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Abstract

Predicting the occurrence of thermoacoustic instabilities is of major interest in a variety of engineering applications
such as aircraft propulsion, power generation, and industrial heating. Predictive methodologies based on a physical
approach have been developed in the past decades, but have a moderate-to-high computational cost when exploring a
large number of designs. In this study, the stability prediction capabilities and computational cost of four well-
established classification algorithms—the K-Nearest Neighbors, Decision Tree (DT), Random Forest (RF), and
Multilayer Perceptron (MLP) algorithms—are investigated. These algorithms are trained using an in-house physics-
based low-order network model tool called OSCILOS. All four algorithms are able to predict which configurations
are thermoacoustically unstable with a very high accuracy and a very low runtime. Furthermore, the frequency
intervals containing unstable modes for a given configuration are also accurately predicted using multilabel
classification. The RF algorithm correctly predicts the overall stability and finds all frequency intervals containing
unstable modes for 99.6 and 98.3% of all configurations, respectively, which makes it the most accurate algorithm
when a large number of training examples is available. For smaller training sets, theMLP algorithm becomes themost
accurate algorithm. The DT algorithm is found to be slightly less accurate, but can be trained extremely quickly and
runs about a million times faster than a traditional physics-based low-order network model tool. These findings could
be used to devise a new generation of combustor optimization tools that would run much faster than existing codes
while retaining a similar accuracy.

Impact Statement

Thermoacoustic instabilities can affect a wide array of combustion technologies. Combustors suffering from
such instabilities would be a major safety hazard as they would be extremely loud and inefficient, could become
structurally compromised, or could even explode. Predicting the occurrence of thermoacoustic instabilities early
in the design process is thus crucial to avoid expensive mitigation strategies at later development stages.
Thermoacoustic stability prediction is usually performed using physics-based modeling and simulations. In this
study, an alternative methodology based on classification algorithms is shown to be much more efficient at
predicting the occurrence of combustion instabilities while still being highly accurate. Optimizing the properties
of combustors at the design stage could thus be made much faster by using this methodology.
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1. Introduction

Thermoacoustic instabilities, also called combustion instabilities, occur due to a positive feedback loop
between an unsteady heat source and the surrounding acoustic waves (Rayleigh, 1878; Poinsot and
Veynante, 2001; Dowling and Stow, 2003). They can occur in a variety of industrial and domestic
combustors such as rocket and aircraft engines (Crocco, 1951;Candel, 2002; Lieuwen and Yang, 2005;
Poinsot, 2017), land-based gas turbines (Candel, 2002; Lieuwen and Yang, 2005; Poinsot, 2017), boilers
(Putnam, 1971; Eisinger and Sullivan, 2002), and many other types of combustors. Combustion
instabilities are usually undesirable as they can cause flame extinction or flashback (Candel, 1992;
Poinsot, 2017), structural damage (Candel, 1992; McManus et al., 1993; Poinsot, 2017), and increased
sound emissions (Schuller et al., 2003; Poinsot, 2017), among other adverse effects.

Many rocket engines from the 1950s and 1960s suffered from thermoacoustic instabilities, thus driving
a major research effort to predict and control the occurrence of such instabilities (Crocco, 1951; Merk,
1957; Crocco et al., 1960). Combustion instabilities were investigated using experiments and analytical
models since computers of that era were unable to run complex numerical simulations. These traditional
approaches were only partially successful, and predicting the thermoacoustic stability of a given
configuration at the design stage remained essentially out of reach (Harrje and Reardon, 1972). Interest
in thermoacoustics research dwindled in the following decades, until a new generation of low-NOx gas
turbines, prone to thermoacoustic instabilities, was introduced in the early 1990s (Correa, 1993; Keller,
1995; Paschereit and Polifke, 1998; Dowling and Morgans, 2005). Rapid developments in experimental
techniques and numerical capacities opened the door to a range of new strategies for studying combustion
instabilities, including computational fluid dynamics (CFD) simulations (Veynante and Poinsot, 1997;
Poinsot and Veynante, 2001; Polifke et al., 2001; Xia et al., 2019), low-order models (Keller, 1995;
Paschereit and Polifke, 1998; Dowling and Stow, 2003; Li andMorgans, 2015; Nair and Sujith, 2015; Xia
et al., 2019; Gaudron et al., 2020; Fournier et al., 2021), or hybrid methods (Kaess et al., 2008; Silva et al.,
2013; Li et al., 2017; Ni et al., 2017; Merk et al., 2018). Next-generation combustors burning carbon-free
fuels, such as hydrogen or ammonia, appear to show increased propensity to combustion instabilities
(Æsøy et al., 2021; Beita et al., 2021; Lim et al., 2021). Being able to accurately determine the
thermoacoustic stability of combustors will thus become even more critical as the fossil fuel era nears
its end.

Predicting the thermoacoustic stability of combustors remains a challenging task as of today. CFD
simulations are computationally expensive because of the large range of space and timescales associated
with the acoustic waves and flame unsteadiness that need to be resolved (Poinsot and Veynante, 2001;
Merk et al., 2018). Physics-based low-order network model tools are more computationally efficient
(Paschereit and Polifke, 1998; Dowling and Stow, 2003), but the roots of one complex characteristic
equation need to be determined for every configuration investigated (Dowling and Stow, 2003; Gaudron
et al., 2020). Since optimizing a combustor at the design stage requires a large amount of configurations to
be considered, low-order networkmodels may become relatively computationally expensive (Jones et al.,
2021). In recent years, Machine Learning algorithms have been increasingly employed to detect the onset
of combustion instabilities in burners (Murugesan and Sujith, 2015; Murugesan and Sujith, 2016; Sarkar
et al., 2016; Kobayashi et al., 2019; McCartney et al., 2020; Sujith and Unni, 2020). However, those
algorithms are essentially time series predictors that can predict the immediate future (no more than a few
seconds) by making use of physical signals such as the unsteady pressure in the combustion chamber
(Murugesan and Sujith, 2015; Sarkar et al., 2016; McCartney et al., 2020). Those algorithms are thus not
capable of predicting the thermoacoustic stability of a given configuration at the design stage.

Another category ofMachine Learning algorithms that do not take physical time series as inputs could
be used to discriminate between stable and unstable configurations without actually assembling them.
One such category is that of classification algorithms, that typically run very quickly and could thus be
used to design stable combustors efficiently. The objective of this work is to test this conjecture by
determining whether well-established classification algorithms are able to predict the thermoacoustic
stability of combustors with various geometries and flame properties. Four different algorithms are
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investigated: theK-Nearest Neighbors (KNN; Fix and Hodges, 1951; Altman, 1992), Decision Tree (DT;
Breiman et al., 1984; Quinlan, 1986), Random Forest (RF; Ho, 1995; Breiman, 2001), and Multilayer
Perceptron (MLP; Hinton, 1989; Haykin, 1998) algorithms. A very large number of labeled configur-
ations is first generated using a physics-based low-order network tool in order to train and validate those
algorithms, as described in Section 2. The overall thermoacoustic stability of those randomly generated
combustors is then predicted using the binary KNN, DT, RF, and MLP algorithms in Section 3, and the
corresponding accuracy scores and runtimes are assessed. Finally, the frequency range is split into
10 smaller frequency intervals, and the thermoacoustic stability of the previous configurations is predicted
in each frequency interval using the multilabel KNN, DT, RF, and MLP algorithms in Section 4. The
accuracy scores, training runtimes, and prediction runtimes are also assessed for all four multilabel
classification algorithms.

2. Generation of the Synthetic Data

Classification algorithms need to be trained with a large number of examples before they can accurately
predict the label of an unknown case. It is impossible to obtain enough data by running experiments
because it would require every single geometry to be designed, built, and investigated. CFD is also not an
option as hundreds of thousands of simulations would need to be run, which would have an exorbitant
computational cost. The solution adopted in this study is to use a low-order network tool, OSCILOS, that
represents combustors as networks of connected modules. OSCILOS is an open-source code written in
MATLAB and developed at Imperial College London. OSCILOS can predict the thermoacoustic stability
of a given burner by solving one-dimensional flow conservation equations. It has been shown to
accurately predict the frequencies and growth rates of thermoacoustic modes appearing in a variety of
combustors at a moderate computational cost (Han et al., 2015; Li et al., 2017; Xia et al., 2019; Gaudron
et al., 2020). More information about OSCILOS, including the equations that are used to describe each
type of module, can be found in Li et al. (2017) and Gaudron et al. (2021).

OSCILOS was used to generate a large number of cases corresponding to random geometries and
flame properties and determine their corresponding thermoacoustic stability. The combustor’s geometry
for each case contains four sections: the inlet, Interfaces 1 and 2, and the outlet, thus corresponding to three
distinct modules. The inlet is located at x = 0 m, and the axial locations of the remaining sections are
randomly generated between x = .1 m and x = 1 m. The radii of all three modules are also randomly
generated between r = .01 m and r = .1 m. The flame is always located at the second interface, and its
frequency response is represented using an n–τ model (Merk, 1957; Poinsot and Veynante, 2001;
Lieuwen, 2005). Modern predictive approaches often use computational flow simulations to deduce
the flame’s frequency response, but an n–τ model captures the main features at a much-reduced
computational cost. For each case, the gain and time delay of the n–τ model are also randomly selected
in the range n∈ :5,1½ � and τ∈ 0,5½ � ms. All random parameters are selected using a uniform distribution.
An example of a geometry generated using this procedure is depicted in the top of Figure 1.

The mean pressure, mean temperature, and Mach number at the inlet are then set to p0 = 101,325 Pa,
T0 = 293 K, andM0 = :005 for all cases. Likewise, the mean temperature ratio across the flame is always
set to 5. The mean flow parameters are then computed everywhere inside the combustor by solving the
mean conservation of mass, momentum, and energy. For all cases, the acoustic boundary conditions at the
inlet and the outlet are set to a closed Ri = 1ð Þ and open (Ro = �1) end, respectively. A characteristic
equation is then solved, and all thermoacousticmodeswith a frequencywithin f ∈ 0,500½ �Hz and a growth
rate within ω∈ �500,500½ � s�1 are detected. For instance, the bottom of Figure 1 represents the map
corresponding to the geometry depicted in the top of Figure 1 with a gain n = .875 and a time delay
τ = 4.90 ms. Four thermoacoustic modes of frequencies f1 = 61 Hz, f2 = 183 Hz, f3 = 304 Hz, and
f4 = 443 Hz are found for those parameters, represented in the bottom of Figure 1 as white stars.

The original frequency range is then divided into 10 bins covering 50 Hz each, for example, the first
and second bins cover the frequencies f ∈ 0,50½ � Hz and f ∈ 50,100½ � Hz, respectively. For a given
configuration, if there are one or more practically unstable modes, then a positive label (þ1) is associated
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with the bin(s) containing the frequencies of thosemodes. Conversely, a naught label (0) is associatedwith
all remaining bins, which can thus contain practically stable modes or no mode at all. A thermoacoustic
mode is linearly stable for any negative growth rate (Poinsot and Veynante, 2001; Dowling and Stow,
2003; Lieuwen, 2005). However, a small change in the flow conditions and/or flame properties can alter
the growth rate of a given mode (Langhorne, 1988; Lieuwen, 2005) which could potentially shift from a
slightly negative value to a positive value. The corresponding thermoacoustic mode would then become
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Figure 1. (Top) Randomly generated combustor geometry consisting of three modules with a flow passing
through from left to right. The axial locations of the inlet, flame, and outlet are depicted by blue, red, and
green vertical lines, respectively. (Bottom) Corresponding map obtained using OSCILOS with n = .875
and τ = 4.90 ms. A white star indicates the presence of a thermoacoustic mode for that frequency and

growth rate.
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linearly unstable and grow in amplitude. For that reason, a practically unstable (respectively, stable) mode
is defined as a mode with a growth rate ω>�20 s�1 (respectively, ω≤�20 s�1).

As an illustration, the labels for the configuration presented in Figure 1 are reported in Table 1. Even
though four thermoacoustic modes are found in the frequency range of interest, only the secondmode has
a growth rate ω>�20 s�1. Since the frequency of this mode is f2 = 183 Hz, the label associated with the
fourth frequency interval is set to 1, whereas all the remaining labels are set to 0. The procedure described
in this section is fully automated and takes a few seconds to run on a recent computer for any given
configuration. In this study, hundreds of thousands of randomly generated configurations have been
explored to train and validate the classification algorithms presented in Sections 3 and 4.

3. Binary Classification Algorithms

The first step is to try and predict the overall thermoacoustic stability of a given configuration by using
binary classification algorithms. The code used to perform the corresponding analysis is available on
GitHub as a Jupyter notebook. It is written in Python 3 andmakes use of the scikit-learn library (Pedregosa
et al., 2011). The inputs (also called features) are the lengths (L1, L2, L3) and radii (R1, R2, R3) of all three
modules as well as the gain n and time delay τ of the flame model. The output is a binary value: 0 if the
configuration contains no practically unstable mode for the entire frequency range of interest or
1 otherwise. Following this definition, the synthetic data presented in Section 2 contain 149,701 stable
configurations (output: 0) and 401,656 unstable configurations (output: 1). The complexity of the
classification problem is linked to the shape of the boundary separating stable and unstable configurations
in the eight-dimensional feature space. Figure 2 depicts this boundary projected on the (n, τ) space for nine
random sets of geometrical parameters (L1, L2, L3, R1, R2, R3). It is clear from Figure 2 that stable and
unstable configurations are not always separable by simple lines, which implies that nonlinear algorithms
are required for this classification task.

The Kendall rank correlation coefficients between the inputs and the binary output are represented in
Figure 3. These coefficients indicate that there is a very low correlation between all inputs (except for the
time delay) and the binary output. In other words, those inputs have a very little impact on the
thermoacoustic stability of combustors when considered separately. Conversely, there is a moderate
positive correlation between the time delay and the binary output, thus indicating that configurations with
higher time delays τ tend to be more thermoacoustically unstable.

An input matrix of dimension 551,357� 8 is then constructed by assigning each feature to a column,
while each row represents a different configuration. Every column of the input matrix is then
normalized by removing the mean and scaling to unit variance. An output vector containing the binary
output for every configuration is also constructed. The input matrix and the output vector are then split
randomly into a training/cross-validation set and a testing set. The training/cross-validation set, which
contains 80% of all configurations, is used to train the algorithms and tune the associated hyperpara-
meters, whereas the testing set, which contains the remaining 20%, is used to validate the algorithms.
These two sets are disjoint to ensure that training and testing are independent. The scoringmetric used in
this study is the Accuracy Classification Score, which quantifies the number of correctly labeled
configurations. A fivefold cross-validation strategy is used to find the optimal value of the hyperpara-
meters. This “training, tuning, testing” procedure is now described in detail. For a given algorithm, the
training/cross-validation set is randomly split into five subsets of similar size. Four of these subsets,
constituting the training set, are used to fit the model for given hyperparameters, whereas the fifth

Table 1. Labels associated with the randomly generated configuration introduced in Figure 1.

Range (Hz) [0, 50] [50, 100] [100, 150] [150, 200] [200, 250] [250, 300] [300, 350] [350, 400] [400, 550] [450, 500]

Label 0 0 0 1 0 0 0 0 0 0
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subset, called the cross-validation set, is used to compute the corresponding accuracy score. This
operation is then repeated four times by selecting a different cross-validation set among the five subsets,
and the average cross-validation accuracy score is then computed for those hyperparameters. The entire
procedure is then repeated for another set of hyperparameters. The hyperparameters maximizing the
average cross-validation accuracy score are then selected, and the algorithm is refit using the entire
training/cross-validation set. The accuracy score of the refit model is finally assessed using the testing
set. An illustration of the different subsets used for training, cross-validation, and testing is represented
in Figure 4.

The first binary classification algorithm investigated is the KNearest Neighbors (KNN) algorithm (Fix
and Hodges, 1951; Altman, 1992), which assigns the class of an unknown configuration based on the
most common class among its K nearest neighbors in the eight-dimensional feature space. The distance

Figure 2. Thermoacoustic stability predicted by OSCILOS as a function of the time delay (y-axis) and
gain (x-axis) of the flame for nine randomly generated combustor geometries. (Purple dots) Stable

configurations. (Yellow dots) Unstable configurations.

Figure 3. Kendall rank correlation coefficients between the inputs (x-axis) and the binary output.
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metric used in the feature space is the Minkowski distance, and the most appropriate algorithm (BallTree
or KDTree) is automatically selected to compute the nearest neighbors. All configurations in a given
neighborhood are weighted equally. The only hyperparameter of the KNN algorithm in this study is the
number of neighbors K, varied between 1 and 50. The resulting average accuracy score computed using
the cross-validation subsets is represented in the top of Figure 5 as a function of the number of neighbors.
The top of Figure 5 shows that the accuracy score tends to decrease as the number of neighbors in the
neighborhood increases. The best model is thus obtained for a single neighbor and yields a 99.3%
accuracy when computed on the testing set after being refit on the entire training/cross-validation set.

The second binary classification algorithm investigated is the Decision Tree (DT) algorithm (Breiman
et al., 1984; Quinlan, 1986), which assigns the class of an unknown configuration using simple decision
rules inferred from the data features. An example of a decision rule for a one-layer decision tree could be:
“If the time delay τ is larger than a, then the class of that configuration is 1.”An additional layer can then be
added by splitting the tree into two branches according to another decision rule. A split of the decision tree
is selected if it is the best available split based on an information gain criterion and if it decreases the
overall impurity (or entropy) of the tree. All features are taken into account when considering a split, and
both classes are weighted equally. The maximum number of layers (also called maximum depth) of the
decision tree is considered as a hyperparameter in this study, with values ranging from 1 to 50. The
average cross-validation accuracy score is represented in the middle of Figure 5 as a function of the
maximum depth of the decision tree. Initially, the accuracy score increases linearly with the maximum
depth of the tree, until it reaches a plateau for amaximumdepth of about 25 layers. The best accuracy score
is obtained for a maximum depth of 43 layers and yields a 99.4% accuracy when computed on the testing
set after being refit on the entire training/cross-validation set.

The third binary classification algorithm is the Random Forest (RF) algorithm (Ho, 1995; Breiman,
2001), which trainsmultiple decision trees and assigns the class of an unknown configuration based on the
most commonly predicted class by those trees. Decision trees used in the DT and RF algorithms have
similar properties, except that they have no maximum depth in the latter case. Bootstrap samples are used
when building trees, and both classes are weighted equally. The maximum number of trees in the forest is
varied between 1 and 100. The average cross-validation accuracy score is represented in the bottom of
Figure 5 as a function of the number of trees in the forest. Initially, the accuracy score increases sharply
with the number of trees. For more than 20 trees, the accuracy score is marginally improved as the forest
grows. The best accuracy score for the testing set is found to be 99.6% for 92 trees in the forest.

The fourth and final classification algorithm is the Multilayer Perceptron (MLP) algorithm, which is a
type of feedforward artificial neural network (Hinton, 1989; Haykin, 1998). Several architectures were
tested, and the best accuracy was obtained using three hidden layers containing 100 neurons each,
corresponding to a large number of weights to be optimized during the training procedure. The activation

Training C.V. Testing

Step 1

Step 2

Step 3

Step 4

Step 5

Figure 4. Illustration of the different subsets used in the fivefold cross-validation strategy for 50 randomly
generated configurations of class 0 (black line) or 1 (white line). (Red) Training set. (Blue) Cross-

validation set. (Green) Testing set.
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function used for hidden layers is the rectified linear unit function. The log-loss function is optimized
using a stochastic gradient-based optimizer (Kingma and Ba, 2017) with 10,000 epochs. Six different
learning rates are investigated: .0001, .0003, .001, .003, .006, and .01. The size of minibatches is set to
200, and samples are shuffled in each iteration. The exponential decay rate for estimates of the first and
second moment vectors are set to β1= .9 and β2= .999, respectively. The numerical stability parameter is
set to ϵ= 10�8. A regularization term is added to the loss function to prevent overfitting. Several values for
the corresponding regularization parameter are explored: .001, .003, .01, .03, .1, and .3. If 10 successive
epochs do not meet the tolerance, set to 10�4, then convergence is considered to be reached and the MLP
training is stopped. Using the fivefold cross validation strategy, the best values for the learning rate and
regularization parameter are both found to be .001. The corresponding accuracy score computed using the
refit model and the testing set is 98.2%.

Figure 5. Average cross-validation accuracy score obtained using 440,086 training examples for the
binaryK-Nearest Neighbors (Top), Decision Tree (Middle), and RandomForest (Bottom) algorithms as a

function of the number of neighbors, maximum depth, and number of trees, respectively.
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So far, the binary classification algorithms have been assessed using 551,357 configurations, of which
440,086 were training examples. In a practical setting, significantly less data might be available, thus
affecting the accuracy of those classification algorithms. Figure 6 depicts the average cross-validation
accuracy score as a function of the number of training examples for all four binary classification
algorithms tuned with the optimal hyperparameters determined earlier. The performance of the KNN,
DT, and RF algorithms are strongly affected as the training set shrinks, whereas the MLP algorithm is
more robust. For training sets containing less than about 315,000 training examples, the best classifica-
tion algorithm is the MLP algorithm. Above that threshold, the RF algorithm performs increasingly
better. This is illustrated in Figure 7 where the maximum accuracy obtained using the testing set is
represented for binary classificationmodels trained using 220,043 and 440,086 labeled configurations. In
the latter case, the best algorithm is indeed the RF algorithm, with only four mislabeled configurations for

Figure 6. Average cross-validation accuracy score for the binary K-Nearest Neighbors (green dots),
Decision Tree (blue triangles facing down), Random Forest (yellow squares), and Multilayer Perceptron

(black triangles facing up) algorithms as a function of the number of training examples.

Figure 7.Maximum accuracy score obtained using the testing set (top row—blue) and training runtime of
the corresponding model (bottom row—green) for various binary classification algorithms and for

220,043 (top) and 440,086 (bottom) training examples.
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every 1,000 cases, closely followed by the DT and KNN algorithms with, respectively, six and seven
mistakes for every 1,000 cases. Conversely, the MLP algorithm is less accurate (18 mistakes for every
1,000 cases). However, when the size of the training set is halved, theMLP algorithm features an accuracy
of 96.8% as opposed to 95.6% for the RF algorithm, 93.5% for the DTalgorithm, and 92.7% for the KNN
algorithm.

Figure 7 also indicates that the KNN and DT algorithms have similar training runtimes, whereas
training the RF and MLP algorithms is 15–25 times slower and 300–600 times slower, respectively.
Interestingly, doubling the size of the training set has a little impact on the training runtime of the KNN
algorithm, whereas that of the DT algorithm increases by about 50% and those of the RF and MLP
algorithms are approximately doubled.

4. Multilabel Classification Algorithms

The next step is to try and predict the thermoacoustic stability of a given configuration for the 10 distinct
frequency intervals introduced in Section 2 (as opposed to the entire frequency range of interest). A given
configuration is said to be correctly labeled if the labels of all 10 frequency intervals, covering 50 Hz
each, are correctly predicted. In other words, the occurrence of practically unstable modes must be
correctly predicted for every frequency interval. A given configuration may contain 0 positive label
(no practically unstable mode in the entire frequency range), 10 positive labels (presence of at least one
practically unstable mode in every frequency interval), or anything in between. The ratios of positive
labels for the different frequency intervals are represented in Figure 8. Practically unstable modes are
uncommon for frequencies f < 100Hz, corresponding to the first two frequency intervals. The presence of
at least one practically unstable mode is detected in about 10–15% of all configurations for the remaining
frequency intervals. TheKendall rank correlation coefficients between the inputs and all 10 binary outputs
are represented in Figure 9. Again, those correlation coefficients are either close to zero, or slightly
positive or negative. This demonstrates that none of the inputs are good thermoacoustic stability
predictors per se: they need to be considered collectively instead.

The KNN, DT, RF, and MLP algorithms are transformed into multilabel classification algorithms by
using a classifier chain. First, the label corresponding to the first frequency interval (covering the
frequencies between 0 and 50 Hz) is predicted based on the usual eight inputs (lengths and radii of the
modules and flame parameters). The output of this first model is then added to the inputs, and a second
model is trained to predict the label of the second frequency interval (covering the frequencies between
50 and 100 Hz). The second label is then added to the inputs, and so on, until all 10 models are trained.
Using a classifier chain instead of training 10 independent models based on the same eight inputs was
found to lead to a higher accuracy score. For each multilabel algorithm, the corresponding parameters are
similar to those selected for their binary counterparts. Furthermore, the preprocessing procedure as well as
the fivefold cross-validation strategy are also identical in both cases. As a first step, 440,086 labeled
configurations are used to train the multilabel classification algorithms.

Figure 8. Ratios of positive labels for the different frequency intervals.
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The average cross-validation accuracy score for the multilabel KNN algorithm is represented as a
function of the number of neighbors in the top of Figure 10. As observed for the binary KNN algorithm,
the accuracy score decreases when the number of neighbors increases. For a single neighbor, the testing
accuracy achieved after refitting the model using the entire cross-validation/training set is 97.5%.
Similarly, the average cross-validation accuracy scores for the multilabel DT and RF algorithms are
represented in the middle and the bottom of Figure 10 as functions of the maximum depth of the tree and
the number of trees in the forest, respectively. The trend that was first detected for the binary DT and RF
algorithms, that is, a sharp increase followed by a plateau, is observed once again. The most accurate
models are obtained for a maximum depth of 50 layers and a forest containing 85 trees for the DTand RF
algorithms, respectively. The corresponding accuracy scores of the refit models assessed using the testing
set is 97.7% for the DTalgorithm and 98.3% for the RF algorithm. Finally, the multilabel MLP algorithm
is found to be most accurate for the same learning rate and regularization parameter that were selected for
the binary MLP algorithm: .001. The corresponding testing accuracy of the refit model is 94.2%.
Figure 11 demonstrates that the RF algorithm is indeed the most accurate multilabel algorithm for a
training/cross validation set containing more than about 370,000 training examples. The multilabel MLP
algorithm ismore robust and thus becomes themost accurate multilabel algorithm for a smaller number of
training examples. This can also be observed in Figure 12, which represents the accuracy scores of all four
multilabel algorithms as well as the corresponding training runtimes for 220,043 and 440,086 training
examples. Figure 12 further shows that the multilabel KNN and DT algorithms have similar training

Figure 9.Kendall rank correlation coefficients between the inputs (x-axis) and the binary outputs (y-axis)
corresponding to 10 distinct frequency intervals.
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runtimes, whereas training the multilabel RF and MLP algorithms is 15–20 times slower and 200–300
times slower, respectively. Finally, doubling the size of the training set is found to have a little impact on
the training runtime of themultilabel KNN algorithm, but increases that of theDTalgorithm by about 60%
and nearly doubles those of the RF and MLP algorithms. These observations closely follow those made
for binary classification algorithms in Section 3.

A classification algorithm with carefully selected parameters only needs to be trained once if the
training examples cover a wide enough range of inputs. This initial step has a low-to-moderate
computational cost depending on the specific algorithm, but the resulting model can then predict the
labels of a previously unknown configuration within those predefined bounds very efficiently. It should
also be noted that the training and prediction steps can be performed on different machines. This is a major
advantage of classification algorithms compared to traditional low-order network tools, where a single

Figure 10. Average cross-validation accuracy score obtained using 440,086 training examples for the
multilabel K-Nearest Neighbors (top), Decision Tree (middle), and Random Forest (bottom) algorithms

as a function of the number of neighbors, maximum depth, and number of trees, respectively.
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step of moderate computational cost is required to make a prediction. This is illustrated in Figure 13,
where the labels associated with 10,000 configurations are predicted using multilabel KNN, DT, RF, and
MLP algorithms as well as OSCILOS. The classification algorithms are pretrained using 440,086 labeled
configurations. The fastest pretrained algorithm is the DT algorithm, followed by the MLP and RF
algorithms that run about 22 and 67 times slower. The slowest multilabel classification algorithm, the
KNN algorithm, is 114 times slower than the DTalgorithm. Nevertheless, OSCILOS is still several orders
of magnitudes slower than the KNN algorithm. Astonishingly, the DT algorithm is able to make a
prediction about the thermoacoustic stability of a given configuration almost a million times faster than
OSCILOS.

Figure 12.Maximum accuracy score obtained using the testing set (top row—blue) and training runtime
of the corresponding model (bottom row—green) for various multilabel classification algorithms and for

220,043 (top) and 440,086 (bottom) training examples.

Figure 11.Average cross-validation accuracy score for the multilabelK-Nearest Neighbors (green dots),
Decision Tree (blue triangles facing down), Random Forest (yellow squares), and Multilayer Perceptron

(black triangles facing up) algorithms as a function of the number of training examples.
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5. Conclusions

Thermoacoustic instabilities are a major issue in the power production and aircraft propulsion industries,
among many others. The development and widespread adoption of new carbon-free combustion tech-
nologies could be hindered as they are especially prone to combustion instabilities. It is possible to predict
the occurrence of those combustion instabilities using complex physical models and/or numerical
simulations. However, optimizing the properties of a given combustor tomake it instability-proof requires
dozens of thousands of runs, and the associated computational cost may become quite high. Conversely,
classification algorithms typically run much faster, but have never been used for thermoacoustic stability
prediction. The objective of this work was thus to investigate whether a selection of well-established
classification algorithms could be trained to accurately predict the thermoacoustic stability of combustors
with arbitrary geometries and flame properties.

Over half a million configurations were randomly generated and scanned for unstable thermoacoustic
modes using a physics-based open-source tool called OSCILOS. Four binary classification algorithms of
increasing complexity were then selected: the KNN, DT, RF, and MLP algorithms. After being trained
using all available training examples, all four algorithms were shown to be capable of predicting the
overall thermoacoustic stability of an unknown configuration with an accuracy higher than 98%. The
most accurate algorithm was found to be the RF algorithm, with an accuracy score of 99.6%. It was then
demonstrated that the MLP algorithm was the most accurate algorithm for smaller training sets. Finally,
the KNN and DT algorithms were found to have lower accuracies than the RF algorithm and/or the MLP
algorithm, but could be trained significantly faster.

Efficient mitigation strategies are highly dependent on the frequency of thermoacoustic instabilities. It
is thus important to predict not only the occurrence of thermoacoustic instabilities, but also the frequency
interval in which they occur. This was achieved in this study by considering multilabel classification
algorithms. The frequency range of interest was split into 10 frequency intervals covering 50Hz each, and
the ith label was set to be positive if there was at least one unstable mode corresponding to the ith
frequency interval. The thermoacoustic stability of a given configuration was considered to be correctly
predicted if all 10 frequency intervals were correctly labeled. All four algorithms trained using all
available training examples were found to have an accuracy score higher than 94%. The most accurate
multilabel algorithm investigated was the RF algorithm with more than 98.3% of perfectly labeled
configurations. Again, the MLP algorithm was found to be the most accurate algorithm for smaller
training sets, and the KNN andDTalgorithmswere slightly less accurate, but could be trainedmuch faster
than the other two algorithms. Finally, it was shown that all trained multilabel classification algorithms
were able to predict the thermoacoustic stability of an unknown configuration with runtimes several
orders of magnitude smaller than that of a traditional low-order network tool. For instance, the DT
algorithm, whichwas found to be the fastest multilabel classification algorithm, ran almost amillion times
faster than OSCILOS.

Figure 13. Prediction runtime for 10,000 distinct configurations obtained using various multilabel
classification algorithms and OSCILOS.
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This study demonstrates that classification algorithms are able to predict the thermoacoustic behavior
of a randomly generated configuration with a very high accuracy and a very low runtime. The frequency
intervals in which unstable thermoacoustic modes appear can also be accurately predicted using multi-
label classification algorithms. These findings open the door to a new generation ofML-based combustor
optimization codes that would run much faster than the existing physics-based codes.
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