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THE MODIFIED RESTRICTED THREE BODY PROBLEMS 

Ing-Guey Jiang1 and Li-Chin Yeh2 

RESUMEN 

El problema restringido de los tres cuerpos es importante en la dinamica de las estrellas dobles y multiples y 
de los sistemas planetarios. Extendemos la,version clasica de este problema a una situacion que incluye un 
anillo. Encontramos puntos de equilibrio y curvas muy distintas a las del caso clasico. Calculamos el valor del 
exponente de Lyapunov para algunas orbitas. 

ABSTRACT 

The restricted three body problem is well-known and very important for the dynamics of binary and multiple 
stars and also planetary systems. We extend the classical version of this problem to the situation that there 
are some external forces from the belt. We find that both the equilibrium points and solution curves become 
quite different from the classical case. We also determine the values of Lyapunov exponent for some important 
orbits. 
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1. INTRODUCTION 

The three body problem is one of the most im­
portant problems of celestial mechanics and has been 
analytically and numerically studied for centuries. In 
addition to that, three body interaction also plays 
an essential role for dynamics of binary and multiple 
stars. See Valtonen (2004) and Dvorak et al. (2004) 
and also their references. 

On the other hand, because there are asteroid 
belt and Kuiper belt for the solar system, discs of 
dust for extrasolar planetary systems and also cir-
cumbinary rings for binary systems, these belt-like 
structures should influence the dynamical evolution 
of these systems. For instance, Jiang & Ip (2001) 
show that the origin of orbital elements of the plan­
etary system of v Andromedae might be influenced 
by the belt interaction initially. Moreover, Yeh & 
Jiang (2001) studied the orbital migration of scat­
tered planets. They completely classify the parame­
ter space and solutions and conclude that the eccen­
tricity always increases if the planet, which moves 
on a circular orbit initially, is scattered to migrate 
outward. Thus the orbital circularization must be 
important for scattered planets if they are now mov­
ing on nearly circular orbits. 

Therefore, Jiang & Yeh (2003) did some analysis 
on the solutions for dynamical systems of planet-belt 
interaction. In this paper, we further study the effect 
of belts for dynamical evolution of a binary system. 
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2. THE MODEL 

We consider the motion of a test particle influ­
enced by the gravitational force from the central bi­
nary and the circumbinary belt. The circumbinary 
belt also provides the frictional force for the test par­
ticle. 

We assume that two masses of the central binary 
are mi and rri2 and choose the unit of mass to make 
G(mi + m,2) = 1. If we define that 

m,2 
V= ; , 

mi +m.2 
then the two masses are nx — Gm\ = 1 — p, and 
fx2 = Gm-i = p. The separation of the central binary 
is set to be unity and ^1 = 112 = 0.5 for all numerical 
results in this paper. 

The equation of motion of this problem is (Mur­
ray & Dermott 1999) 

dt " 

dt ~ LV dx dx ^ J' 
dv _ o „ dW dV I 
dt ~ iU dy dy + 

where the potential U* is 

n = y/(x + H2)2 + y2 and r2 = 

>/(a:-A*i)2 + »2. 
V is the potential from the belt. The belt is a 

annulus with inner radius rt and outer radius r0, 
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where r̂  and r0 are assumed to be constants. We 
arbitrarily set r, = 0.2 and r0 — 1.0 for all results in 
this paper. 

The density profile of the belt is p(r) = c/rp, 
where r = \Jx2 + y2, c is a constant completely de­
termined by the total mass of the belt and p is a 
natural number. In this paper, we set p = 2 for all 
numerical results. Hence, for p — 2, the total mass 
of the belt is 

M, — I I p(r')r'dr'd</) = 2irc(lnr0—lnri). 
JO hi 

(3) 

The gravitational force fb from the belt is 

Mr) = 
dV_ 

dr JTi 

p(r')r' E F 
7 + r + r' 

dr', 

"(4) 
where F(£) and 2?(£) are elliptic integrals of the first 
and second kind. Hence, 

ov _ x x 
dx ~ J°r 

_ 9 V 1 _ f V 
dx J o r i 

(5) 

where fb is in Eq. (4). 
The frictional force should be proportional to the 

surface density of the belt and the velocity of the 
particle. In the x direction, the frictional force is 

fax = -ap(r)— (6) 

and in the y direction, the frictional force is 

fay = -ap(r) — , (7) 

where a is the frictional parameter. 
We substitute Eq. (2)andEq. (4)-(7) intoEq.(l) 

and have the following system: 

dt " 

dt u 

* i = 2v + X - M*+M2) _ H2i£=i£ll _ 2 | 
dt rf r | H 

x J,? P(r')r' [& + 4F] & ~ «P(0« 
§ = -2u + y-*£-U£-2§ dt * if r 3 r 3 r2 

x /;; p(r'y [•&+&] ^ - ap(r)V. 

f\ 
'•• v . 

•ft), , 1 , , , , 

~ fa : 
y) 

Fig. 1. The curves of f(x, y) = 0 and g(x, y) = 0 (see the 
text for details). 

3. EQUILIBRIUM POINTS 

The equilibrium points (xe, ye) of System (8) sat­
isfy the following equations 

-5f*V E 
^ + 1*» «">' If* I ipf 

dr' = 0,(9) 

?1 >2 r 

p ( r > ' 
£ 

iy» iy' iyt 1 «•»' 
dr' = 0. (10) 

(8) 

In Fig. 1, we plot the curves of f(x,y) = 0 (circles) 
and g(x, y) = 0 (triangles) for different values of Mb. 
Equilibrium points (xe,ye) are intersection of these 
two. In Fig. 1(a), we set Mb — 0, so there is no 
influence from the belt. We find there are five usual 
Lagrangian points, L\, L2, £3, L4 and L5 for this 
case. In Fig. 1(b), Mb = 0.15 and we still have the 
five usual Lagrangian points. In addition to that, 
there are two new equilibrium points in the upper 
half-plane and another two in the lower half-plane. 
In Fig. l(c)-(d), we set Mb = 0.3 and Mb = 0.5 
individually. We also find that in the upper half-
plane, there are two new equilibrium points, Fa and 
Fb. 

4. LYAPUNOV EXPONENT 

Since we have discovered two new equilibrium 
points near £4 (and another two near L5), it would 
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be interesting to investigate the orbital behavior 
around these new equilibrium points Fa and Fb- For 
a complicated system like ours, it is difficult to rigor­
ously prove if the orbits are chaotic near Fa and Fb. 
Nevertheless, we use the calculation of the Lyapunov 
exponent for some orbits whose initial conditions are 
chosen to be close to Fa and Fb to understand how 
sensitively dependent on the initial conditions these 
orbits are. This is in fact one of the most important 
methods to study chaotic systems. We follow Wolf 
et al. (1985) to calculate the values of the Lyapunov 
exponent numerically. To check if our calculation is 
correct, we have reproduced the results of a given 
system in their paper. 

In general, a larger value of the Lyapunov expo­
nent means more sensitive dependence on the ini­
tial conditions. We choose the initial conditions 
of the orbits to be close to the equilibrium points 
Fa, Fb, L4 and L2 individually. Thus there are 
4 different initial conditions for the orbital calcu­
lations. To understand the effects of belts with 
different masses, we did calculations for 4 differ­
ent masses of the belt (Mb = 0,0.15,0.3,0.5) for 
each chosen initial condition. Although there are 
no equilibrium points Fa, Fb when there is no belt 
(Mb = 0), and the locations of equilibrium point Fa, 
Fb, L4 and Li would be slightly different for differ­
ent masses of the belt, we still call the initial condi­
tion (x,y,u,v) = (0.01,0.0225,0,0) initial condition 
Fa, (x, y, u, v) = (0.01,0.06,0,0) initial condition Fb, 
(x,y,u,v) = (0.01,1,0,0) initial condition L\ and 
(x,y,u,v) = (1.35,0,0,0) initial condition L^. 

Fig. 2(a)-(d) are the results of the Lyapunov ex­
ponent for initial condition Fa, Fb, L4 and L<i indi­
vidually. There are 4 curves in each panel of Fig. 2, 
where the solid curve is the result of Mb = 0, the 
dotted curve is the result of Mb = 0.15, the dashed 
curve is the result of Mb = 0.3 and the long dashed 
curve is the result of Mb = 0.5. It is obvious that 
the values of Lyapunov exponent for initial condition 
Fa, Fb are much larger than the ones for initial condi­
tion L4 and L2. From panels (a) and (b), we can also 
see that the Lyapunov exponents for Mb = 0.5 and 
Mb = 0.3 are larger than the values for Mb = 0.15 
and Mb = 0. Interestingly, for orbits with initial 
condition L4, the values of the Lyapunov exponent 
are slightly larger for M;, = 0 as we can see in Fig. 
2(c). In general, their values are small for both ini­
tial conditions L4 and L?,. The values of the Lya­
punov exponent for orbits with initial condition L% 
approach 0 when t tends to infinity. The orbits are 
obviously not chaotic for this case. 

J 0.6 

0 10 20 30 40 50 

0 10 20 30 40 50 

Fig. 2. Lyapunov exponent (see the text for details). 

5. ORBITS 

In this section, we will discuss all the orbits whose 
results of Lyapunov exponent have been shown and 
discussed in last section. 

Figs. 3, 4, 5 and 6 are the orbits on x — y plane 
for initial conditions Fa, Fb, L\ and L?. There are 4 
panels for each figure. Panel (a) is the result when 
there is no belt, i.e. Mb = 0, panel (b) is the result 
when Mb = 0.15, panel (c) is for Mb = 0.3 and panel 
(d) is the result for Mb = 0.5. 

If one looks at all these 4 figures of orbits at the 
same time, one can immediately understand that it 
seems the orbits with initial conditions Fa and Fj 
are much more chaotic than the orbits with initial 
conditions L\ and L2 • This impression is completely 
consistent with the one we get from the values of the 
Lyapunov exponent. 

To compare Fig. 3(a) with Fig. 4(a), we found 
that the orbits are similar for initial conditions Fa 

and Fb. However, from the comparison between Fig. 
3(b) and Fig. 4(b), we found that the orbits are quite 
different for initial condition Fa and Fb- These two 
comparisons show that the existence of a belt does 
make the orbits become more sensitive to the initial 
conditions. 

6. CONCLUDING REMARKS 

We have provided the equations for a model 
which modifies the classical restricted three body 
problem by including the influence from a belt 
around the central binary. We found that, in addi­
tion to the usual Lagrangian points, there are two 
new equilibrium points, which we call Fa and Fb 
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Fig. 3. The orbits with initial condition Fa. Fig. 5. The orbits with initial condition LA-
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Fig. 4. The orbits with initial condition Fb. 

around L4 (similarly, there are another two new equi­
librium points close to L5). 

To study the orbits around these new equilib­
rium points, we calculate the values of Lyapunov ex­
ponents for orbits with 4 different initial conditions, 
which are close to Fa and Fb, L\ and Li individually. 
We found that the belt makes the system even more 
sensitive to the initial conditions for the orbits with 
initial conditions Fa and Fb but does not make too 
much difference for the orbits with initial conditions 
Li and Li. Because the equilibrium points Fa and 
Fb happen to be near the inner part of the belt and 
Lagrangian points L4 and Li happen to be around 
or out of the outer part of the belt in our system, it 

Fig. 6. The orbits with initial condition Li. 

seems that the orbits near the inner part of the belt 
might be more unpredictable than the ones around 
the outer part. 
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