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We solve the linearized gyrokinetic equation, quasineutrality condition and Ampere’s law
to obtain the dispersion relation of microtearing modes (MTMs) in collisionless low-β
toroidal plasmas. Consistent with past studies, we find that MTMs are driven unstable by
the electron temperature gradient and that this instability drive is mediated by magnetic
drifts. The dispersion relation that we derive can be evaluated numerically very quickly
and may prove useful for devising strategies to mitigate MTM instability in fusion devices.
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1. Introduction

The free energy stored in magnetically confined, toroidal plasmas gives rise to a number
of plasma instabilities. As fluctuations excited by these instabilities grow, they develop into
turbulence, which rapidly transports thermal energy from the plasma core to the plasma
edge. The resulting heat loss is a major obstacle to developing a commercially viable
fusion reactor, and finding ways to reduce turbulent transport is one of the primary goals
of current fusion research. An important step towards achieving this goal is to determine
the linear stability thresholds of the relevant plasma modes.

At sufficiently small values of β (the ratio of plasma pressure to magnetic pressure),
it is difficult for plasma fluctuations to perturb the magnetic field, and the dominant
instabilities, such as the ion- and electron-temperature-gradient modes, are electrostatic
(see, e.g. Cowley, Kulsrud & Sudan 1991; Dorland et al. 2000). However, as β
increases, electromagnetic instabilities, such as the microtearing mode (MTM) and
kinetic ballooning mode (KBM), eventually become the main drivers of turbulence. Such
electromagnetic instabilities are of particular relevance to spherical tokamaks, in which β
is typically several times larger than in conventional tokamaks (see, e.g. Giacomin et al.
(2023), Kennedy et al. (2023) and references therein). The purpose of this paper is to
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2 B.D.G. Chandran and A.A. Schekochihin

derive the gyrokinetic MTM dispersion relation in the collisionless limit, which is relevant
to the hot plasmas in the cores of existing and planned fusion devices.

We have organized the remainder of this paper as follows. In §§ 1.1 to 1.5, we highlight
selected results from the literature and preview the main steps in our derivation of
the MTM dispersion relation, which follows in detail in § 2. In § 3, we present several
numerical examples, and in § 4 we discuss our principal findings and conclude.

1.1. Magnetic drift waves
A simple but useful reference point for understanding the MTM is the isobaric magnetic
drift wave in a plasma in which the equilibrium magnetic field B is uniform and static, and
neither the equilibrium electron pressure pe nor the fluctuating quantities vary along B. If
we neglect electron inertia, then we can write the component of the electron momentum
equation along the total magnetic field B + δB as

en0

c
∂

∂t
δA‖ = δB⊥

B
· ∇pe, (1.1)

or, equivalently, (
∂

∂t
+ v∗e · ∇

)
δA‖ = 0, (1.2)

where e is the proton charge, c is the speed of light, δA‖ = b · δA, b = B/B, δA is
the perturbation to the vector potential, δB⊥ = (∇δA‖)× b is the component of δB
perpendicular to B, and v∗e = −cB × ∇pe/(en0B2) is the electron diamagnetic drift
velocity. This equation is equivalent to (D20) of Adkins et al. (2022) in the limit that
λ� de, where λ is the perpendicular wavelength and de is the electron skin depth.
Equation (1.2) describes magnetic drift waves, in which δA‖ is advected at velocity v∗e.

1.2. Ballooning transformation, quasimodes and mode rational surfaces
Throughout the rest of this paper, we consider axisymmetric toroidal equilibria and focus
on individual Fourier modes ∝ exp(inζ − iωt) with infinitesimal amplitudes, where ζ is
the toroidal angle, n is the toroidal mode number and ω is the frequency. In order to enforce
rapid spatial variation perpendicular to B, slow variation along B and periodicity in the
poloidal angle θ , we set n � 1 and employ the ballooning transformation (Connor, Hastie
& Taylor 1978, 1979; Tang, Connor & Hastie 1980),

u(ψ, θ, ζ ) =
∞∑

j=−∞
û(ψ, θ + 2πj) exp

{
in
[
α(ψ, θ + 2πj, ζ )+

∫ ψ

k̄(ψ ′) dψ ′
]}
, (1.3)

where u is a vector whose components are the various fluctuating quantities, ψ is the
poloidal flux and k̄(ψ) is a function that is discussed in the run-up to (2.9). The triad
(α, ψ, θ) is a Clebsch coordinate system, in which α(ψ, θ, ζ ) (defined in (2.4)) and ψ
are constant along magnetic-field lines, while the poloidal angle θ serves to measure
position along B. Although the (position-space) mode u(ψ, θ, ζ ) is periodic in θ , the
(ballooning-space) ‘quasimode’ û is not. Instead, û(ψ, θ) → 0 as θ → ±∞ to ensure that
the sum in (1.3) converges. As discussed further in § 2.2, the very broad θ envelope of
the MTM’s electrostatic potential eigenfunction δΦ̂ implies that δΦ in position space is
peaked around mode rational surfaces on which nq(ψ) is an integer, where q(ψ) is the
safety factor defined in (2.5) (Cowley et al. 1991; Hardman et al. 2023). It follows from
(2.20) and (2.24a,b) that mode rational surfaces are, for each n, spaced a distance ∼ k−1

∧
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FIGURE 1. The blue lines are segments of an equilibrium magnetic-field line that traces out a
mode rational surface in a hypothetical spherical tokamak. (a) The black dashed curve shows,
in an exaggerated fashion, how a segment of this field line might be perturbed by an MTM.
(b) The red line highlights one of the blue field-line segments, and the black dotted line is a
nearby equilibrium magnetic-field line at slightly larger ψ . We assume dq/dψ > 0, where q is
defined in (2.5), so that the black dotted field line rotates through a smaller θ interval than the
solid red line as the two lines traverse the same interval of toroidal angle. This magnetic shear
rotates the phase fronts of the MTMs, causing them to draw closer together in the ∇ψ direction
as one follows the red field-line segment from the lower right-hand side of the figure to the upper
left-hand side, as illustrated schematically by the blue-and-grey-striped squares.

apart, where k∧ is the binormal wavenumber (the wavevector component perpendicular
to both B and ∇ψ) defined in (2.14). Because of magnetic shear (illustrated in figure 1b),
quasimode structure at |θ | � 1 corresponds to mode structure at spatial scales ∼ (k∧|θ |)−1

in the ∇ψ direction (see (2.13) and (2.14)).

1.3. Tearing parity
MTMs involve δA‖ perturbations that behave like the magnetic drift waves described
in § 1.1, propagating at a velocity � v∗e (see figure 3). As we discuss in greater detail
in § 2.2, a defining feature of the MTM is ‘tearing parity’, which means that δÂ‖ has
a non-vanishing line integral along the magnetic field (Hatch 2010; Dickinson et al.
2011; Ishizawa et al. 2015; Patel et al. 2022). This in turn implies that, as one follows
a perturbed magnetic-field line at a mode rational surface, the field line wanders secularly
in the ψ direction (Hardman et al. 2023), as illustrated in figure 1(a). Magnetic-field
lines perturbed by MTMs thus create channels for electrons to transport heat down the
temperature gradient, enabling MTMs to tap into the free energy stored in the electron
temperature profile (Drake et al. 1980; Guttenfelder et al. 2012b). In contrast, in KBMs,
a perturbed magnetic-field line at a mode rational surface returns to its initial equilibrium
magnetic flux surface after each poloidal revolution about the plasma (see § 2.2). This
essential difference between the MTM and KBM is why the MTM (in contrast to the
KBM) is driven by the electron temperature gradient (and the rapid transport of heat along
perturbed magnetic-field lines by electrons) and not by the density gradient (see § 2.10 and,
e.g., Hazeltine, Dobrott & Wang 1975; Drake & Lee 1977; Hassam 1980; Applegate et al.
2007; Guttenfelder et al. 2012a; Predebon & Sattin 2013; Zocco et al. 2015; Hamed et al.
2019; Geng, Dickinson & Wilson 2020; Patel et al. 2022; Giacomin et al. 2023; Hardman
et al. 2023; Yagyu & Numata 2023).
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1.4. Characteristic scales and quasimode eigenfunctions
The characteristic MTM binormal wavenumber satisfies k∧ρe  1, where ρe is the
electron gyroradius. As we discuss further in § 2, the δÂ‖ fluctuation of an MTM is
approximately localized to a θ interval of order unity (e.g. Applegate et al. 2007;
Hamed et al. 2019; Hardman et al. 2023). Because the MTM has tearing parity, this
localized δÂ‖ fluctuation creates parallel current density δĵ‖ via two very powerful
mechanisms: the rapid streaming of passing electrons along perturbed magnetic-field
lines that connect different equilibrium magnetic flux surfaces, and the parallel inductive
electric field −c−1(∂/∂t)δÂ‖. In § 4, we label the current densities created by these two
mechanisms δĵδBψ and δĵδE‖ , respectively, and give mathematical expressions for each.
Because of the rapid motion of electrons, the non-Boltzmann part of the perturbation to the
passing-electron gyrokinetic distribution function, denoted by ĥe, passing, created by these
two current-generation mechanisms persists out to great distances along the magnetic field
(i.e. out to |θ | � 1) and generates, via the quasineutrality condition, a perturbation to the
electrostatic potential δΦ̂ that likewise extends to |θ | � 1 (Hardman et al. 2022, 2023).

The width of the δΦ̂ eigenfunction in θ is ultimately limited by several factors. Magnetic
shear (i.e. non-zero dq/dψ) endows δΦ̂ and ĥe, passing at large |θ | with spatial structure at
scales  k−1

∧ in the ∇ψ direction, as illustrated in figure 1(b). In addition, at large |θ |,
passing electrons at the same position but different velocities that are moving towards
larger |θ | will have previously interacted with electromagnetic fluctuations at smaller |θ |
that were at substantially different phases, which causes ĥe, passing at sufficiently large |θ | to
become a rapidly varying function of velocity. As we discuss further in Appendix B, the
rapid variation of ĥe, passing (in space and velocity) causes δΦ̂ to decay (via gyroaveraging
and phase mixing) at |θ | � (k∧ρe)

−1 (cf. Hardman et al. 2022, 2023).1 As the MTM δΦ̂

eigenfunction extends out to |θ | ∼ (k∧ρe)
−1 in ballooning space, the δΦ fluctuations in

position space have a characteristic scale (k∧θ)−1 ∼ ρe in the ∇ψ direction.

1.5. The MTM dispersion relation
Our derivation of the MTM dispersion relation in § 2 consists of four steps to determine the
four unknowns ĥe, δÂ‖, δΦ̂ and ω, where ĥe is the non-Boltzmann part of the perturbed
electron distribution function for both passing and trapped electrons. First, we integrate
the gyrokinetic equation (2.25) to solve for ĥe in terms of δÂ‖, δΦ̂ and ω. Second, we
take ∂/∂θ of 1/B times the parallel component of Ampere’s law to show that δÂ‖ is
localized at θ ∼ O(1). This localization implies that further appearances of δÂ‖ are always
inside its line integral along the magnetic field,

∫∞
−∞ JBδÂ‖ dθ , where J = (B · ∇θ)−1 is

the Jacobian of the (α, ψ, θ) coordinate system. As long as it is non-zero (as it is for a
tearing-parity mode), this integral can be factored out of the remaining equations as an
overall normalization constant. Third, we evaluate the parallel component of Ampere’s
law at θ = 0 to obtain a single equation for the two remaining unknowns, ω and δΦ̂.
Finally, we use the quasineutrality condition to solve for δΦ̂ in terms of ω and plug this
value back into the parallel component of Ampere’s law at θ = 0.

Our analysis is greatly simplified by the two-scale nature of the problem. In particular,
the contribution of δΦ̂ to the parallel current at θ = 0, denoted by δĵδΦ , is dominated by

1A complex frequency also contributes to the truncation of the fluctuations at large |θ | (see, e.g. Frieman et al. 1980).
For example, when the growth rate is positive, passing electrons with ±v‖b̂ · ∇θ > 0 at θ → ±∞ will have interacted
with electromagnetic fluctuations at finite θ at very early times when the fluctuations were vanishingly small.
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the δΦ̂ fluctuations at θ ∼ (k∧ρe)
−1. As a consequence, when we use the quasineutrality

condition to solve for δΦ̂ in step 4 of the programme described in previous paragraph, we
can, to leading order, restrict our attention to values of |θ | that are sufficiently large that:
(i) the non-Boltzmann part of the perturbed ion distribution function ĥi can be neglected
because of gyroaveraging and phase mixing, and (ii) δÂ‖ enters the quasineutrality
condition only via the quantity

∫∞
−∞ JBδÂ‖ dθ , as already mentioned.

We note that δĵδΦ does not arise from the parallel electric field associated with δΦ,
whose effects are included in the Boltzmann response, which is an even function of
the parallel velocity and hence does not generate parallel current. Instead, δĵδΦ arises
from electron energization or de-energization caused by the partial time derivative of the
electrostatic potential energy −e∂δΦ̂/∂t and from δΦ̂ causing electrons to E × B-drift
across the equilibrium flux surfaces.2

2. Derivation of the MTM dispersion relation

We consider a gyrokinetic model of a plasma whose equilibrium state is axisymmetric.
A comprehensive derivation of the equations describing this system is reviewed by Abel
et al. (2013), who included plasma rotation, which we neglect for simplicity. In this model,
the equilibrium distribution function of species s (with s = i for the lone ion species and
s = e for electrons) is a Maxwellian, and the number density n0 and temperature Ts are
flux functions:

F0s = n0(ψ)

π3/2v3
Ts

exp
(

− msE
Ts(ψ)

)
, (2.1)

where ψ is the poloidal flux, E = v2/2, v is the particle velocity, vTs = (2Ts/ms)
1/2 is the

thermal speed of species s, and ms is the mass of a particle of species s.
The equilibrium magnetic field B can be written in two equivalent ways: the standard

form for axisymmetric equilibria,

B = ∇ζ × ∇ψ + I(ψ)∇ζ, (2.2)

and the Clebsch form (Kruskal & Kulsrud 1958)

B = ∇α × ∇ψ. (2.3)

Here, ζ is the toroidal angle, I(ψ) is the axial current divided by 2π,

α(ψ, θ, ζ ) ≡ ζ − q(ψ)θ − ν(ψ, θ), (2.4)

θ is the poloidal angle,

q(ψ) ≡ 1
2π

∫ 2π

0

B · ∇ζ
B · ∇θ dθ, (2.5)

is the safety factor and

ν(ψ, θ) =
∫ θ

0

B · ∇ζ
B · ∇θ ′ dθ ′ − q(ψ)θ. (2.6)

The θ integrals in (2.5) and (2.6) are evaluated at constantψ . Unlike α, ν is a single-valued,
periodic function of θ . As mentioned in § 1.2, in Clebsch coordinates (α, ψ, θ), α and ψ

2These latter two effects are represented mathematically by the terms proportional to ωδΦ̂ and Ω∗e(E)δΦ̂,
respectively, on the right-hand side of (2.25).
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serve to label the magnetic-field lines, and θ determines the position along a magnetic-field
line.

2.1. Ballooning transformation
As mentioned in § 1.2, we represent all fluctuating quantities as Fourier series in the
toroidal angle ζ and focus on a single Fourier mode with toroidal mode number n. Because
the spatial variation of MTMs in the plane perpendicular to B is much more rapid than
their spatial variation along B, it would be natural to take all fluctuating quantities to be
of the form f (ψ, θ) exp{in[α + g(ψ)]} with |n| � 1, where f (ψ, θ) and g(ψ) are slowly
varying functions. However, as pointed out by Connor et al. (1978), fluctuations of this
form are unphysical when q is irrational, because they are not periodic in θ . This is
problematic because q is irrational in essentially all of the plasma volume when q′(ψ) �= 0.

To circumvent this difficulty, we follow Connor et al. (1978), Tang et al. (1980) and
others by employing the ballooning transformation,

u(ψ, θ, ζ ) =
∞∑

j=−∞
û(ψ, θ + 2πj) einS(ψ,θ+2πj,ζ ), (2.7)

where u is a vector whose components are the various fluctuating quantities, |n| � 1,
û is a slowly varying function of ψ and θ , and B · ∇S = 0. These last three conditions
guarantee rapid spatial variation, but only in directions perpendicular to B. We require
that û(ψ, θ) → 0 sufficiently rapidly as |θ | → ∞ for the sum in (2.7) to converge. As
mentioned in § 1.2, we refer to u as the ‘mode’ and û as the ‘quasimode.’ The ballooning
transformation represents u as the sum of an infinite number of copies of ûeinS that are
translated in θ by successive integer multiples of 2π, thereby ensuring that u is periodic
in θ .

As we are taking u(ψ, θ, ζ ) to be ∝ einζ with no other ζ dependence, the condition
B · ∇S = 0 implies that (Tang et al. 1980)

S = α +
∫ ψ

k̄(ψ ′) dψ ′, (2.8)

where k̄(ψ) is some function of ψ alone. Thus, the eikonal form conjectured in the first
paragraph of this section describes the rapid cross-field spatial variation of the summand
in (2.7) rather than the spatial variation of u(ψ, θ, ζ ) in its entirety. The function k̄(ψ)
can in principle be determined through a global analysis, but here we carry out a local
analysis about some flux surface ψ = ψ0, with k̄(ψ0) a free parameter that is related to the
ballooning angle (see, e.g. Hardman et al. 2022)

θ0 = k̄(ψ0)

q′(ψ0)
. (2.9)

If we represent the linear eigenvalue problem that determines the MTM eigenfunctions
and dispersion relation in the form

Lu = 0, (2.10)

where L is a linear operator whose coefficients are periodic in θ with period 2π, then the
condition

Lū = 0 (2.11)
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is sufficient for u to solve (2.10). In subsequent sections, we will solve (2.11) rather than
(2.10) and simplify notation by writing û(ψ, θ) = û(θ) without explicitly referencing the
slow dependence on ψ .

The perpendicular wavevector is

k⊥ = n∇S. (2.12)

The component of k⊥ in the ∇ψ direction can be written in the form (Hardman et al.
2022)

k⊥ψ ≡ k⊥ · ∇ψ
|∇ψ | = nq′(ψ)|∇ψ |(θ0 − θ)− n

|∇ψ |(q∇ψ · ∇θ + ∇ψ · ∇ν), (2.13)

which shows that |k⊥ψ | grows approximately linearly with θ when |θ | � 1 in the presence
of magnetic shear (non-zero q′). The binormal wavenumber is

k∧ = k⊥ ·
( ∇ψ

|∇ψ | × b
)

= n∇α ·
( ∇ψ

|∇ψ | × b
)

= n
|∇ψ |(∇α × ∇ψ) · b = nB

|∇ψ | ,
(2.14)

where b = B/B, and the fourth equality in (2.14) follows from (2.3).

2.2. Mode rational surfaces and tearing parity
With the aid of (2.4) and (2.8), we can rewrite (2.7) in the form

u(ψ, θ, ζ ) =
∞∑

j=−∞
û(ψ, θ + 2πj) ein

[
α(ψ,θ,ζ )−2πq(ψ)j+∫ ψ k̄(ψ ′) dψ ′

]
. (2.15)

As discussed in § 1, δΦ̂ retains a comparable magnitude as |θ | increases to values � 1.
If one were to treat δΦ̂(θ) as approximately constant out to large values of |θ |, then the
sum on the right-hand side of (2.15) would add to large values (exhibiting constructive
interference of quasimodes) at mode rational surfaces on which nq(ψ) = m, where m is an
integer (Cowley et al. 1991). For this reason, in position space, the electrostatic-potential
fluctuations of MTMs are peaked on mode rational surfaces.

Mode rational surfaces have an additional significance related to the perturbed
magnetic-field lines. As mentioned in § 1.3, MTMs, unlike KBMs, satisfy the
tearing-parity condition (Hatch 2010; Dickinson et al. 2011; Ishizawa et al. 2015; Patel
et al. 2022) ∫ ∞

−∞
dθJBδÂ‖ ∼

∫ ∞

−∞
dθJB |δÂ‖|, (2.16)

where J = [(∇ζ × ∇ψ) · ∇θ ]−1 = [(∇α × ∇ψ) · ∇θ ]−1 = (B · ∇θ)−1 is the Jacobian
of both the (ζ, ψ, θ) and (α, ψ, θ) coordinate systems that was previously mentioned in
§ 1.5. Equation (2.16) implies that perturbed magnetic-field lines at mode rational surfaces
wander secularly towards either larger or smaller ψ (Hardman et al. 2023). To show this,
we parameterize the perturbed magnetic-field line that passes through position (α1, ψ1, θ1)

using the Clebsch coordinate functions α(θ) = α1 + δα(θ) andψ(θ) = ψ1 + δψ(θ), with
δα(θ1) = 0 and δψ(θ1) = 0. We define l(θ) to be the distance along this perturbed
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8 B.D.G. Chandran and A.A. Schekochihin

magnetic-field line and s⊥(θ) to be the distance between this perturbed field line and the
equilibrium flux surface ψ = ψ1. To leading order in the (infinitesimal) MTM amplitude,

δψ(θ1 + 2π) =
∫ θ1+2π

θ1

dψ
ds⊥

ds⊥
dl

dl
dθ

dθ

=
∫ θ1+2π

θ1

|∇ψ |
∞∑

j=−∞
δB̂ψ(θ + 2πj) ein(S1−2πjq1)

dθ
B · ∇θ , (2.17)

where we have taken s⊥ to increase in the direction of increasing ψ and l to increase in
the direction of b̂, δB̂ψ = δB̂ · ∇ψ/|∇ψ |, S1 = α1 + ∫ ψ1 k̄(ψ) dψ , q1 = q(ψ1), and the
θ integral in (2.17) is carried out at α = α1 and ψ = ψ1. To leading order in 1/n, δB̂ψ =
−ik∧δÂ‖. If we take ψ = ψ1 to be a mode rational surface on which nq1 is an integer, then,
with the aid of (2.14), we can rewrite (2.17) as

δψ(θ1 + 2π)|nq1=integer = −in einS1

∞∑
j=−∞

∫ θ1+2π

θ1

J(θ)B(θ)δÂ‖(θ + 2πj) dθ

= −in einS1

∫ ∞

−∞
JBδÂ‖ dθ. (2.18)

Equation (2.16) implies that the right-hand side of (2.18) is non-zero. (In contrast,∫∞
−∞ JBδÂ‖ dθ vanishes for KBMs in the low- and intermediate-frequency regimes; Tang

et al. 1980.) Because the right-hand side of (2.18) is a function of α1 and ψ1 but not θ1,
a perturbed magnetic-field line on a mode rational surface keeps wandering in the same
direction in ψ each time it winds around the plasma in the poloidal direction.

2.3. Orderings
We assume that

βe ≡ 8πn0Te

B2
 1, (2.19)

and that
Bp

B
∼ a

R
∼ q(ψ) ∼ a|∇q| ∼ O(1), (2.20)

where Bp is the poloidal magnetic field, a is the plasma minor radius and R is the plasma
major radius. We take the mode’s frequency ω to satisfy

|ω| ∼ |ω∗e|, (2.21)

where

ω∗s = n
cTs

Zse
d ln n0

dψ
, (2.22)

is the diamagnetic drift frequency of species s, Zse is the charge of species s, e is the proton
charge, and c is the speed of light. We also assume that

k∧ρe  1, (2.23)

where ρe = vTe/|Ωe| is the electron gyroradius, and Ωs = ZseB/(msc) is the cyclotron
frequency of species s. We note that, from (2.14), (2.20) and (2.22),

n ∼ k∧a and ω∗e ∼ k∧ρe
vTe

a
. (2.24a,b)
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2.4. Linearized gyrokinetic equation
In the limit of infinitesimal fluctuation amplitudes, the ballooning-space representation of
the non-Boltzmann, gyrotropic part of the perturbed gyrokinetic distribution function ĥs
satisfies the linearized gyrokinetic equation (Tang et al. 1980),

v‖(b · ∇θ)∂ ĥs

∂θ
− i(ω − ωDs)ĥs = − iZse

Ts
F0s[ω −Ω∗s(E)]J0(αs)

(
δΦ̂ − v‖

c
δÂ‖

)
, (2.25)

where v‖ = v · b,
ωDs = k⊥ · vDs, (2.26)

is the magnetic drift frequency,

vDs = b
Ωs

×
(
v2

‖b · ∇b + 1
2
v2

⊥∇ ln B
)
, (2.27)

is the guiding-centre drift velocity, Jl denotes the Bessel function of the first kind of order l,
αs = k⊥v⊥/Ωs (not to be confused with the Clebsch coordinate α),

Ω∗s(E) = ω∗s

[
1 + ηs

(
msE
Ts

− 3
2

)]
(2.28)

and ηs = d ln Ts/d ln n0. In (2.25), the partial derivative ∂/∂θ is taken at constant ψ , α,
μ and E, where μ = v2

⊥/(2B), and v⊥ is the velocity component perpendicular to B. In
writing (2.25), we neglected a term involving the parallel component of the fluctuating
magnetic field, which leads to only a small correction to the MTM dispersion relation
when βe  1 (Applegate et al. 2007; Patel et al. 2022; Kennedy et al. 2023).

2.5. Passing electrons

To determine ĥe for passing electrons, we solve (2.25) subject to the boundary condition

lim
|θ |→∞

ĥe(θ) = 0, (2.29)

which, as noted in § 2.1, is required in order for the sum in (2.7) to converge. The unique
solution for Imω > 0 is given by (Frieman et al. 1980; Tang et al. 1980)

ĥe, passing± = ∓iξe

∫ θ

∓σJ∞
dθ ′JBJ0(αe)

(
δΦ̂

|v‖| ∓ δÂ‖
c

)
e±i

(
Iθ0 −Iθ

′
0

)
. (2.30)

Here and in the following, the ± sign indicates the sign of v‖, σJ = J/|J|, J is the Jacobian
defined following (2.16),

ξs ≡ Zse
Ts

[ω −Ω∗s(E)]F0s, (2.31)

and

Ib
a ≡

∫ b

a
dθ

JB
|v‖| (ω − ωDe) (2.32)

is (−|v‖|/v‖ times) the change in the MTM phase factor nS − ωt at the position of a
passing electron as it propagates from θ = a to θ = b. In (2.30) and (2.32), the θ ′ and
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θ integrals are carried out at constant ψ , α, E and μ. In (2.30) and in the following, if
a function of θ appears in an integral over θ ′ but the function’s arguments are not listed,
the function is to be evaluated at θ ′ rather than θ . The lower limit of integration in (2.30)
is chosen to ensure that ĥe± → 0 as θ → ∓σJ∞. The condition Imω > 0 ensures that
ĥe± → 0 as θ → ±σJ∞ because δΦ̂(θ) and δÂ‖(θ) also vanish as |θ | → ∞.

2.6. Leading-order parallel component of Ampere’s law and its θ derivative at θ ∼ O(1)
In ballooning space, the parallel component of Ampere’s law is (Tang et al. 1980)

k2
⊥c

4π
δÂ‖ = δĵ‖ =

∑
s

2πZse
∫ ∞

0
dE
∫ E/B

0
dμB

(
ĥs+ − ĥs−

)
J0(αs). (2.33)

We only need to evaluate (2.33) at θ ∼ O(1). The ion contribution to the parallel current
can be neglected as it is ∼ (me/mi)

1/2 times the passing-electron contribution, the ions
being much slower than the electrons. The trapped-electron contribution to the parallel
current can also be neglected, as we show in Appendix A. Using the solution (2.30) in
(2.33) and dividing by B, we obtain

1
k2

⊥c
4πB

δÂ‖ = −2πie
∫ ∞

0
dE
∫ E/Bmax

0
dμJ0(αe)ξe

×
[∫ θ

−∞
dθ ′|J|BJ0(αe)

(
− σJ

2a

δΦ̂

|v‖| +

3a

δÂ‖
c

)
ei
(

Īθ0 −Īθ
′

0

)

+
∫ ∞

θ

dθ ′|J|BJ0(αe)

(
σJ

2b

δΦ̂

|v‖| +

3b

δÂ‖
c

)
e−i

(
Īθ0 −Īθ

′
0

)]
, (2.34)

where Īb
a = σJIb

a , Bmax is the maximum value of the magnetic field on the flux surface,
and the upper limit of integration of the μ integral restricts the integral to the passing
region of velocity space. The circled numbers in (2.34) are shorthand for the values of the
terms underneath them after all multiplications and integrations have been carried out. In
Appendix B, we will show that

2a ∼ 2b ∼
(

3a + 3b
)

1 ∼ k∧ρe

βe
×
(

3a + 3b
) (2.35)

at θ ∼ O(1), a set of relations that we will use in our derivation of (2.36).
As a first step towards solving (2.34), we consider its θ derivative. When ∂/∂θ acts

upon the right-hand side of (2.34), the resulting quantity is the sum of three terms. The
first results from taking the θ derivative of J0(αe(θ)), which is ∝ J1(αe(θ)); this term is
a factor ∼ k∧ρe smaller than the right-hand side of (2.34), because αe(θ) ∼ k∧ρe when
θ ∼ O(1). The second term results from taking the θ derivative of exp(±iĪθ0 ); it follows
from (2.32) that this term is a factor ∼ k∧ρe smaller than the right-hand side of (2.34)
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when θ ∼ O(1). The third term results from evaluating the integrands in 2a , 2b , 3a

and 3b at the endpoints of the θ ′ integrations. The resulting δÂ‖ terms vanish identically.

The resulting δΦ̂ terms are a factor of ∼ k∧ρe smaller than the sum of 2a and 2b

because, as we will show in Appendix B, the θ ′ integrand in 2a has a similar magnitude
throughout the interval 0 < |θ | � (k∧ρe)

−1 before decaying at larger |θ |, and likewise for

the θ ′ integrand in 2b . The integrands in terms 2a and 2b are therefore of order ∼
k∧ρe times the integrals. To summarize, at θ ∼ O(1), the θ derivative of the right-hand
side of (2.34) is of order ∼ k∧ρe times the right-hand side of (2.34).

In contrast, taking the θ derivative of the left-hand side of (2.34) does not change its
order in βe and k∧ρe. Hence, when we take the θ derivative of (2.34) and make use of
(2.35), we find that the left-hand side of (2.34) becomes ∼ β−1

e times larger than the
right-hand side, so that, to leading order,

∂

∂θ

(
k2

⊥c
4πB

δÂ‖

)
= 0, (2.36)

where the θ derivative is computed at constant α and ψ . Equation (2.36) is equivalent to
the condition that B · ∇(δĵ‖/B) = ∇ · (δĵ‖b) = 0. Upon integration, (2.36) yields

δÂ‖ = C1
4πB
k2

⊥c
, (2.37)

where C1 is a function of ψ , but not of θ (cf. Hamed et al. 2019).
Equations (2.13) and (2.37) imply that δÂ‖ ∝ θ−2 at large |θ |; i.e. δÂ‖ is effectively

localized near θ ∼ O(1), as mentioned previously. Therefore, the dominant contributions
to the θ ′-integrals of δÂ‖(θ ′) appearing in (2.34) arise from |θ ′| ∼ O(1), where exp(±iĪθ

′
0 )

and J0(αe(θ
′)) are both � 1, and, to leading order in βe and k∧ρe,∫ θ

−∞
dθ ′|J|BJ0(αe)

δÂ‖
c

e−iĪθ
′

0 +
∫ ∞

θ

dθ ′|J|BJ0(αe)
δÂ‖

c
eiĪθ

′
0 = 1

c

∫ ∞

−∞
dθ ′|J|BδÂ‖, (2.38)

which is independent of E and μ. When |θ | ∼ O(1), exp(±iĪθ0 ) and J0(αe(θ)) equal unity
plus small corrections, and, to leading order in βe and k∧ρe, (2.34) becomes

ω − ω0 + iπ1/2

(
vTe

L
+ ω2Bmax

2vTe

∫ ∞

−∞
dθ |J|Γ δΦ̃

)
= 0, (2.39)

where

ω0 = ω∗e

(
1 + ηe

2

)
, L =

∫ ∞

−∞
dθ

|J|B2βe

Bmax(k⊥ρe)2
, (2.40a,b)

Γ (θ) = sgn(θ)
∫

passing
d3v

F0e

n0

[
ω −Ω∗e(E)

ω

]
J0(αe) ei sgn(θ)Īθ0 , (2.41)

∫
passing d3v is an integral over the part of velocity space corresponding to passing particles,

δΦ̃ = δΦ̂

ψ̂‖,∞
, (2.42)
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and

ψ̂‖,∞ = iω
2c

∫ ∞

−∞
dθJBδÂ‖. (2.43)

In writing (2.42), we have invoked (2.16), which guarantees that ψ̂‖,∞ is non-vanishing.
We note that (2.13) and (2.20) imply that L ∼ aβe/(k∧ρe)

2. In the next section, we
will show how to determine δΦ̃(θ) for any given value of ω; i.e. how to solve for the
function δΦ̃(θ, ω). With that solution, (2.39) will become the MTM dispersion relation,
which we will solve using Newton’s method in § 3.

2.7. Quasineutrality: determining δΦ̂0 at |θ | � 1
In ballooning space, the quasineutrality condition is (Tang et al. 1980)

0 = −
∑

s

n0Z2
s e2

Ts
δΦ̂ +

∑
s

2πZse
∫ ∞

0
dE
∫ E/B

0
dμ

B
|v‖|

(
ĥs+ + ĥs−

)
J0(αs), (2.44)

where the first term on the right-hand side of (2.44) is the Boltzmann response. Our goal
in this section is to use (2.44) to determine δΦ̂(θ) for any given value of ω so that we
can evaluate the θ integral in (2.39). As shown in Appendix B, this integral is dominated
by |θ | ∼ (k∧ρe)

−1. The contribution from ĥi to (2.44) at such large values of |θ | is much
smaller than the ion Boltzmann term because of gyroaveraging: at θ ∼ (k∧ρe)

−1, αi ∼
(mi/me)

1/2 and J0(αi)  1. With the aid of (2.30), we obtain

(
ĥe+ + ĥe−

)
passing

= iξe

[∫ θ

−∞
dθ ′|J|BJ0(αe)

(
− δΦ̂|v‖| + σJ

δÂ‖
c

)
eiĪθ0 −iĪθ

′
0

−
∫ ∞

θ

dθ ′|J|BJ0(αe)

(
δΦ̂

|v‖| + σJ
δÂ‖

c

)
e−iĪθ0 +iĪθ

′
0

]
. (2.45)

Upon substituting (2.45) into (2.44), neglecting ĥi and making use of the results in
Appendix A for the value of ĥe for trapped electrons, we find that

δΦ̃(θ)+
∫ ∞

−∞
dθ ′Wp(θ, θ

′)δΦ̃(θ ′)+
∫ π(2j+1)

π(2j−1)
dθ ′Wtr(θ, θ

′)δΦ̃(θ ′) = τΓ (θ)

1 + τ
, (2.46)

where τ = Ti/Te, j is the largest integer such that π(2j − 1) < θ (we assume that B attains
its maximum value at θ = π),

Wp(θ, θ
′) = 2πiτ

1 + τ
|J(θ ′)|

∫ ∞

0
dE Q(E)

∫ E/Bmax

0
dμ g+(θ>,E, μ)g−(θ<,E, μ), (2.47)

Wtr(θ, θ
′) = − 4πτ

1 + τ
|J(θ ′)|

∫ ∞

0
dE Q(E)

∫ μmax(θ,θ
′)

E/Bmax

dμ
gtr(θ,E, μ)gtr(θ

′,E, μ)
〈ω − ωDe〉bτb

, (2.48)

Q(E) = F0e

n0
[ω −Ω∗e(E)], (2.49)

g±(θ,E, μ) = BJ0(αe)e±iĪθ0

|v‖| , gtr(θ,E, μ) = BJ0(αe)

|v‖| cos
(

nq′(ψ)I(ψ)|v‖|θ
Ωe

)
,

(2.50a,b)
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μmax(θ, θ
′) = min[E/B(θ),E/B(θ ′)], θ> = max(θ, θ ′), θ< = min(θ, θ ′) and 〈· · · 〉b and τb

are, respectively, the bounce average and bounce time defined in (A 7a,b). Equation (2.46)
can be solved numerically by discretizing the integral over θ ′, which converts (2.46) into
a matrix equation for δΦ̃. We present examples of such solutions in Section 3.3

We note that (2.39) and (2.46) can be combined into a single eigenvalue equation
for δΦ̂ and ω by multiplying both equations by ψ̂‖,∞, using (2.39) to solve for ψ̂‖,∞ and
substituting that value into (2.46) to obtain

δΦ̂(θ)+
∫ ∞

−∞
dθ ′ W̄p(θ, θ

′)δΦ̂(θ ′)+
∫ π(2j+1)

π(2j−1)
dθ ′Wtr(θ, θ

′)δΦ̂(θ ′) = 0, (2.51)

where

W̄p(θ, θ
′) = Wp(θ, θ

′)+ iπ1/2Bmaxτω
2|J(θ ′)|Γ (θ)Γ (θ ′)

2vTe(1 + τ)(ω − ω0 + iπ1/2vTe/L)
. (2.52)

Although (2.51) could be used to determine ω, in this work we obtain the MTM dispersion
relation from (2.39) and (2.46).

2.8. Maximum unstable binormal wavenumber
Given the scaling estimates in Appendix B, the first term (ω), second term (ω0) and
fourth term (containing δΦ̃) in (2.39) are all comparable, and the ratio of the third
term (iπ1/2vTe/L) to these other terms is k∧ρe/βe. These estimates also follow from (2.35)
upon noting that the iπ1/2vTe/L term in (2.39) comes from term 1 in (2.34), the ω and ω0

terms come from the sum of terms 3a and 3b in (2.34) and the term containing δΦ̃ in

(2.39) comes from the sum of terms 2a and 2b in (2.34). As the iπ1/2vTe/L term in
(2.39) is always stabilizing, the MTM can only be unstable if (cf. Hardman et al. 2023)

k∧ρe � βe. (2.53)

2.9. The limit of long wavelength and cold ions
In this section, we specialize our results to the limit in which

Ti

Te
∼ k∧ρe

βe
 1. (2.54)

As Wp(θ, θ
′) and Wtr(θ, θ

′) are ∝ τ when τ ≡ Ti/Te  1, the approximate magnitudes of
Wp(θ, θ

′) and Wtr(θ, θ
′) in the cold-ion limit are the same as estimated in Appendix B,

only multiplied by τ . To leading order in τ , (2.46) thus yields

δΦ̃ = τΓ. (2.55)

Upon substituting (2.55) into (2.39) and defining ωr and γ to be the real and imaginary
parts of ω, respectively, we find that, to leading order in τ ,

ωr = ω0, (2.56)

3We note that if the equilibrium has up–down symmetry and θ0 = 0, then ωDe is an even function of θ , Iθ0 and
Γ (θ) are odd functions of θ , Wp(−θ,−θ ′) = Wp(θ, θ

′), Wtr(−θ,−θ ′) = Wtr(θ, θ
′), and (2.46) implies that δΦ̂ is an

odd function of θ , as illustrated in figure 5.
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(b)(a) (c)

FIGURE 2. Panels (a–c) show, respectively, the shape of the flux surface about which the local
Grad–Shafranov equilibrium is calculated in § 3, the strength of the poloidal magnetic field Bp
on this flux surface as a function of the poloidal angle θ and the strength of the total magnetic
field B on this flux surface as a function of θ .

and

γ = −π1/2

[
vTe

L
+ τω2

0Bmax

2vTe

∫ ∞

−∞
dθ |J|Re(Γ 2)ω→ω0

]
, (2.57)

where the subscript ‘ω → ω0’ means that ω is replaced with ω0 in (2.32) and (2.41) when
the subscripted quantity (Γ 2) is evaluated.

2.10. The limit of long wavelength and zero temperature gradient
In this section, we assume that

k∧ρe  βe, ηe = 0. (2.58)

When k∧ρe  βe, we can drop the iπ1/2vTe/L term in (2.39), and when ηe = 0,
Ω∗e(E) = ω∗e. Equation (2.39) then has the solution ω = ω∗e, and for this solution
ω −Ω∗e(E), Γ (θ), Wp(θ, θ

′), Wtr(θ, θ
′) and δΦ(θ) all vanish. The stability of the MTM

at k∧ρe  βe when ηe = 0 implies that the MTM at k∧ρe  βe is driven by the electron
temperature gradient and not by the density gradient.

3. Numerical examples

We consider a Miller–Mercier–Luc model (Mercier & Luc 1974; Miller et al. 1998) of
a local Grad–Shafranov equilibrium with parameters taken from table 2 of Patel et al.
(2022), except for the electron collision frequency νe, which we set equal to zero. These
parameters were chosen to model a flux surface in the core of the proposed STEP spherical
tokamak (Wilson et al. 2020). We plot the shape of this flux surface and the θ profiles of
the poloidal and total magnetic-field strengths on this surface in figure 2. Throughout this
section, we take θ to be the particular poloidal angle used by Miller et al. (1998). The linear
average of βe around the flux-surface contour in the poloidal plane in this equilibrium is

βe, av = 0.125. (3.1)

To obtain the MTM dispersion relation for this equilibrium, we solve (2.39) using
Newton’s method. At each step in Newton’s method, we need to determine δΦ̃ in (2.39)
for some assumed value of ω. To do so, we discretize in θ , which converts (2.46) into a
matrix equation for δΦ̃. When we solve this matrix equation, we first compute Īθ0 = σJIθ0
from (2.32) on a θ grid with 512 uniformly spaced grid points per 2π increment in θ . We
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FIGURE 3. The real and imaginary parts of the MTM frequency (ωr and γ , respectively) as a
function of the toroidal mode number n (top x axis) and k∧ρe|θ=0 (bottom x axis), where k∧ is
the binormal wavenumber defined in (2.14). Frequencies are given in units of vTe/a, where a is
the plasma minor radius. The dotted line is a plot of ω0, which is defined in (2.40a,b), and the
dash–dotted line is a plot of the magnetic-drift-wave frequency ωmdw = ω∗e(1 + ηe) that follows
from (1.2). The vertical dashed line shows the approximate instability threshold k∧ρe � βe from
(2.53), where we have set βe equal to the value in (3.1). As in all the numerical examples in this
paper, we have set the ballooning angle θ0 equal to zero.

evaluate all integrals over θ , E and μ using the trapezoid rule. We evaluate Īθ0 and all other
functions of E and μ on a grid of 64 uniformly spaced grid points along the velocity (v)
axis ranging from 0.1vTe to 6vTe and, at each v, 64 evenly spaced grid points in μ within
the passing region of velocity space and another 64 evenly spaced grid points in μ within
the trapped region of velocity space. We evaluate Γ (θ), Wp(θ, θ

′), Wtr(θ, θ
′) and δΦ̃ on

a coarser θ grid with only 32 points per 2π increment in θ . We adjust the total width of
the θ grid as we vary n to ensure that δΦ̂ decays to small values before the edge of the grid
is reached. In all the examples in this section, we set θ0 = 0.

In figure 3, we plot the real and imaginary parts of ω, denoted by ωr and γ , respectively,
for seven values of n: 25, 50, 100, 200, 400, 800 and 1060. At n < 800, ωr lies between
the cold-ion MTM frequency ω0 = ω∗e(1 + ηe/2) and the magnetic-drift-wave frequency
that follows from (1.2) and (2.14), which is ωmdw = k⊥ · v∗e = ω∗e(1 + ηe), where the
electron diamagnetic drift velocity v∗e is defined below (1.2). The MTM frequency
differs from ωmdw because (1.2) is the fluid-theory requirement for avoiding infinite
current in a perfectly conducting plasma with massless electrons, whereas (2.39) is the
gyrokinetic statement of the parallel component of Ampere’s law, which accounts for
the finite values of the current and electron mass, the current produced by δΦ̂, and
how an electron’s response to the fluctuating fields depends upon the electron’s velocity.
Nevertheless, the approximate equality ω � ωmdw indicates that the MTM phase velocity
is approximately v∗e and that the MTM approximates the force balance that arises in a
fluid-theory magnetic drift wave. Across these same n values (n < 800), the MTM growth
rate is approximately 1/6 to 1/5 of ωr. However, as n increases above 800, k∧ approaches
the approximate maximum unstable binormal wavenumber βe/ρe given in (2.53), and γ
drops sharply.
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FIGURE 4. The parallel component of the fluctuating vector potential δÂ‖(θ) from (2.37)
normalized to its value at θ = 0 when the ballooning angle θ0 is zero. The θ profile of δÂ‖(θ)
that follows from (2.37) is independent of n.

In figure 4, we plot δÂ‖ from (2.37). We note that the θ profile of δÂ‖ in (2.37) is
independent of n, and thus this same profile applies to all of the data points in figure 3.

In figure 5, we plot δΦ̂ for n = 25, 50, 100, 200 and 400, with n increasing from the top
row to the bottom row. As n increases, the width Δθ of the δΦ̂ eigenfunction decreases,
in agreement with the estimate in § 2 that Δθ ∼ (k∧ρe)

−1. Aside from the decrease in Δθ ,
the qualitative shape of the δΦ̂(θ) eigenfunction and the value of γ /ωr remain similar as n
ranges from 25 to 400, even though this range of n corresponds to k∧ρi values ranging from
less than 1 to greater than 1, where ρi is the ion gyroradius. This latter point is consistent
with the analysis of § 2, in which the ions play no particular role in the MTM other than
via their Boltzmann response.

Although we have retained the trapped-electron ĥe terms in our analysis, they have only
a modest effect on the MTM growth rate for the spherical-tokamak equilibrium that we
investigated in § 3. For example, these terms increase γ by � 10 % for the n = 50 data
point in figure 3 and by � 0.6 % for the n = 400 data point.

4. Conclusion

In this paper, we have derived the collisionless gyrokinetic MTM dispersion relation,
which is given by (2.39),

ω − ω0 + iπ1/2

(
vTe

L
+ ω2Bmax

2vTe

∫ ∞

−∞
dθ |J|Γ δΦ̃

)
= 0, (4.1)

supplemented by the quasineutrality condition, (2.46), which determines the function
δΦ̃(θ, ω). In agreement with past studies, we find that the MTM is driven unstable by
the electron temperature gradient rather than by the density gradient (§ 2.10), and that the
MTM instability mechanism requires the electrostatic potential fluctuation to be present:
when the term containing δΦ̃ in (4.1) is neglected, the imaginary part of ω is strictly
negative. The instability mechanism also depends on magnetic drifts in a way that is
quantified by the Īθ0 terms in (2.39), (2.41) and (2.46) through (2.50a,b).
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(e)

(b)(a)

(c) (d )

(g) (h)

(i) ( j)

( f )

FIGURE 5. The real (a, c, e, g, i) and imaginary (b, d, f, h, j) parts of the normalized fluctuating
electrostatic potential δΦ̂(θ)c/[vTeδÂ‖(0)] when θ0 = 0. From top to bottom, the five rows
correspond to the toroidal mode numbers 25, 50, 100, 200 and 400, respectively, which can
be converted to k∧ρe values by comparing the upper and lower horizontal axes in figure 3.
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As discussed in § 2.6, (4.1) is just the parallel component of Ampere’s law evaluated
at θ = 0. Upon multiplication by C2 = σJn0e2BvTeψ̂‖,∞/(π1/2TeBmaxω), (4.1) becomes

δĵδE‖ + δĵδBψ − δĵnet + δĵδΦ = 0, (4.2)

where δĵδE‖ = C2ω is the parallel current density at θ = 0 produced by the inductive
parallel electric field ic−1ωδÂ‖, δĵδBψ = −C2ω0 is the parallel current density at θ =
0 produced by δB̂ψ = δB̂ · ∇ψ/|∇ψ | = −ik∧δÂ‖ (i.e. by electrons streaming along
perturbed magnetic-field lines that wander across the equilibrium flux surfaces), δĵnet is
the net parallel current density at θ = 0 (which is given by k2

⊥cδÂ‖(0)/4π, or, equivalently,
−C2 times the term proportional to 1/L in (4.1)), and δĵδΦ is C2 times the term proportional
to δΦ̃ in (4.1), or, equivalently, the parallel current density at θ = 0 produced by δΦ̂,
the nature of which is discussed at the end of § 1.5. Figure 3 shows that ωr � ω0 and
γ /ωr � 1/5 for MTMs at k∧ρe  βe in the spherical-tokamak equilibrium considered in
§ 3, which implies that the δΦ̃ term in (4.1) is significantly smaller than the ω and ω0

terms, and hence that δĵδΦ is significantly smaller than the current densities δĵδE‖ and δĵδBψ
that result from δÂ‖. The MTMs in § 3 at k∧ρe  βe are thus basically magnetic drift
waves (with ω � ω0 � k⊥ · v∗e — see § 1.1 and the discussion of figure 3 in § 3) that are
driven weakly unstable (γ  ωr) by the electron temperature gradient via δΦ̂.

The analogy to the magnetic drift wave suggests the following heuristic way of
thinking about how the MTM frequency is determined. In the case of the magnetic drift
wave (§ 1.1), ω is fixed by requiring that the force from the inductive parallel electric
field ic−1ωδÂ‖ cancel out the component of the electron pressure force parallel to the total
magnetic field B + δB in order to avoid unphysically large currents. Analogously, in the
case of the MTM, ω is determined by requiring that δĵδE‖ offset any difference between δĵnet

and δĵδBψ + δĵδΦ . In an approximate sense (with corrections of order δĵδΦ/δĵδBψ ), the real
part of ω is determined by the condition that the C2ωr part of δĵδE‖ cancel δĵδBψ , which
is always 90◦ out of phase with δĵnet. This first condition is very similar to the force
balance that arises in the magnetic drift wave and is the reason that the MTM propagates
at approximately the electron diamagnetic drift velocity v∗e. The MTM growth rate is
then determined by the condition that the C2 × iγ part of δĵδE‖ match the difference
between δĵnet and the part of δĵδΦ that is in phase with δĵnet.

There is some tension between the numerical examples presented in § 3 and previous
studies that suggest that γ → 0 as νe → 0 when k∧ρi < 1 (Applegate et al. 2007;
Guttenfelder et al. 2012a; Patel et al. 2022), and further work is needed to clarify the extent
of, and reasons for, this discrepancy. Other potentially fruitful directions for future research
include applying the results of this paper to other tokamak equilibria and stellarator
equilibria and generalizing the analysis to account for collisions.
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Appendix A. Trapped electrons

To determine ĥe± for trapped electrons, we integrate (2.25) for both ĥe+ and ĥe− from θ
to the nearest bounce points surrounding θ , denoted θ1 and θ2, with θ1 < θ < θ2. This
yields four equations for the six unknowns ĥe+(θ), ĥe−(θ), ĥe+(θ1), ĥe−(θ1), ĥe+(θ2) and
ĥe−(θ2). We eliminate two of these six unknowns, ĥe+(θ2), and ĥe−(θ2), by imposing the
trapped-particle boundary conditions

ĥe+(θ1) = ĥe−(θ1) ĥe+(θ2) = ĥe−(θ2), (A1a,b)

leaving a system of four equations in four unknowns. Two subtractions (of one equation
from another) eliminate ĥe+(θ1) and ĥe−(θ1), leaving a system of two linear equations in
the two unknowns ĥe+(θ) and ĥe−(θ), whose solutions can be combined to yield

1
2

[
ĥe+(θ)+ ĥe−(θ)

]
tr

= ξe

sin Iθ2
θ1

[∫ θ

θ1

dθ ′ JB
|v‖|

(
σ1 cos Iθ

′
θ1

cos Iθθ2
+ iσ2 sin Iθ

′
θ1

cos Iθθ2

)

+
∫ θ2

θ

dθ ′ JB
|v‖|

(
σ1 cos Iθ

′
θ2

cos Iθθ1
+ iσ2 sin Iθ

′
θ2

cos Iθθ1

)]
, (A2)

and

1
2

[
ĥe+(θ)− ĥe−(θ)

]
tr

= ξe

sin Iθ2
θ1

[∫ θ

θ1

dθ ′ JB
|v‖|

(
iσ1 cos Iθ

′
θ1

sin Iθθ2
− σ2 sin Iθ

′
θ1

sin Iθθ2

)

+
∫ θ2

θ

dθ ′ JB
|v‖|

(
iσ1 cos Iθ

′
θ2

sin Iθθ1
− σ2 sin Iθ

′
θ2

sin Iθθ1

)]
, (A3)

where σ1 ≡ J0(αe)δΦ̂ and σ2 ≡ |v‖|J0(αe)δÂ‖/c.4 Equations (A2) and (A3) were obtained
by Tang et al. (1980), but with two minor differences; the iσ2 sin Iθ

′
θ2

cos Iθθ1
term at the end

of (A2) was written as iσ2 sin Iθ
′
θ2

sin Iθθ1
, and the iσ1 cos Iθ

′
θ1

sin Iθθ2
term at the beginning of

(A3) was written as iσ1 cos Iθ
′
θ1

sin Iθθ1
.

When we evaluate the trapped-electron contribution to the parallel component of
Ampere’s law in § 2.6, we need only the odd (in v‖) part of ĥe, given by (A3), and we
only consider θ ∼ O(1), where all quantities of the form Iθb

θa
in (A3) are ∼ O(k∧ρe)  1.

The smallness of the Iθb
θa

terms makes the trapped-electron contribution to ĥe+ − ĥe−
a factor ∼ k∧ρe smaller than the passing-electron contribution.5 Physically, magnetic
mirroring reduces the part of the distribution function that is odd in v‖, making the
trapped-electron parallel current negligible.

4If we had retained δB̂‖ in (2.25), then we would have had to add (v⊥/k⊥c)J1(αe)δB̂‖ to σ1.
5This point is further clarified by the estimate given in Appendix B of terms 2a and 2b in (2.34).

https://doi.org/10.1017/S0022377824000175 Published online by Cambridge University Press

https://doi.org/10.1017/S0022377824000175


20 B.D.G. Chandran and A.A. Schekochihin

In § 2.7, when we evaluate the quasineutrality condition, we need only the even part
of ĥe, given by (A2), and we consider only |θ | � 1, as the value of δΦ̂ at |θ |  (k∧ρe)

−1

contributes only a small correction to (2.39). At |θ | � 1, δÂ‖ is negligible because of
(2.37), and we can drop the σ2 term in (A2). If θa or θb differs from a bounce point in any
of the Iθb

θa
terms in (A2), then the dominant contribution to that Iθb

θa
term comes from the

ωDe term in (2.32), and in particular the part of ωDe that arises from component of vDe
along ∇ψ , which satisfies the identity (Hinton & Wong 1985)

vDe · ∇ψ = v‖I(ψ)
JB

∂

∂θ

∣∣∣∣
α,ψ,E,μ

(
v‖
Ωe

)
. (A4)

At |θ | � 1, (2.13) implies that k⊥ψ = −n|∇ψ |(dq/dψ)θ to leading order in 1/θ (where
we have taken θ0 ∼ O(1)). We thus find that

Iθb
θa

= nq′(ψ)I(ψ)
θ |v‖|
Ωe

∣∣∣∣
θb

θa

, (A5)

to leading order in 1/θ , where θa and θb are chosen from {θ1, θ2, θ, θ
′}, provided all three

of the following conditions are met: (i) |θ | � 1; (ii) θa or θb is not a bounce point; and
(iii) |θa − θb| ∼ O(1). When θa and θb are both bounce points, the right-hand side of (A5),
which is usually the dominant term in Iθb

θa
, vanishes, and Iθb

θa
is instead dominated by the

remaining terms, which, although non-vanishing, are  1. We can thus write

sin Iθ2
θ1

= Iθ2
θ1

+ · · · =
∫ θ2

θ1

dθ
JB
|v‖|(ω − ωDe)+ · · · = σJτb 〈ω − ωDe〉b + · · · , (A6)

where · · · represents higher-order corrections, and

〈· · · 〉b ≡ 1
τb

∫ θ2

θ1

dθ
|J|B
|v‖| (· · · ) and τb(E, μ) ≡

∫ θ2

θ1

dθ
|J|B
|v‖| (A7a,b)

are the bounce average and bounce time, respectively. Upon substituting (A5) and (A6)
into (A2), we find that[

ĥe+(θ)+ ĥe−(θ)
]

tr
= 2ξe cos(P)

〈ω − ωDe〉b

〈
J0(αe) cos(P)δΦ̂

〉
b
, (A8)

where P = nq′(ψ)I(ψ)|v‖|θ/Ωe. Substituting (A8) into (2.44) for the value of ĥe+ + ĥe−
at μ > E/Bmax leads to the Wtr(θ, θ

′) term in (2.46).

Appendix B. Justification of (2.35)

By the same arguments that led to (2.39), the sum of terms 3a and 3b in (2.34) is

3a + 3b = σJn0e2vTe(ω − ω0)ψ̂‖,∞
π1/2TeBmaxω

. (B1)

Equations (2.37) and (2.40a,b) imply that

1 = C1 = −2iσJn0e2ψ̂‖,∞
meωBmaxL

. (B2)

The second line of (2.35) follows from dividing (B2) by (B1) and making use of the
orderings in § 2.3.
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To estimate terms 2a and 2b in (2.34), we first estimate Iθ0 in (2.32) for electrons
with v ∼ vTe. Equations (2.21), (2.24a,b) and (2.26) imply that the contributions to Iθ0
from terms proportional to ω or k∧ are ∼ k∧ρeθ . The remaining contribution to Iθ0 , which
is ∝ k⊥ψ , is a little trickier to estimate, because k⊥ψ grows secularly with θ . Keeping just
the dominant part of k⊥ψ at large |θ |, which from (2.13) is −n|∇ψ |(dq/dψ)θ , employing
(A4), and defining vDe,ψ = vDe · ∇ψ/|∇ψ |, we find that∫ θ

0
dθ ′ JB

|v‖|n|∇ψ | dq
dψ
θ ′vDe,ψ = n

dq
dψ

I(ψ)θ
( |v‖|
Ωe

−
〈 |v‖|
Ωe

〉)
∼ k∧ρeθ, (B3)

where 〈f 〉 ≡ (1/θ)
∫ θ

0 dθ ′f (θ ′). Therefore, Iθ0 in its entirety is ∼ k∧ρeθ .
At |θ | � (k∧ρe)

−1, |Iθ0 | � 1, e±iĪθ0 ∼ O(1) and J0(αe(θ)) ∼ O(1). Equations (2.41) and
(2.47) then show, respectively, that Γ (θ) ∼ O(1) and Wp(θ, θ

′) ∼ k∧ρe when |θ | �
(k∧ρe)

−1 and |θ ′| � (k∧ρe)
−1. On the other hand, at |θ | � (k∧ρe)

−1, Īθ0 becomes large,
and exp(±iĪθ0 ) becomes a rapidly oscillating function of velocity. This rapid oscillation
and the decay in J0(αe(θ)) at |θ | � (k∧ρe)

−1 cause |Γ (θ)| to decay to values  1
and |Wp(θ, θ

′)| to decay to values  k∧ρe when |θ | or |θ ′| is � (k∧ρe)
−1. For similar

reasons, Wtr(θ, θ
′) ∼ O(1) when |θ | � (k∧ρe)

−1 and |θ ′| � (k∧ρe)
−1, and Wtr(θ, θ

′)  1
when |θ | or |θ ′| is � (k∧ρe)

−1. Given these approximate values of Wp(θ, θ
′), Γ and

Wtr(θ, θ
′), it follows from (2.46) that δΦ̃ ∼ O(1) at |θ | � (k∧ρe)

−1 and that |δΦ̃|  1
at |θ | � (k∧ρe)

−1. This behaviour of δΦ̃ enables us to estimate the magnitude of terms

2a and 2b in (2.34) by setting δΦ̂(θ ′) ∼ ψ̂‖,∞ for |θ ′| � (k∧ρe)
−1 and δΦ̂(θ ′) → 0 for

|θ ′| � (k∧ρe)
−1, which then, in conjunction with (B1), leads to the first line of (2.35).
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