there exists
a finite positive constant γ such that |q(z)| � γ|z − a| (z ∈ D) and q/(z − a) /∈ M. This
contradicts the weak divisibility of M and so Z(q) = Z(M ∩ L∞) = ∅. �

Corollary 4.3. Let M be an invariant subspace of L2.

(i) If M � L2
a and dim L2

a/M < ∞, then M is not weakly divisible.
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(ii) If M ⊇ L2
a and dim M/L2

a < ∞, then M is weakly divisible.

Proof. (i) If M � L2
a and dimL2

a/M = � < ∞, then by (i) of Corollary 2.4 M = bL2
a,

where b =
∏�

j=1(z − aj) and aj ∈ D (1 � j � �). Hence Z(M ∩ L∞) = Z(b) �= ∅ and so
by Corollary 4.2 M is not weakly divisible.

(ii) By (2) of Corollary 2.4 M = L2
a and so M ∩ L∞ = H∞. Hence (i) of Theorem 4.1

implies that M is weakly divisible. �

Corollary 4.4. If M = H2
E for some open set E in D, then M is weakly divisible.

Proof. It is a result of (ii) of Theorem 4.1. �

Proposition 4.5. Suppose that Mj is a weakly divisible invariant subspace of L2

for j = 1, 2, . . . and Mj × M� = {fg; f ∈ Mj and g ∈ M�} = 〈0〉 if j �= �. If M =∑∞
j=1 ⊕Mj , then M is a weakly divisible invariant subspace.

Proof. If f ∈ M, then f =
∑∞

j=1 fj and |f(z)| =
∑∞

j=1 |fj(z)| (z ∈ D) by hypothesis.
This implies that M is weakly divisible. �

Corollary 4.6. Let 1 � � � ∞. Suppose Dj is an open set in D with µ(∂Dj) = 0 for
1 � j � �, Di ∩ Dj = ∅(i �= j) and D =

⋃�
j=1 Dj . Then M =

∑�
j=1 ⊕L2

a(Dj) is weakly
divisible.

Proof. This is a result of Corollary 4.4 and Proposition 4.5. �

Proposition 4.7. If M is a weakly divisible invariant subspace of L2 and ϕ is a
unimodular function in L∞, then ϕM is a weakly divisible invariant subspace.

Proof. From the definition of weak divisibility, the proposition follows trivially. �

Corollary 4.8. If ϕ is a unimodular function in L∞, then ϕL2
a is weakly divisible.
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