P. C. Hu Nagoya Math. J. Vol. 120 (1990), 171-180

HOLOMORPHIC MAPPING INTO ALGEBRAIC VARIETIES OF GENERAL TYPE, II

PEICHU HU

This announcement is a continuation of Hu [3]. Our results improve Theorem 1 of [3], but the latter is needed in the proof of the former.

Let $f: M \to N$ be a holomorphic mapping from a connected complex manifold M of dimension m to a projective algebraic manifold N of dimension n. Assume that M possess a parabolic exhaustion τ and denote

$$egin{aligned} arphi &= dd^{\circ} au, \; \sigma = d^{\circ}\log au \wedge (dd^{\circ}\log au)^{m-1}, \ A(t;\, \zeta) &= t^{2-2m}\int_{M[t]} \zeta \wedge arphi^{m-1}, \; T(r,s;\, \zeta) = \int_{s}^{r} rac{A(t;\, \zeta)}{t} dt \end{aligned}$$

where ζ is a form of bidegree (1,1) on M and $M[t] = \{x \in M : \tau(x) \le t^2\}$. Suppose throughout that L is a positive holomorphic line bundle over N with a hermitian metric ρ along the fibers of L such that the Chern form $c(L, \rho) > 0$. The characteristic function of f for (L, ρ) is defined by

$$T(r, s) = T(r, s; f^*(c(L, \rho)))$$
.

Let $\operatorname{Ric}_{\tau}(r, s)$ be the Ricci function of τ . We obtain that

THEOREM 1. Let N be of general type. If M is a Stein, covering parabolic space of C^m and if rank $f = \min(m, n)$, then there exist positive constants c_1 and c_2 such that

$$c_1 T(r, s) \leq \operatorname{Ric}_r(r, s) + c_2 \log r$$

with the exception of a set of values (r) of finite measure.

COROLLARY 2. If N is of general type, any non-degenerate holomorphic mappings $f: \mathbb{C}^m \to N$ is necessarily rational.

In fact, we will prove a more general result than Theorem 1 (see Theorem 4). For this, we need some facts about hermitian geometry, dual classification map, associated maps and covering space.

Received November 14, 1989.

a) Hermitian Geometry

Let V be a complex vector space of dimension n + 1. Then V^* is the dual vector space, $\bigwedge V$ is the exterior product. The Grassmann cone in $\bigwedge_{k+1} V$ is defined by $\tilde{G}_k(V) = \{a_0 \land \cdots \land a_k : a_i \in V\}$ with $\tilde{G}_0(V) = V$ and $\tilde{G}_n(V) \approx C$. If $0 \neq x \in V$, let P(x) = Cx be the complex line spanned by x. If $A \subseteq V$, define $P(A) = \{P(x) : 0 \neq x \in A\}$. Then P(V) is the complex projective space associated to V. A holomorphic map $P: V - \{0\} \rightarrow P(V)$ is defined. The same symbol P is used for all vector spaces. Take an integer k with $0 \leq k \leq n$. The Grassmann manifold $G_k(V) = P(\tilde{G}_k(V))$ of order k is a connected, smooth, compact submanifold of $P(\bigwedge_{k+1} V)$. Take $a \in G_k(V)$. Then $\tilde{a} = a_0 \land \cdots \land a_k \neq 0$ exists such that $P(\tilde{a}) = a$. A (k+1)-dimensional linear subspace $E(a) = Ca_0 + \cdots + Ca_k$ is associated to a, independent of the choice of a. The associated projective space $\ddot{E}(a) = P(E(a))$ is smoothly imbedded into P(V) and called a k-plane.

Take $a \in G_k(V^*)$. Then $\alpha = \alpha_0 \wedge \cdots \wedge \alpha_k \neq 0$ exists such that $P(\alpha) = a$. A (k + 1)-codimensional linear subspace

$$E[a] = \bigcap_{j=0}^{k} \alpha_j^{-1}(0)$$

and a (n - k - 1)-plane $\ddot{E}[a] = P(E[a])$ are associated to a. The biholomorphic dualism map $\delta: G_k(V) \to G_{n-k-1}(V^*)$ is defined by $E[\delta(a)] = E(a)$.

The trivial bundle $G_k(V) \times V$ contains the tautological bundle

$$S_k(V) = \{(a, x) \in G_k(V) \times V \colon x \in E(a)\}$$

as a holomorphic subbundle. The quotient bundle $Q_k(V)$ exists and the classifying sequence

(1)
$$0 \to S_k(V) \to G_k(V) \times V \to Q_k(V) \to 0$$

is obtained. If q = n - k - 1, then (1) is the pullback of

$$(2) \qquad \qquad 0 \to Q_q(V^*)^* \to G_q(V^*) \times V \to S_q(V^*)^* \to 0$$

under the dualism $\delta: G_k(V) \to G_q(V^*)$.

Let l be a hermitian metric on V. Then l induces hermitian metrics l along the fibers of $Q_q(V^*)^*$, $G_q(V^*) \times V$ and $S_q(V^*)^*$ and Fubini-Kaehler forms $\Omega_q > 0$ on $G_q(V^*)$. Then

$$c(S_0(V^*)^*, l) = \Omega_0,$$

 $\operatorname{Ric}(\Omega_0^n) = -(n+1)\Omega_0,$

b) Dual classification map

A holomorphic vector bundle homomorphism $\xi: N \times V \to E$ is said to be ample at $x \in N$, if $\xi(\{x\} \times V) = E_x$, where E is a holomorphic vector bundle over N. The set N_{∞} of all $x \in N$ such that ξ is ample at x is open. Also $N - N_{\infty}$ is analytic. Then ξ is said to be an amplification if $N = N_{\infty}$, semi-amplification if $N - N_{\infty}$ is thin (see Stoll [5]).

Abbreviate the tensor product $L^{\otimes p}$ by L^p . We say that L is ample if there exists some p such that a basis of sections (s_0, \dots, s_k) of $H^0(N, L^p)$ generates L^p at every point (i.e., the evaluation map $e: N \times H^0(N, L^p) \to L^p$ defined by e(x, s) = s(x) is an amplification), and give a projective imbedding

$$(3) \qquad (s_0, \cdots, s_k): N \to \boldsymbol{P}(H^0(N, L^p)).$$

We say that L is very ample if we can take p = 1 in the above condition (see S. Lang [4]). Let L be ample. We have a projective imbedding (3). Hence we can take a complex vector subspace V of $H^{0}(N, L^{p})$ with dim V = n + 1 such that the evaluation map $e: N \times V \to L^{p}$ is an amplification (see Stoll [5], Lemma 16.1, Proposition A16). Let S be the kernel of e. An exact sequence

$$(4) 0 \to S \to N \times V \to L^p \to 0$$

is defined. Here S has fiber dimension n. If $x \in N$, one and only one $\varphi(x) \in P(V^*)$ and $\varphi_0(x) \in G_{n-1}(V)$ exist such that

$$E[arphi(x)]=S_x=E(arphi_{\mathfrak{o}}(x))$$
 .

The maps $\varphi_0: N \to G_{n-1}(V)$ and $\varphi; N \to P(V^*)$ are called the classification map and the dual classification map respectively, which are holomorphic. If δ is the dualism, then $\varphi = \delta \circ \varphi_0$. The classification map φ_0 pulls back (1) to (4) for k = n - 1. Hence

$$L^{p} = (\varphi_{0})^{*}(Q_{n-1}(V)) = \varphi^{*}(S_{0}(V^{*})^{*}).$$

Let *l* be a hermitian metric on *V*. Then *l* induces hermitian metrics *l* along the fibers of *S*, $N \times V$ and *L* by (4) and along $Q_0(V^*)^*$, $P(V^*) \times V$ and $S_0(V^*)^*$ by (2) for q = 0. Hence

(5)
$$pc(L, l) = c(L^{p}, l^{p}) = \varphi^{*}(c(S_{0}(V^{*})^{*}, l)) = \varphi^{*}(\Omega_{0}),$$

Ric $c(L^{p}, l^{p})^{n} = \text{Ric } \varphi^{*}(\Omega_{0}^{n}) = \varphi^{*}(\text{Ric } \Omega_{0}^{n}) = -(n+1)c(L^{p}, l^{p}).$

c) Associated maps

PEICHU HU

Now we consider the holomorphic map $\varphi_f = \varphi \circ f \colon M \to P(V^*)$, where $\varphi \colon N \to P(V^*)$ is the dual classification map in b). Let L_f is the pullback $\varphi_f^*(S_0(V^*)^*)$ of the hyperplane section bundle $S^0(V^*)^*$ on $P(V^*)$. Take a holomorphic form B of bidegree (m-1,0) on M. We can define the k^{th} representation section F_k of φ_f of the holomorphic vector bundle

$$L_{f}[k] = (M imes (\bigwedge_{k+1} V^{*})) \otimes (L_{f})^{k+1} \otimes (K_{M})^{k(k+1)/2}$$

by means of the *B*-derivative, where $K_{\mathcal{M}}$ is the canonical bundle of *M*. Here

$$F_0: M \to L_f[0] = (M \times V^*) \otimes L_f$$

but $F_k \equiv 0$ if k > n. If $F_k \equiv 0$, then $F_{k+1} \equiv 0$. Hence an integer l_f exists uniquely such that $F_k \not\equiv 0$ if $0 \le k \le l_f$ and $F_k \equiv 0$ if $k > l_f$. We call l_f the generality index of φ_f for B. The map φ_f is said to be general for Bif $l_f = n$ (see Stoll [6]). If M admits m analytically independent holomorphic functions, then for any finite sets of meromorphic maps defined on M, there exists a holomorphic form B of degree m - 1 on M such that the generality index of each of these maps φ_f for B equals the dimension of the smallest projective plane containing the image of φ_f (see Stoll [7], Theorem 7.11).

For each k with $0 \le k \le l_f$, the kth associated map

$$f_k = \mathbf{P} \circ F_k \colon M \to G_k(V^*)$$

of φ_f is defined with $f_0 = \varphi_f$, and is holomorphic. Define

$$L_f[-1] = M \times C$$

and let F_{-1} be the trivial section defined by $F_{-1}(z) = (z, 1)$. Denote the divisor of F_k by μ_{F_k} . Then $\mu_{F_{-1}} = \mu_{F_0} = 0$. For $0 \le k \le l_f$, teh k^{th} stationary divisor

(6)
$$D_{f_k} = \mu_{F_{k-1}} - 2\mu_{F_k} + \mu_{k+1} \ge 0$$

is non-negative (effective).

Define

$$H_{k} = mi_{m-1}f_{k}^{*}(\Omega_{k}) \wedge B \wedge \overline{B} \geq 0$$

with $H_k = 0$ if k < 0 or if $k \ge l_f$. For $0 \le k < l_f$, we have the identity

(7)
$$\operatorname{Ric} H_{k} = f_{k-1}^{*}(\Omega_{k-1}) - 2f_{k}^{*}(\Omega_{k}) + f_{k+1}^{*}(\Omega_{k+1})$$

174

Since M is a parabolic manifold, the open set

$$M^{+} = \{x \in M: v(x) > 0\}$$

is not empty. On M^{+} , an on-negative function h_{k} is defined by $H_{k} = h_{k}^{2} v^{m}$. Abbreviate

$$T_k(r,s) = T(r,s; f_k^*(\Omega_k)).$$

Then for almost all s, r with 0 < s < r, we have the Plücker Difference Formula

(8)
$$N(r,s; D_{f_k}) + T_{k-1}(r,s) - 2T_k(r,s) + T_{k+1}(r,s) = B(r,s; h_k^2) + \operatorname{Ric}_r(r,s),$$

where $T_k(r, s) = 0$ if k < 0 or $k \ge l_f$, and

$$B(t, h) = \frac{1}{2} \int_{\partial M[t]} (\log h)\sigma, \ B(r, s; h) = B(r, h) - B(s, h),$$
$$N(r, s; D) = \int_{s}^{r} n(t, D) \frac{dt}{t}, \ n(t, D) = t^{2-2m} \int_{D \cap M[t]} v^{m-1}.$$

The exhaustion τ is said to majorize the holomorphic form B of degree m-1, if for every r>0 there exists a constant $c \ge 1$ such that

$$0 \leq mi_{m-1}B \wedge \overline{B} \leq cv^{m-1}$$
 on $M[r]$,

where

$$i_{m-1} = (-1)^{(m-1)(m-2)/2} \left(\frac{\sqrt{-1}}{2\pi}\right)^{m-1} (m-1)!$$

The infimum of all these constants is called $Y_0(r)$. Then $Y_0(r) \ge 1$, and increases. Define

$$Y(r) = \lim_{r < t \to r} Y_0(t) .$$

Then $Y(r) \ge Y_0(r) \ge 1$. The increasing function Y is called the majorant associated to τ and B. If r > 0, then

$$\begin{array}{ll} m \, i_{m-1} B \wedge \overline{B} \leq Y(r) \upsilon^{m-1} & \text{on } M[r] \\ m \, i_{m-1} B \wedge \overline{B} \leq (Y \circ \sqrt{\tau}) \upsilon^{m-1} & \text{on } M. \end{array}$$

If m = 1, that is, if M is an open parabolic Riemann surface, we take B = 1, then $m \ i_{m-1} \ B \wedge \overline{B} = v^{m-1}$ and τ majorizes B with $Y \equiv 1$. From now, we assume that τ majorizes B with Y. We use the notation

PEICHU HU

 $\|_{\varepsilon} a(r) \leq b(r)$

to mean that the stated inequality holds except on an open set $I \subset R^+$ such that $\int_I r^{\varepsilon} dr < \infty$ for $\varepsilon > 0$. We have

$$(9) \qquad \|_{\varepsilon} B(r, h_k^2) \leq \frac{c}{2} (1+\varepsilon)^2 (\log T_k(r, s) + \log Y(r)) + \frac{c}{2} \varepsilon \log r,$$

(10)
$$\|_{\varepsilon} T_{k}(r,s) \leq 3^{k} T_{0}(r,s) + \frac{3^{k}-1}{2} (\log Y(r) + \operatorname{Ric}_{\varepsilon}(r,s) + \varepsilon \log r),$$

where the constant c is the volume of $\partial M[r]$ (see Stoll [6], Proposition 6.14 6.15). (9) and (10) imply

(11)
$$\|_{\varepsilon} B(r,s;h_{k}^{2}) \leq \frac{c}{2}(1+\varepsilon)^{3}(\log T_{0}(r,s) + \log Y(r) + \log^{+} \operatorname{Ric}_{\varepsilon}(r,s)) + \varepsilon c \log r.$$

d) Covering space

If (M, τ) is a covering parabolic space of (C^m, τ_0) where $\tau_0(z) = |z|^2$, then there is a proper surjective holomorphic map

$$\beta = (\beta_1, \cdots, \beta_m) \colon M \to C^m$$

such that $\tau = \tau_0 \circ \beta = |\beta|^2$. The divisor of $d\beta_1 \wedge \cdots \wedge d\beta_m \neq 0$ is called the branching divisor of β and denoted by D_{β} . Then

(12)
$$\operatorname{Ric}_{\tau}(r,s) = N(r,s;D_{\beta}) \ge 0.$$

Define $S = \operatorname{supp} D_{\beta}$. Then $\beta(S)$ is an analytic subset of C^m . Let S_0 be the (m-1)-dimensional component of $\beta(S)$. If S_0 is affine algebraic of degree d, then we have

(13)
$$\operatorname{Ric}_{r}(r,s) = N(r,s;D_{\beta}) \le d\varepsilon \log \frac{r}{s}$$

for 0 < s < r. If β is biholomorphic, Ric, $(r, s) \equiv 0$.

If φ_f is linearly non-degenerate, then there is a holomorphic form \hat{B} of bidegree (m-1, 0) on \mathbb{C}^m whose coefficients are polynomials of at most degree n-1, such that φ_f is general for $B = \beta^*(\hat{B})$. Hence there is a constant c > 0 such that τ majorizes B with

(14)
$$Y(r) \le 1 + cr^{2n-2}$$
 for $r \ge 1$.

see Stoll [6].

176

If $M = C^m$ and $\varphi_f(C^m)$ does not be contained in any hyperplanes of $P(V^*)$, there is a holomorphic form B of degree m - 1 on C^m whose coefficients are constants such that φ_f is general for B and such that τ_0 majorizes B with

$$(14)' Y(r) \le c$$

for a constant c.

e) Main results

Let ψ be a positive form of class C^∞ and bidegree (1, 1) on N such that

(15)
$$\overline{\lim_{r\to\infty}} \log T(r,s;f^*(\psi))/T(r,s) = 0$$

Define

$$\ddot{\psi}_f = m \, i_{m-1} f^*(\psi) \wedge B \wedge \overline{B}, \ e_f = f^*(\operatorname{Ric} \psi^n) - n \operatorname{Ric} \ddot{\psi}_f$$

and define η by $\dot{\psi}_f = \eta f^*(\psi) \wedge v^{m-1}$. Let

$$E_f(r,s) = T(r,s;e_f) + nB(r,s;\eta) .$$

In [3], we proved that

THEOREM A. Let N be of general type. If there exists an effective Jacobian section of f and if rank $f = \min(m, n)$, then exist positive constants c_1 and c_2 such that

(16)
$$\|_{\varepsilon} c_1 T(r, s) \leq n \operatorname{Ric}_{\varepsilon} (r, s) + E_f(r, s) - n N(r, s; D_f) + c_2 \varepsilon \log r$$

where D_f is the divisor of $\ddot{\psi}_f$.

Abbreviate

$$n_{k}(t) = n(t, \mu_{F_{k}}), \ N_{k}(r, s) = N(r, s; \mu_{F_{k}})$$

for the k^{th} representation section F_k of φ_f . We have

THEOREM 3. Let L be an ample, positive holomorphic line bundle over N with the projective imbedding (3). Assume that B is a holomorphic form of bidegree (m - 1, 0) on M such that τ majorizes B with Y and such that φ_j is general for B. Then for $\psi = pc(L, l)$, we have

(17)
$$\|_{\varepsilon} E_{f}(r,s) - nN(r,s;D_{f}) \leq -N_{n}(r,s) \\ + \frac{nc}{2} \log Y(r) + \frac{n(n-1)}{2} Q_{\varepsilon}(r) - nB(s,\eta) ,$$

where

(18)
$$Q_{\varepsilon}(r) = \frac{c}{2}(1+\varepsilon)^{3}(\log T(r,s) + \log Y(r) + \log^{+} \operatorname{Ric}_{\tau}(r,s)) + \operatorname{Ric}_{\tau}(r,s) + 2c\varepsilon \log r.$$

Proof. Note that

(19)
$$T_0(r, s) = T(r, s; f^*(\psi)) = pT(r, s; f^*(c(L, l))) = pT(r, s; f^*(c(L, l)))$$
$$= pT(r, s) + 0(1)$$

See Stoll [5], Theorem 12.5. Hence (6), (8) and (11) imply

(20)
$$\|_{\varepsilon} N_{k-1}(r,s) + T_{k-1}(r,s) - 2(N_{k}(r,s) + T_{k}(r,s)) + N_{k+1}(r,s) + T_{k+1}(r,s) \le Q_{\varepsilon}(r)$$

Multiply (20) by (n - k) and add these for $k = 1, \dots, n - 1$. We get

(21)
$$\|_{\varepsilon} (n-1)T_{0}(r,s) - nT_{1}(r,s) \leq nN_{1}(r,s) - N_{n}(r,s) + \frac{n(n-1)}{2}Q_{\varepsilon}(r).$$

Now $\ddot{\psi}_f = H_0$, (5) and (7) imply

$$f^*(\operatorname{Ric}\psi^n) - n\operatorname{Ric}\ddot{\psi}_f = -(n+1)f^*_0(arOmega_0) - n\operatorname{Ric}H_0$$

 $= (n-1)f^*_0(arOmega_0) - nf^*_1(arOmega_1),$

which yields

(22)
$$T(r,s;e_{j}) = (n-1)T_{0}(r,s) - nT_{1}(r,s).$$

Since τ majorizes B with Y, we obtain

$$\eta f^*(\psi) \wedge v^{m-1} = \ddot{\psi}_f \leq (Y \circ \sqrt{\tau}) f^*(\psi) \wedge v^{m-1}$$

which implies $\eta \leq Y \circ \sqrt{\tau}$. Also we have

(23)
$$N(r, s; D_f) = N(r, s; D_{f_0}) = N_1(r, s)$$

by (6) and the definition of D_f ad D_{f_0} for $\psi = c(L^p, l^p)$. So (17) follows from (21)-(23). Q.E.D.

Take $\psi = c(L^p, l^p)$ in Theorem A. Then (15) follows from (19). Hence Theorem A and 3 imply

THEOREM 4. Let N be of general type. Let B be a holomorphic form of bidegree (m - 1, 0) on M such that τ majorizes B with Y and such that

178

 φ_f is general for B. If there exists an effective Jacobian section of f and if rank $f = \min(m, n)$, then exist positive constants c_1 and c_2 such that

(24)
$$\|_{\varepsilon} N_{n}(r,s) + c_{1}T(r,s) \leq \frac{n(n+1)}{2} \operatorname{Ric}_{\tau}(r,s) + \frac{n(n+1)c}{4} (1+\varepsilon)^{s} (\log Y(r) + \log^{+} \operatorname{Ric}_{\tau}(r,s)) + c_{2}\varepsilon \log r.$$

If M is Stein and rank $f = \min(m, n)$, effective Jacobian sections exist by Stoll [5], Theorem 14.1, 14.2. Hence (12), (14) and Theorem 4 imply Theorem 1.

Abbreviate

$$A(t) = A(t; f^*(c(L, \rho)))$$

and define

$$R_{\tau} = \lim_{r \to \infty} \frac{\operatorname{Ric}_{\tau}(r, s)}{\log r}, \qquad Y_{B} = \lim_{r \to \infty} \frac{\log Y(r)}{\log r}$$

Hence Theorem 4 with $\varepsilon \to 0$ implies.

(25)
$$n_n(\infty) + c_1 A(\infty) \leq \frac{n(n+1)}{2} R_r + \frac{n(n+1)c}{4} Y_B.$$

f) Green-Griffiiths' Conjecture

If M is an irreducible, affine algebraic variety with $A(\infty) < \infty$, then f is rational (Griffiths-King [2], Proposition 5.9, Carlson-Griffiths [1], Proposition 6.20 and Stoll [5], Theorem 20.6). Hence (14) and (25) imply Corollary 2.

If $M = C^{m}$, then (14)' and (25) yield $A(\infty) = 0$, which implies that

COROLLARY 5. If N is of general type, then the image of any holomorphic map $f: \mathbb{C}^m \to N$ with rank $f = \min(m, n)$ is contained in a proper subvariety.

Proof. If not, then φ_f is linearly non-degenerate. Hence there is a holomorphic form B of degree m-1 on C^m such that φ_f is general for B and such that τ_0 majorizes B with (14)'. Since rank $f = \min(m, n)$ and $c(L, \rho) > 0$,

$$A(\infty) = \lim_{r \to \infty} A(r) > 0$$
 which contradicts $A(\infty) = 0$. Q.E.D.

Corollary 5 implies the following

GREEN-GRIFFITHS' CONJECTURE. Let N be of general type (or pseudo canonical). Let $f: \mathbb{C} \to N$ be holomoprhic non-constant. Then the image of f is contained in a proper subvariety.

For more detail, see S. Lang [4].

References

- J. Carlson and Ph. Griffiths, A defect relation for equidimensional holomorphic mappings between algebraic varieties, Ann. of Math., (2) 95 (1972), 557-584.
- [2] Ph. Griffiths and J. King, Nevanlinna theory and holomorphic mappings between algebraic varieties, Acta. Math., 130 (1973), 145-220.
- [3] P. C. Hu, Holomorphic mapping into algebraic varieties of general type. (to appear)
- [4] S. Lang, Hyperbolic and Diophantine analysis. Bull. of Amer, Math., Soc. 14 (1986), 158-205.
- [5] W. Stoll, Value distribution on parabolic spaces. Lecture Notes in Math., 600 (1977), Springer-Verlag.
- [6] —, Value distribution theory for meromorphic maps. Aspects of Math., E7 (1985), Vieweg.
- [7] —, Deficit and Bezout estimates. Value Distribution Theory. Part B. Pure and Appl, Math., 25 (1973), New York.

Department of Mathematics Shandong University Jinan, Shandong, China