CORRIGENDUM

to the paper

MACBEATH'S CURVE AND THE MODULAR GROUP

by K. WOHLFAHRT

On p. 244 of Glasgow Math. J. 27 (1985) on the right hand side of one of the 6 equations characterizing the 4 fixed points of the involution v a sign error has occurred. The relevant equation should read

$$
y_{0} y_{3} y_{5} y_{6}=-1
$$

or the points would not lie on the curve.
Correcting the error unfortunately invalidates the model of an elliptic curve given in §6, which therefore has to be re-evaluated. First we find, in the notation of the paper,

$$
2 f(x)=((r+1) /(R+2))^{2}
$$

Then $z=(r+1) /(R+2)$ satisfies

$$
7 X^{4}+4 X^{3}-6 X^{2}-4 X+3=0
$$

whence

$$
49 X^{4}-100 X^{3}+110 X^{2}-52 X+9=0
$$

is an equation for z^{2}.
This leads to the Weierstrass normal form

$$
Y^{2}=4 X^{3}-756 X+756
$$

of the curve and to its minimal model

$$
Y^{2}=X^{3}-X^{2}-2 X+1
$$

of discriminant $\Delta=784$ and absolute invariant $J=28 / 27$.

