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Abstract. Merging neutron star (NS) binaries may be detected by ground-based gravitational
wave (GW) interferometers (e.g. LIGO/VIRGO) within this decade and may also generate elec-
tromagnetic radiation detectable by wide-field, fast imaging telescopes that are coming online.
The GWs can provide new constraint on the NS equation of state (including mass-radius rela-
tion and the related nuclear symmetry energy). This paper reviews various hydrodynamical and
electrodynamical processes in coalescing NS binaries, with focus on the pre-merger phase.
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1. Introduction
I was asked to talk about thermal radiation from isolated neutron stars (NSs). In this

meeting, George Pavlov reviewed the X-ray properties of pulsars and thermally emitting
NSs (see Kaplan et al. 2011), and Wynn Ho discussed central compact objects and their
magnetic fields (see Halpern & Gotthelf 2010; Shabaltas & Lai 2012; Vigano & Pons
2012). Recent works on theoretical modelling of NS surface emission can be found in
Potekhin et al. (2012) (see also Pavlov et al. 1995; Harding & Lai 2006 and van Adelsberg
& Lai 2006 for reviews). Since these subjects were adequately covered in the meeting, I
decided to focus on a different topic that did not receive much attention in this meeting
but is likely to become increasingly important in the coming decade.

Merging NS binaries have been studied since 1970s, with major activities in the rela-
tivity community since the early 1990s because of their importance as a source of grav-
itational waves (GWs) (e.g. Cutler et al. 1993). They are of great current interest for
two reasons: (i) Merging NS/NS or NS/Black-Hole (BH) binaries have been identified as
the leading candidate for the central engine of short GRBs (Berger 2011). They are also
expected to produce optical and radio transients that may be detected by wide-field, fast
imaging telescopes that are coming online (e.g. PTF, LSST) in the next few years (Nis-
sanke et al. 2012). (ii) After several decades of promise, gravitational wave astronomy
in the Hz-kHz band may finally take off in the next decade. The initial LIGO reached
the design sensitivity (hc � 10−21) in 2006, and the enhanced LIGO (with a factor of
2 reduction in hc) is taking or analysing data. The Advanced LIGO and VIRGO are
expected to begin observations in 2015 and reach full sensitivity (a factor of 10 reduction
in hc) in 2018-19 — at which time the detection of GWs from many merging NS binaries
seems guaranteed.

The last three minutes of a NS binary’s life may be divided into two phases: the
inspiral phase, producing quasi-periodic GWs, and the coalescence phase, where physical
collision results in “messy” GWs. The recent years, 3D simulations of the final merger
in full general relativity (GR) have become possible (see Shibata & Taniguchi 2006;
Foucart et at. 2012; Sekiguchi et al. 2012). It has long been recognized that the final
merger waveforms can provide a useful probe of NS equation of state (EOS; e.g., Cutler

149

https://doi.org/10.1017/S1743921312023459 Published online by Cambridge University Press

https://doi.org/10.1017/S1743921312023459


150 D. Lai

et al. 1993; Bildsten & Cutler 1992; Lai & Wiseman 1996; Wiggins & Lai 2000). The
idea is simple: By measuring the “cut-off” frequency ∝ (GMt/R3)1/2 associated with
binary contact or tidal disruption, combined with the precise mass measurement from
the inspiral waveform, one can obtain the NS radius (recent numerical simulations can
be found in Bauswein et al. 2012; Sekiguchi et al. 2012; Faber & Rasio 2012).

In the following sections I will focus on the pre-merger phase.

2. Hydrodynamics of merging NS binaries
Prior to binary merger, tidal effects may affect the orbital decay and the GWs. There

are two types of tides: equilibrium tides and dynamical tides. The equilibrium tides corre-
spond to global deformation of the NS, which leads to the interaction potential between
the two stars (with the NS mass M and radius R, the companion mass M ′ – treated as
a point mass, and the binary separation a)

V (r) = −MM ′/a −O
(
k2M

′2R5/a6
)

, (2.1)

where k2 is the so-called Love number. This would lead to a correction to the number of
GW cycles, dN = dN (0) [1 − O(k2M

′R5/Ma5)]. For a Newtonian polytropic NS model,
simple analytic expressions can be found in Lai et al. (1994). Recent semi-analytic GR
calculations of such equilibrium tidal effects (including the more precise determination
of the Love number) can be found in numerous papers (e.g., Flanagan & Hinderer 2008;
Binnington & Poisson 2009; Damour & Nagar 2009; Penner et al. 2012, Ferrari et al. 2012).
Obviously this effect is only important at small orbital separations (just prior to merger) –
there is some prospect of measuring this, thereby constraining the EOS, but it will be
challenging (Damour et al. 2012). More importantly, at small orbital separations, the
quadrupole approximation is not valid; there one must use the numerically computed
GR quasi-equilibrium binary sequences to characterize the tidal effect – such sequences
have been constructed by several groups since the 1990s (e.g., Baumgarte et al. 1998;
Uryu et al. 2009).

Another aspect of the equilibrium tide concerns tidal dissipation, which leads to a lag
of the tidal bulge with respect to the binary axis. It was shown already in the 1990s
(Bildsten & Cutler 1992; Kochanek 1992) that because of the rapid GW-driven orbital
decay, viscous tidal lag cannot synchronize the NS spin. Thus the NS will be close to
irrotational (approximated as a Riemann-S ellipsoid; Lai et al. 1994; Wiggins & Lai
2000). Near the final phase of the inspiral, the rapid orbital decay gives rise to a finite
lag angle (even with zero viscosity), but this cannot synchronize the NS (Lai & Shapiro
1995; Dall’Osso & Rossi 2012).

The situation is more complicated for dynamical tides, which manifest as resonant
excitations of internal oscillations of the NS: As two NSs spiral in, the orbit can momen-
tarily come into resonance with the normal modes (frequency ωα ) of the NS:

ωα = mΩorb , m = 2, 3, · · · (2.2)

By drawing energy from the orbital motion and resonantly exciting the modes, the rate
of inspiral is modified, giving rise to a phase shift in the gravitational waveform. This
problem was studied by Reisenegger & Goldreich (1994), Lai (1994) and Shibata (1994)
in the case of non-rotating NSs, where the only modes that can be resonantly excited
are g-modes (with typical mode frequencies <∼ 100 Hz). It was found that the effect is
small for typical NS parameters (mass M = 1.4M� and radius R = 10 km) because the
coupling between the g-mode and the tidal potential is weak. Ho & Lai (1999) studied
the effect of NS rotation, and found that the g-mode resonance can be strongly enhanced
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even by a modest rotation (e.g., the phase shift in the waveform ΔΦ reaches up to
0.1 radian for a spin frequency νs <∼ 100 Hz). They also found that for a rapidly rotating
NS (νs >∼ 500 Hz), f-mode resonance becomes possible (since the inertial-frame f-mode
frequency can be significantly reduced by rotation) and produces a large phase shift. In
addition, NS rotation gives rise to r-mode resonance whose effect is appreciable only for
very rapid (near breakup) rotations. Lai & Wu (2006) further studied resonant excitations
of other inertial modes (of which r-mode is a member) and found similar effects. Flanagan
& Racine (2006) studied the gravitomagnetic resonant excitation of r-modes and and
found that the post-Newtonian effect is more important than the Newtonian tidal effect
(and that the phase shift reaches 0.1 radian for νs ∼ 100 Hz). Tsang et al. (2012)
examined crustal modes and found that the GW phase correction is small/modest and
suggested that tidal resonance could shatter the NS crust, giving rise to the pre-cursor
of short GRBs. Taken together, these studies suggest that for canonical NS parameters
(R � 10 km, νs <∼ 100 Hz), tidal resonances have a small effect on the gravitational
waveform during binary inspiral. However, it is important to remember that the effect
is a strong function of R (e.g., ΔΦ ∝ R4 for g-modes and ∝ R3.5 for inertial modes). A
larger radius (R � 15 km) would make the effect important. In the case of g-modes, the
magnitude of the effect depends on the symmetry energy of nuclear matter and could be
non-negligible (W. Newton & D. Lai 2013, in prep).

3. Electrodynamics of merging NS binaries
For magnetic NSs, magnetic interactions may play a role. If the binary is embedded in

a vacuum, then the interaction potential is V (r) = −MM ′/a − O(μμ′/a3) (where μ, μ′

are the magnetic dipole moments of the two stars). It is easy to check that such magnetic
interaction would lead to negligible effect on the GWs unless both NSs have superstrong
fields (� 1015 G) – this is unlikely (e.g., the double pulsars PSR J0737-3039 has 1010 G
for pulsar A and 2 × 1013 for pulsar B).

Of course, as in the case of isolated pulsars, the circumbinary environment cannot
be vacuum. The following discussion is based on Lai (2012). Consider a binary sys-
tem consisting of a magnetic NS (the “primary”, with mass M , radius R, spin Ωs , and
magnetic dipole moment μ) and a non-magnetic companion (mass Mc , radius Rc). The
orbital angular frequency is Ω. The magnetic field strength at the surface of the primary
is B� = μ/R3 . The whole binary system is embedded in a tenuous plasma (magne-
tosphere). For simplicity, we assume Ω, Ωs and μ are all aligned. The motion of the

Figure 1. DC circuit model of magnetic interactions in binary systems a la Goldreich &
Lynden-Bell (1969).
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non-magnetic companion relative to the magnetic field of the primary produces an EMF
E � 2Rc |E|, where E = vrel × B/c, with vrel = (Ω − Ωs)a φ̂ and B = (−μ/a3)ẑ. This
gives E � (2μRc/ca2)ΔΩ, where ΔΩ = Ω − Ωs . The EMF drives a current along the
magnetic field lines in the magnetosphere, connecting the primary and the companion
through two flux tubes. The current in the circuit is given by I = E/(Rtot), where the
total resistance of the circuit is Rtot = R + Rc + 2Rmag , with R, Rc , Rmag the resis-
tances of the magnetic star, the companion and the magnetosphere, respectively. These
resistances depend on the properties of the binary components and the magnetosphere,
and can vary widely for different types of systems. The energy dissipation rate of the
system is then Ėdiss = 2I2Rtot = 2E2/Rtot , where the factor of 2 accounts for both the
upper and lower sides of the circuit.

The total magnetic force (in the azimuthal direction) on the companion is Fφ �
(2Rc)(2IBz/c), with Bz = −μ/a3 . Thus the torque acting on the binary’s orbital angu-
lar momentum is T = J̇orb � (4/c)aRcIBz � −(4μRc/ca2)(E/Rtot). The torque on the
primary’s spin is IΩ̇s = −T (where I is the moment of inertia). The orbital energy loss
rate associated with T is then Ėorb = TΩ.

The equations above show that the binary interaction torque and energy dissipation
associated with the DC circuit increase with decreasing total resistance Rtot . Is there
a problem for the DC model when Rtot is too small? The answer is yes. The current
in the circuit produces a toroidal magnetic field, which has the same magnitude but
opposite direction above and below the equatorial plane. The toroidal field just above
the companion star (in the upper flux tube) is Bφ+ � −(2π/c)Jr , where Jr � −4I/(πRc)
is the (height-integrated) surface current. Thus the azimuthal twist of the flux tube is
ζφ = −Bφ+/Bz == 16vrel/(c2Rtot), where vrel = aΔΩ = a(Ω − Ωs). Clearly, when Rtot
is less than 16vrel/c2 , the flux tube will be highly twisted.

Goldreich & Lynden-Bell (1969) speculated that the DC circuit would break down
when the twist is too large. (For the Jupiter-Io system parameters adopted by GL, the
twist |ζφ | � 1.) Since then, numerous works have confirmed that this is indeed the case.
Theoretical studies and numerical simulations, usually carried out in the contexts of
solar flares and accretion disks, have shown that as a flux tube is twisted beyond ζφ >∼ 1,
the magnetic pressure associated with Bφ makes the flux tube expand outward and the
magnetic fields open up, allowing the system to reach a lower energy state (e.g., Aly
1985; Aly & Kuijpers 1990; Lynden-Bell & Boily 1994; Lovelace et al. 1995; Uzdensky
et al. 2002). Thus, a DC circuit with ζφ >∼ 1 cannot be realized: The flux tube will break
up, disconnecting the linkage between the two binary components. A binary system with
Rtot <∼ 16vrel/c2 cannot establish a steady-state DC circuit. The electrodynamics is likely
rather complex, only a quasi-cyclic circuit may be possible (Lai 2012): (a) The magnetic
field from the primary penetrates part of the companion, establishing magnetic linkage
between the two stars; (b) The linked fields are twisted by differential rotation, generating
toroidal field from the linked poloidal field; (c) As the toroidal magnetic field becomes
comparable to the poloidal field, the fields inflate and the flux tube breaks, disrupting
the magnetic linkage; (d) Reconnection between the inflated field lines relaxes the shear
and restore the linkage. The whole cycle repeats.

In any case, we can use the dimensionless azimuthal twist ζφ to parameterize the
magnetic torque and energy dissipation rate:

T =
1
2
aR2

c BzBφ+ = −ζφ
μ2R2

c

2a5 , Ėdiss = −TΔΩ = ζφΔΩ
μ2R2

c

2a5 . (3.1)

The maximum torque and dissipation are obtained by setting ζφ ∼ 1. If the quasi-
cyclic circuit discussed in the last paragraph is established, we would expect ζφ to vary
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between 0 and ∼ 1. Note that in the above, T is negative since we are assuming Ω > Ωs .
A reasonable extension would let ζφ = ζ(ΔΩ)/Ω, with ζ > 0.

Gravitational wave (GW) emission drives the orbital decay of the NS binary, with
timescale tGW = a/|ȧ| = 0.012 (a/30 km)4 s, where we have adopted M = 1.4M� and
mass ratio q = Mc/M = 1. The magnetic torque tends to spin up the primary when
Ω>Ωs . Spin-orbit synchronization is possible only if the synchronization time tsyn =
IΩ/|T | is less than tGW at some orbital radii. With I = κMR2 , we find

tsyn =
2κ(1 + q)

ζφΩ

(
GM 2

B2
� R4

)(
a

Rc

)2

� 2 × 107ζ−1
φ

(
B�

1013 G

)−2( a

30 km

)7/2
s, (3.2)

where on the right we have adopted κ = 0.4 and R = Rc = 10 km. Clearly, even with
magnetar-like field strength (B� ∼ 1015 G) and maximum efficiency (ζφ ∼ 1), spin-orbit
synchronization cannot be achieved by magnetic torque. For the same reason, the effect
of magnetic torque on the number of GW cycles during binary inspiral is small.

The energy dissipation rate is

Ėdiss = ζφ

(vrel

c

) B2
� R6R2

c c

2a6 = 7.4 × 1044ζφ

(
B�

1013 G

)2( a

30 km

)−13/2
erg s−1 , (3.3)

where on the right we have used vrel � aΩ (for Ωs � Ω) and adopted canonical pa-
rameters (M = Mc = 1.4M�, R = Rc = 10 km). The total energy dissipation per ln a
is

dEdiss

d ln a
= ĖdisstGW � 8.9 × 1042ζφ

(
B�

1013 G

)2( a

30 km

)−5/2
erg. (3.4)

Some fraction of this dissipation will emerge as electromagnetic radiation counterpart
of binary inspiral. It is possible that this radiation is detectable at extragalactic dis-
tance. But this will depend on the microphysics in the magnetosphere, including particle
acceleration and radiation mechanism (e.g., Vietri 1996; Hansen & Lyutikov 2001).

If one assumes that the magnetosphere resistance is given by the impedance of free
space, Rmag = 4π/c, then the corresponding twist is ζφ = 2vrel/(πc), which satisfies our
upper limit. The energy dissipation rate is then

Ėdiss =
(vrel

c

)2 B2
� R6R2

c c

πa6 = 1.7 × 1044
(

B�

1013 G

)2( a

30 km

)−7
erg/s. (3.5)

This is in agreement with the estimate of Lyutikov (2011).
The situation is similar for NS/BH binaries. In the membrane paradigm (Thorne

et al. 1986), a BH of mass MH resembles a sphere of radius Rc = RH = 2GMH /c2

(neglecting BH spin) and impedance RH = 4π/c. Neglecting the resistances of the
magnetosphere and the NS, the azimuthal twist of the flux tube in the DC circuit
is ζφ = 4vrel/(πc), which satisfies our upper limit. The energy dissipation rate is (cf.
Lyutikov 2011; McWilliams & Levin 2011)

Ėdiss =
(vrel

c

)2 2B2
� R6R2

H c

πa6 � 5.7×1042
(

B�

1013 G

)2(
MH

10M�

)−4(
a

3RH

)−7

erg s−1 , (3.6)

where we have assumed MBH /M � 1. Again, it is uncertain whether this radiation can
be for binaries at extragalactic distances.
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