ON THE STRUCTURE OF FINITE $T_0 + T_5$ SPACES

SHAWPAWN KUMAR DAS

The object of this paper is to study some structural aspects of finite $T_0 + T_4$ and $T_0 + T_5$ spaces in order to establish certain recursion relations that can be used to obtain the number of (labelled as well as unlabelled) $T_0 + T_5$ topologies on a finite set. Here, as in [2], a topology \mathscr{T} is a $T_4(T_5)$ space provided for any pair of disjoint closed sets A and B (separated sets A and $B \equiv A \cap$ closure $B = B \cap$ closure $A = \emptyset$) there exist disjoint open sets O_A and O_B of \mathscr{T} such that $A \subseteq O_A$ and $B \subseteq O_B$. An almost immediate consequence of these investigations is that the inherent simplicity of the connected $T_0 + T_5$ topologies ensures that they are reconstructable.

This article assumes a complete familiarity with the material developed in [1]. The spaces in this paper are always T_0 and are defined on a finite point set N. Let \mathscr{T} be a topology on N and A a subset of N. Then $A^*(\mathscr{T})$, or more simply A^* when there is no risk of confusion, will denote the minimal open set of \mathscr{T} that contains A. That is

$$A^*(\mathscr{T}) = \bigcap \{ 0 | A \subseteq O \in \mathscr{T} \}.$$

A consequence of the T_0 property is that $\alpha \neq \beta$ and $\alpha \in \beta^*(\mathcal{T})$ implies $\beta \notin \alpha^*(\mathcal{T})$. A point α is a maximal point of \mathcal{T} provided $\alpha \notin \beta^*(\mathcal{T})$ for all $\beta \neq \alpha$. For any set A, |A| will denote the cardinality of A. The single element set $\{\alpha\}, \alpha \in N$, will be written simply as α . The union of α with a set A is written $\alpha + A$, and the relative difference of two sets A and B as A - B.

Let \mathscr{T} be a topology on N. Let $\mathbf{C} = [\alpha_1, \ldots, \alpha_m]$ be a sequence of m distinct elements, $m \ge 1$, of N. \mathbf{C} is called a *chain* of \mathscr{T} of length m provided:

(1) if $\alpha_1^* - \alpha_1 = \beta^*$ for some $\beta \in N$, then there exists a $\gamma \in N$ such that $\gamma \neq \alpha_1$ and $\gamma^* - \gamma = \beta^*$;

(2) if $\beta^* - \beta = \alpha_m^*$ for some $\beta \in N$, then there exists a $\gamma \in N$ such that $\gamma \neq \beta$ and $\gamma^* - \gamma = \alpha_m^*$,

and if m > 1 and $1 \leq i < m$, then

(3) $\alpha_{i+1}^* - \alpha_{i+1} = \alpha_i^*;$

(4) $\beta^* - \beta = \alpha_i^*$ for some $\beta \in N$ implies that $\beta = \alpha_{i+1}$.

The length of the chain **C** will be denoted by $L(\mathbf{C})$. The supporting open set of **C**, written as $*\mathbf{C}(\mathscr{T})$, or more simply as $*\mathbf{C}$, when there is no risk of confusion, is defined to be the open set $\alpha_1^* - \alpha_1$ of \mathscr{T} . The notation $\{\mathbf{C}: i\}$, for $1 \leq i \leq m$, will be used to indicate the subset consisting of the first *i* terms of the sequence **C**, and $\{\mathbf{C}: 0\} = \emptyset$. **C** will be used to denote both the sequence

Received April 20, 1972 and in revised form, August 15, 1973.

 $[\alpha_1, \ldots, \alpha_m]$ and the unordered set $\{\alpha_1, \ldots, \alpha_m\}$. The meaning of **C** will always be clear from the context in which it will be used.

It is shown in [1] that the collection of chains of a topology partitions N. Moreover, under a homeomorphism between two topologies, the elements of a chain are always mapped, in the prescribed order, onto the elements of a chain of equal length.

An equivalence relation $\approx (\mathcal{T})$ may be defined on the set of chains of a topology \mathcal{T} by requiring that if \mathbf{C} , \mathbf{D} are chains of \mathcal{T} , then $\mathbf{C} \approx (\mathcal{T})\mathbf{D}$ if and only if $*\mathbf{C} = *\mathbf{D}$. A collection \mathscr{C} of r distinct chains of a topology \mathcal{T} is a r chain cell, or more simply a cell, of \mathcal{T} if and only if \mathscr{C} is an equivalence class of the equivalence relation $\approx (\mathcal{T})$. The supporting open set of \mathscr{C} , denoted by $*\mathscr{C}(\mathcal{T})$, or more simply by $*\mathscr{C}$ when there is no risk of confusion, is the (uniquely defined) supporting open set of any chain of \mathscr{C} . If $\mathscr{C} = {\mathbf{C}_1, \ldots, \mathbf{C}_r}$ is a cell, then \mathscr{C} will denote both the collection of its constituent chains as well as the subset $\mathbf{C}_1 \cup \ldots \cup \mathbf{C}_r$. The meaning of \mathscr{C} will be clear from the context in which it will be used. Like chains, the cells of a topology also behave like complete units under homeomorphisms.

1.

LEMMA 1. Suppose that O is an open set of a topology \mathscr{T} on N. Let $\{\mathbf{C}_1, \ldots, \mathbf{C}_i, \ldots, \mathbf{C}_p\}$ be the collection of chains of \mathscr{T} that have non-void intersections with O. If $|\mathbf{C}_i \cap O| \leq t_i \leq L(\mathbf{C}_i)$ for $i = 1, \ldots, p$ then the set

$$\bigcup_{i=1}^{p} \{\mathbf{C}_i : t_i\}$$

is an open set of \mathcal{T} .

Proof. The case $t_i = |\mathbf{C}_i \cap O|$ for $i = 1, \ldots, p$ is Lemma 7-(2) of [1]. Assume therefore that $|\mathbf{C}_i \cap O| < t_i$ for at least one i, so that $O \subset \bigcup \{\mathbf{C}_i : t_i\}$. If $\alpha \in \bigcup \{\mathbf{C}_i : t_i\}$ then $\alpha \in \mathbf{C}_j$ for some $\mathbf{C}_j \in \{\mathbf{C}_1, \ldots, \mathbf{C}_p\}$. Now $\alpha^* = *\mathbf{C}_j \cup \{\mathbf{C}_j : k\}$ for some $k \leq t_j$. Since $O \cap \mathbf{C}_j \neq \emptyset$, therefore

$$^{*}\mathbf{C}_{j} \subset O \subset \bigcup \{\mathbf{C}_{i}: t_{i}\}$$

and since $\{\mathbf{C}_j : k\} \subseteq \{\mathbf{C}_j : t_j\}$, therefore $\alpha^* \subseteq \bigcup \{\mathbf{C}_i : t_i\}$ and so $\bigcup \{\mathbf{C}_i : t_i\}$ is open.

LEMMA 2. Let \mathscr{C} be a cell of a topology \mathscr{T} on N, such that $*\mathscr{C} \neq \emptyset$. If A_1 and A_2 are two subsets of N such that $A_1 \cap \mathscr{C} \neq \emptyset$ and $A_2 \cap \mathscr{C} \neq \emptyset$, then there do not exist disjoint open sets O_1, O_2 of \mathscr{T} such that $A_1 \subseteq O_1$ and $A_2 \subseteq O_2$.

Proof. The result follows immediately from Lemma 9-3(c) of [1].

LEMMA 3. Let **C** be a chain of a topology \mathscr{T} on N. If A_1 and A_2 are two open (closed) sets of \mathscr{T} such that $A_1 \cap \mathbf{C} \neq \emptyset$ and $A_2 \cap \mathbf{C} \neq \emptyset$, then $A_1 \cap A_2 \neq \emptyset$.

Proof. Let $\mathbf{C} = [\alpha_1, \ldots, \alpha_m]$. If A_1 and A_2 are open, then $\alpha_1^* \subseteq A_1 \cap A_2$. If A_1 and A_2 are closed, then $A_1 = N - O_1$ and $A_2 = N - O_2$ for some O_1 , $O_2 \in \mathscr{T}$. The assumption $A_1 \cap \mathbf{C} \neq \emptyset \neq A_2 \cap \mathbf{C}$ implies that there exist *i*, $j \leq m$ such that $\alpha_i \notin O_1$ and $\alpha_j \notin O_2$. Since O_1 and O_2 are open, this in turn implies that $\alpha_m \notin (O_1 \cup O_2)$ so that $\alpha_m \in (A_1 \cap A_2)$.

LEMMA 4. For any topology \mathcal{T} on N, there exists a cell \mathcal{F} , called the first cell of \mathcal{T} , with the property that $*\mathcal{F} = \emptyset$. This first cell is uniquely defined in the sense that if \mathcal{C} is a cell of \mathcal{T} and $*\mathcal{C} = \emptyset$, then $\mathcal{C} = \mathcal{F}$.

Proof. The result is Lemma 10 of [1].

It is now necessary to introduce a partial order on the collection of cells of a topology. If \mathscr{C} and \mathscr{D} are two cells of a multi-cell topology \mathscr{T} on N, let $\mathscr{C} \triangleleft \mathscr{D}$ indicate that $\mathscr{C} \neq \mathscr{D}$ and there exists an $\alpha \in \mathscr{D}$ such that $\alpha^* \cap \mathscr{C} \neq \emptyset$. Then it is easily shown that $\mathscr{C} \triangleleft \mathscr{D}$ and $\mathscr{D} \triangleleft \mathscr{C}$ cannot be simultaneously true. Also, if \mathscr{T} is a multi-cell topology and (1) if \mathscr{F} is the first cell of \mathscr{T} , then $\mathscr{F} \triangleleft \mathscr{C}$ for any cell $\mathscr{C} \neq \mathscr{F}$, and (2) if $\mathscr{C}, \mathscr{D}, \mathscr{E}$ are distinct cells of \mathscr{T} , then $\mathscr{C} \triangleleft \mathscr{D}$ and $\mathscr{D} \triangleleft \mathscr{E}$ implies $\mathscr{C} \triangleleft \mathscr{E}$ so that \triangleleft defines a partial ordering on the collection of cells of \mathscr{T} .

LEMMA 5. Let \mathcal{T} be a multi-cell topology. Then there exists at least one cell \mathcal{D} of \mathcal{T} such that the relation $\mathcal{D} \triangleleft \mathcal{C}$ does not hold for may cell \mathcal{C} .

Comment. Such a cell will be termed a maximal cell of \mathscr{T} . If \mathscr{T} is a single cell topology, then this cell is both the maximal and the first cell of \mathscr{T} .

Proof. Let \mathscr{C}_1 be an arbitrary cell and suppose \mathscr{C}_1 is not maximal. A sequence $\mathscr{C}_1 \triangleleft \ldots \triangleleft \mathscr{C}_i \triangleleft \mathscr{C}_{i+1} \ldots$ may be built up by searching for a cell \mathscr{C}_{i+1} , such that $\mathscr{C}_i \triangleleft \mathscr{C}_{i+1}$, if \mathscr{C}_i is not maximal. Clearly, since all the cells of this sequence are distinct and any two cells are disjoint subsets of N, therefore any such sequence of cells must terminate at a term \mathscr{C}_j such that \mathscr{C}_j is a maximal cell. For otherwise, the finiteness of N is contradicted.

In general, a topology may have more than one maximal cell. However, if a multi-cell topology satisfies the T_4 or the T_5 separation property and is connected, then it has precisely one maximal cell. In other words, if \mathcal{D} is a maximal cell of a connected T_4 or a T_5 topology and the cell $\mathscr{C} \neq \mathscr{D}$, then $\mathscr{C} \triangleleft \mathscr{D}$. This is demonstrated by the following sequence of Lemmas.

LEMMA 6. Let \mathscr{M} be a maximal cell of a topology \mathscr{T} on N.

(1) The set $S_1 = \bigcup \{ \mathbf{C} | \mathbf{C} \cap *\mathcal{M} = \emptyset \}$ is a closed set of \mathcal{T} . If \mathcal{T} is a multicell topology, then the set $S_2 = \bigcup \{ \mathbf{C} | \mathbf{C} \notin \mathcal{M} \text{ and } \mathbf{C} \cap *\mathcal{M} = \emptyset \}$ is also a closed set of \mathcal{T} .

(2) \mathcal{M} is a closed set of \mathcal{T} . If \mathcal{T} is a multi-cell topology then the set S_2 , defined in (1) above, and \mathcal{M} are disjoint closed sets.

(3) If \mathscr{T} is a multi-cell topology and if \mathscr{M} is a multi-chain cell, then \mathscr{T} does not satisfy the T_4 axiom.

Proof. Let $\{\mathbf{C}_1, \ldots, C_i, \ldots, \mathbf{C}_p\}$ be the collection of chains of \mathscr{T} having non-void intersections with $*\mathscr{M}$.

(1) Let $O_1 = \bigcup_{i=1}^{p} \mathbf{C}_i$. By Lemma 1, O_1 is an open set of \mathscr{T} . Clearly $S_1 = N - O_1$ and so S_1 is a closed set of \mathscr{T} . Now let $O_2 = O_1 \cup \mathscr{M}$. Obviously,

* $\mathscr{M} \subseteq O_1$ so that $O_2 = O_1 \cup (*\mathscr{M} \cup \mathscr{M})$ and since * $\mathscr{M} \cup \mathscr{M} \in \mathscr{T}$, therefore $O_2 \in \mathscr{T}$ and so $S_2 = N - O_2$ is closed.

(2) If \mathscr{T} has only one cell, then $\mathscr{M} = N$. If \mathscr{T} is a multi-cell topology, let $O_3 = \bigcup \{\mathscr{C} | \mathscr{C} \neq \mathscr{M} \}$. Since \mathscr{M} is maximal, therefore if $\mathscr{C} \neq \mathscr{M}$ then $*\mathscr{C} \cap \mathscr{M} = \emptyset$ which implies that $*\mathscr{C} \subset O_3$ and so $O_3 \in \mathscr{T}$. Therefore $\mathscr{M} = N - O_3$ is closed. Since $\mathscr{M} \subseteq O_2$, therefore \mathscr{M} and S_2 are disjoint.

(3) Now suppose that \mathcal{T} is a multi-cell topology and that \mathbf{M}_1 and \mathbf{M}_2 are two chains of \mathcal{M} . Let $P_i = O_3 \cup (\mathcal{M} - \mathbf{M}_i)$, i = 1, 2. Since $\mathcal{M} \cap *\mathcal{M} = \emptyset$, therefore $*\mathcal{M} \subseteq O_3$. If $\alpha \in (\mathcal{M} - \mathbf{M}_i)$, then $\alpha \in \mathbf{M}$ where \mathbf{M} is some chain of \mathcal{M} different from \mathbf{M}_i . Therefore $\alpha^* \subseteq *\mathbf{M} \cup \mathbf{M} = *\mathcal{M} \cup \mathbf{M} \subseteq P_i$. Therefore P_1 and P_2 are open. Since $\mathbf{M}_1 = N - P_1$ and $\mathbf{M}_2 = N - P_2$, and since distinct chains are disjoint, therefore \mathbf{M}_1 and \mathbf{M}_2 are disjoint closed subsets. Since \mathcal{T} is a multi-cell topology and \mathcal{M} is maximal, therefore \mathcal{M} cannot be the first cell of \mathcal{T} . Hence $*\mathcal{M} \neq \emptyset$. If $Q_1, Q_2 \in \mathcal{T}$ and $\mathbf{M}_1 \subseteq Q_1$ and $\mathbf{M}_2 \subseteq Q_2$, then $*\mathcal{M} \subseteq Q_1 \cap Q_2$ so that \mathbf{M}_1 and \mathbf{M}_2 cannot be separated by disjoint open sets of \mathcal{T} .

LEMMA 7. Let \mathscr{T} be a multi-cell T_4 topology on N and \mathscr{M} a maximal cell of \mathscr{T} .

(1) If a chain of \mathcal{T} intersects $*\mathcal{M}$, then that chain is a subset of $*\mathcal{M}$.

(2) If C is a multi-chain cell, other than the first cell, and if some chain of C intersects $*\mathcal{M}$, then every chain of C is a subset of $*\mathcal{M}$, that is $C \subseteq *\mathcal{M}$.

(3) If $\mathcal{C} \neq \mathcal{M}$ is a cell such that $*\mathcal{C} \cap *\mathcal{M} \neq \emptyset$, then every chain of \mathcal{C} is a subset of $*\mathcal{M}$, that is $\mathcal{C} \subseteq *\mathcal{M}$.

Proof. Let $\{\mathbf{C}_1, \ldots, \mathbf{C}_i, \ldots, \mathbf{C}_p\}$ be the collection of chains of \mathscr{T} having non-void intersections with $*\mathscr{M}$.

(1) Let $|\mathbf{C}_i \cap *\mathcal{M}| = t_i \leq L(\mathbf{C}_i)$. Suppose that the chain $\mathbf{C}_i = [\alpha_1, \ldots, \alpha_q]$ is not a subset of $*\mathcal{M}$, that is $1 \leq t_i < q$. Since

*
$$\mathscr{M} = \bigcup_{i=1}^{p} \{ \mathbf{C}_i : t_i \},$$

therefore $\alpha_q \notin *\mathcal{M}$. Further, since $*\mathcal{M} \cap \mathcal{M} = \emptyset$ and $\mathbf{C}_i \cap *\mathcal{M} \neq \emptyset$, therefore \mathbf{C}_i is not a chain of \mathcal{M} and so $\alpha_q \notin \mathcal{M}$. Therefore $\alpha_q \notin O = *\mathcal{M} \cup \mathcal{M} \in \mathcal{T}$, and so $\alpha_q \in N - O$. Now let O_1 and O_2 be two open sets of \mathcal{T} such that $N - O \subseteq O_1$ and $\mathcal{M} \subseteq O_2$. Then $*\mathcal{M} \subseteq O_2$ which implies $\alpha_1 \in O_2$, and $\mathbf{C}_i \subseteq \alpha_q^* \subseteq O_1$ so that $\alpha_1 \in O_1 \cap O_2$. Thus the disjoint closed sets N - Oand \mathcal{M} cannot be separated by disjoint open sets and this contradicts the hypothesis that \mathcal{T} is T_4 .

(2) Suppose that **C** is a chain of \mathscr{C} and $\mathbf{C} \cap *\mathscr{M} \neq \emptyset$. Because of result (1) above, it will be sufficient to show that if **D** is a chain of \mathscr{C} , then $*\mathscr{M} \cap \mathbf{D} = \emptyset$ implies that \mathscr{T} is not T_4 . Let *S* be the union of all chains of \mathscr{T} that neither belong to the cell \mathscr{M} nor intersect $*\mathscr{M}$. Then the assumption $*\mathscr{M} \cap \mathbf{D} = \emptyset$ implies $\mathbf{D} \subseteq S$. Suppose that $S \subseteq O_1$ and $\mathscr{M} \subseteq O_2$, for some $O_1, O_2 \in \mathscr{T}$. Then since $*\mathscr{M} \cap \mathbf{C} \neq \emptyset$, therefore $*\mathbf{D} = *\mathbf{C} = *\mathscr{C} \subseteq O_1 \cap O_2$. Since \mathscr{C} is not the first cell, therefore $*\mathscr{C} \neq \emptyset$. Consequently *S* and \mathscr{M} , which are disjoint closed sets by Lemma 6-(2), cannot be separated by disjoint open sets of \mathscr{T} .

(3) By results (1) and (2) above, it follows that either $\mathbb{C} \cap *\mathscr{M} = \emptyset$ or $\mathbb{C} \subseteq *\mathscr{M}$ for every chain $\mathbb{C} \in \mathscr{C}$. Suppose that $\mathbb{C} \cap *\mathscr{M} = \emptyset$ for every chain $\mathbb{C} \in \mathscr{C}$. Then $\mathscr{C} \subseteq S$, where S is the closed set defined in (2) above. Now suppose that the disjoint closed sets S and \mathscr{M} are contained in the open sets O_1 and O_2 respectively. Then $*\mathscr{C} \cap *\mathscr{M} \subseteq O_1 \cap O_2$ and, since, by hypothesis, $*\mathscr{C} \cap *\mathscr{M} \neq \emptyset$ therefore \mathscr{T} is not \mathbb{T}_4 .

COROLLARY. * $\mathcal{M} = \bigcup \{ \mathbf{C} | \mathbf{C} \cap *\mathcal{M} \neq \emptyset \}.$

LEMMA 8. Let \mathcal{T} be a multi-cell T_4 topology on N and let \mathscr{M} be a maximal cell of \mathcal{T} . Then a necessary condition for \mathcal{T} to be connected is that $\mathbf{C} \subseteq *\mathscr{M}$ for every chain $\mathbf{C} \notin \mathscr{M}$.

Proof. Assume the contrary and let $\{\mathbf{C}_1, \ldots, \mathbf{C}_i, \ldots, \mathbf{C}_p\}$ be the non-void collection of chains of \mathscr{T} that do not belong to \mathscr{M} and are not subsets of $*\mathscr{M}$. By Lemma 7-(1), $\mathbf{C}_i \cap *\mathscr{M} = \emptyset$. Let $G = \mathbf{C}_1 \cup \ldots \cup \mathbf{C}_p$. Clearly G and the open set $*\mathscr{M} = \bigcup \{\mathbf{D} | \mathbf{D} \cap *\mathscr{M} \neq \emptyset\}$ are disjoint sets. It will now be demonstrated that G is open. For this purpose it is sufficient to show that $*\mathbf{C}_i \subseteq G$ for all $i, 1 \leq i \leq p$. Let $\mathbf{C}_i \in \mathscr{C} \neq \mathscr{M}$. Since $\mathbf{C}_i \cap *\mathscr{M} = \emptyset$, therefore Lemma 7-(3) implies that $*\mathscr{C} \cap *\mathscr{M} = \emptyset$. Since \mathscr{M} is maximal, therefore $*\mathscr{C} \cap \mathscr{M} = \emptyset$. It is obvious that the pairwise disjoint sets G, \mathscr{M} and $*\mathscr{M}$ form a partition of N. Therefore $*\mathbf{C}_i = *\mathscr{C} \subseteq G$ and so $G \in \mathscr{T}$. Thus G and $(\mathscr{M} \cup *\mathscr{M})$ is an open partition of N and so \mathscr{T} is disconnected.

An immediate consequence of Lemmas 6-(3) and 8 is:

LEMMA 9. If \mathcal{T} is a connected multi-cell T_4 topology on N, then

- (1) there exists one, and only one, maximal cell of \mathcal{T} ,
- (2) this uniquely defined cell \mathcal{M} is a single chain cell, and
- $(3) * \mathscr{M} = N \mathscr{M}.$

The demonstrations used in Lemmas 6, 7 and 8 indicate these results to be somewhat "negative" in the sense that they investigate conditions under which the T_4 property is not violated. Let a *trivially* T_4 space be one in which $A \cap B = \emptyset$ and both A, B closed imply that one of A, B is the void set. Trivially T_4 spaces are clearly connected and T_4 . Conversely, if a connected multi-cell space does not violate T_4 , then it is trivially T_4 . This is an immediate consequence of Lemma 9 and the next result.

LEMMA 10. If \mathscr{T} is a T₀ topology possessing a single maximal point, then \mathscr{T} is connected and is trivially T₄.

Proof. If α is the only maximal point of \mathscr{T} , then $\alpha^* = N \cdot \mathscr{T}$ is therefore connected. Also, any non-void closed set contains α . Thus T₄ is trivially satisfied as it is impossible to obtain a pair of disjoint closed subsets both of which are non-void.

However, there exist "non-trivial" connected $T_0 + T_5$ spaces in the sense that they contain pairs of non-void separated sets.

LEMMA 11. (1) Let \mathscr{T} be a single cell topology on the *n* point set N.

- (a) If this cell is a single chain cell, then \mathcal{T} is connected and is trivially T_4 .
- (b) If this cell is a multi-chain cell, then \mathcal{T} is disconnected T_4 .
- (2) Every single cell topology has the T_5 property.

Proof. (1a) In this case \mathscr{T} is of the form

$$\mathscr{T} = \{\emptyset, \{\alpha_1\}, \ldots, \{\alpha_1, \ldots, \alpha_i\}, \ldots, N\}$$

so that $\alpha_n^* = N$. \mathscr{T} is clearly connected.

(1b) In this case let $\mathscr{C} = \{\mathbf{C}_1, \ldots, \mathbf{C}_j, \ldots, \mathbf{C}_p\}$ be the only cell of \mathscr{T} . Then $\mathscr{C} = \mathbf{C}_i = \emptyset$ and so the union of an arbitrary collection of chains is an open set. The required result follows from the observation that if A and B are disjoint closed sets, then by Lemma 3, $A \subseteq \bigcup \{\mathbf{C}_i | i \in I\}$ and $B \subseteq \bigcup \{\mathbf{C}_j | j \in J\}$ where I and J are disjoint subsets of $\{1, \ldots, p\}$.

(2) This result follows immediately from (1) and the fact [2, p. 92] that the T_5 property is hereditary and moreover, a space is T_5 if and only if it is hereditarily T_4 .

LEMMA 12. Let \mathcal{T} be a connected multi-cell T_4 topology on N and let \mathcal{M} be the uniquely defined single chain and maximal cell of \mathcal{T} . Then the subspace \mathcal{U} induced on the open set $N' = N - \mathcal{M}$ by \mathcal{T} is either non- T_4 or disconnected T_4 .

Proof. Let $\mathcal{M} = \{\mathbf{M}\}$. By the maximality of \mathcal{M} , it follows that if $\alpha \in N'$ then $\alpha^*(\mathcal{T}) \cap \mathcal{M} = \emptyset$, so that $N' \in \mathcal{T}$ and $\alpha^*(\mathcal{T}) = \alpha^*(\mathcal{U})$. Therefore, apart from \mathcal{M} and \mathbf{M} , the collection of chains and cells of \mathcal{T} and \mathcal{U} are identical. Now suppose that \mathcal{U} is a connected T_4 space. Then by Lemmas 9 and 11-(1), there exists a chain \mathbf{S} such that $*\mathbf{S} = N' - \mathbf{S}$. Let $\mathbf{S} = [\alpha_1, \ldots, \alpha_p]$ and $\mathbf{M} = [\beta_1, \ldots, \beta_q]$. Then $\alpha_p^* = *\mathbf{S} \cup \mathbf{S} = N'$ and so $\beta_1^* - \beta_1 = *\mathbf{M} = N' = \alpha_p^*$. Condition (2) in the definition of a chain now asserts that there exists a $\gamma \neq \beta_1$ such that $\gamma^* - \gamma = *\mathbf{M}$. At the same time, the fact that \mathcal{M} is a single chain cell implies that there does not exist any γ with these properties. This is a contradiction, and so \mathcal{U} is either disconnected T_4 or non- T_4 .

Let $[\alpha_1, \ldots, \alpha_m]$ be a sequence of m, m < n, distinct elements of N and let \mathscr{U} be a topology on $P = N - \{\alpha_1, \ldots, \alpha_m\}$. Then $\mathscr{U} + [\alpha_1, \ldots, \alpha_m]$ will denote that topology \mathscr{T} on N defined by the statement: O is an open set of \mathscr{T} if and only if either $O \in \mathscr{U}$ or $O = P \cup \{\alpha_1, \ldots, \alpha_i\}$ for $1 \leq i \leq m$. The results of the previous Lemmas are now strengthened and summarised into Theorem 1. No further proofs are needed except the observation that in Theorem 1-(2) use is made of the hereditary T_4 property.

THEOREM 1. (1) A multi-cell topology \mathcal{T} on N is a connected T_4 space if and only if there exists a sequence $[\alpha_1, \ldots, \alpha_m]$, m < n, of m distinct elements of N, and a topology \mathcal{U} on $N - \{\alpha_1, \ldots, \alpha_m\}$ such that \mathcal{U} is either non- T_4 or disconnected T_4 and $\mathcal{T} = \mathcal{U} + [\alpha_1, \ldots, \alpha_m]$. A connected T_4 space is always trivially T_4 .

SHAWPAWN KUMAR DAS

(2) If a T_5 space has more than one cell, then the first cell (that is, the cell having \emptyset as the supporting open set) is a multiple chain cell. All other cells are single chain cells. Further, a multi-cell topology \mathscr{T} on N is a connected T_5 space if and only if there exists a sequence $[\alpha_1, \ldots, \alpha_m]$, m < n, and a disconnected T_5 space \mathscr{U} on $N - {\alpha_1, \ldots, \alpha_m}$ such that $\mathscr{T} = \mathscr{U} + [\alpha_1, \ldots, \alpha_m]$.

(3) Let \mathcal{T}_1 and \mathcal{T}_2 be topologies on N such that $\mathcal{T}_1 = \mathcal{U}_1 + [\alpha_1, \ldots, \alpha_p]$ and $\mathcal{T}_2 = \mathcal{U}_2 + [\beta_1, \ldots, \beta_q]$ where \mathcal{U}_1 and \mathcal{U}_2 are either non- T_4 or disconnected T_4 spaces on $N - \{\alpha_1, \ldots, \alpha_p\}$ and $N - \{\beta_1, \ldots, \beta_q\}$ respectively. Then

(a) $\mathcal{T}_1 = \mathcal{T}_2$ if and only if $p = q, \alpha_i = \beta_i$ for $i \leq p$ and $\mathcal{U}_1 = \mathcal{U}_2$.

(b) \mathcal{T}_1 and \mathcal{T}_2 are homeomorphic if and only if p = q and \mathcal{U}_1 and \mathcal{U}_2 are homeomorphic.

Theorem 1-(3) states that the space \mathscr{U} and the sequence $[\alpha_1, \ldots, \alpha_m]$ in Theorem 1-(1) and (2) are uniquely determined. In fact $[\alpha_1, \ldots, \alpha_m]$ appears as a chain of \mathscr{T} with $N - \{\alpha_1, \ldots, \alpha_m\}$ as its supporting open set. This chain will be referred to as the *covering chain* of the connected T_4 space \mathscr{T} and \mathscr{U} as the *base topology* of \mathscr{T} .

Let $T_{0+4}^c(n)$ = number of distinct connected $T_0 + T_4$ spaces, $T_{0+5}^c(n)$ = number of distinct connected $T_0 + T_5$ spaces, $H_{0+4}^c(n)$ = number of homeomorphism classes of connected $T_0 + T_4$ spaces and $H_{0+5}^c(n)$ = number of homeomorphism classes of connected $T_0 + T_5$ spaces. The corresponding quantities for the disconnected case are denoted by $T_{0+4}^d(n)$, $T_{0+5}^d(n)$, $H_{0+4}^d(n)$ and $H_{0+5}^d(n)$. $T_0(n)$ and $H_0(n)$ will represent, respectively, the number of distinct T_0 spaces and the number of homeomorphism classes of T_0 spaces. The argument n in all these quantities denotes the cardinality of the set on which the topologies are defined.

THEOREM 2. (1)

(a)
$$T_{0+4}^c(1) = T_{0+5}^c(1) = H_{0+4}^c(1) = H_{0+5}^c(1) = 1.$$

(b) $T_{0+4}^c(2) = T_{0+5}^c(2) = 2.$
(c) $H_{0+4}^c(2) = H_{0+5}^c(2) = 1.$

(2)

(a)
$$T_{0+4}^d(1) = T_{0+5}^d(1) = H_{0+4}^d(1) = H_{0+5}^d(1) = 0.$$

(b) $T_{0+4}^d(2) = T_{0+5}^d(2) = H_{0+4}^d(2) = H_{0+5}^d(2) = 1.$

For (3) to (10), assume $n \ge 3$.

(3)
$$T_{0+4}^{c}(n) = n! + \sum_{m=1}^{n-2} m! \binom{n}{m} \{T_{0}(n-m) - T_{0+4}^{c}(n-m)\}.$$

(4) $T_{0+5}^{c}(n) = n! + \sum_{m=1}^{n-2} \{T_{0+5}^{d}(n-m)\binom{n}{m}m!\}.$
(5) $H_{0+4}^{c}(n) = 1 + \sum_{m=1}^{n-2} \{H_{0}(n-m) - H_{0+4}^{c}(n-m)\}.$

(6)
$$H_{0+5}^{c}(n) = 1 + \sum_{m=1}^{n-2} H_{0+5}^{d}(n-m).$$

(7) $T_{0+4}^{c}(n+1) = (n+1)T_{0}(n).$
(8) $H_{0+4}^{c}(n+1) = H_{0}(n).$
(9) $T_{0+m}^{d}(n) = \sum \frac{n!}{(n_{1}!)^{r_{1}}r_{1}!\cdots(n_{u}!)^{r_{u}}r_{u}!} \prod_{i=1}^{u} \{T_{0+m}^{c}(n_{i})\}^{r_{i}}, m = 4, 5.$
(10) $H_{0+m}^{d}(n) = \sum \prod_{i=1}^{u} \binom{H_{0+m}^{c}(n_{i}) + r_{i} - 1}{r_{i}}, m = 4, 5.$
here in (9) and (10) the \sum extends over all possible partitions $\sum_{i=1}^{u} r_{i} r_{i}$.

where in (9) and (10), the \sum extends over all possible partitions $\sum_{i=1}^{u} r_i n_i$ of n with $0 < n_1 \ldots < n_u$ and $r_i \ge 1$.

Proof. (3) is an immediate consequence of Theorem 1-(1) and -(3) and the fact that it is possible to select exactly $\binom{n}{m}m!$ distinct *m*-term sequences from a set of *n* elements. Similarly (4) follows from Theorem 1-(2). The *n*! term in (3) and (4) is present to take into account the *n*! distinct single chain (and therefore single cell) *n* point topologies that are all, by Lemma 10, both T₄ and T₅. The fact that these single chain spaces are all homeomorphic explains the '1' term in (5) and (6). Let $\psi(k) = T_0(k) - T_{0+4}^c(k)$. Then from (3) it follows that:

$$T_{0+4}^{c}(n+1) = (n+1) \left[T_{0}(n) - T_{0+4}^{c}(n) + \left\{ n! + \sum_{m=2}^{n-1} \psi(n+1-m) \begin{pmatrix} n \\ m-1 \end{pmatrix} (m-1)! \right\} \right]$$
$$= (n+1) \left[T_{0}(n) - T_{0+4}^{c}(n) + \left\{ n! + \sum_{j=1}^{n-2} \psi(n-j) \begin{pmatrix} n \\ j \end{pmatrix} j! \right\} \right],$$

from which (7) is obvious. Similarly (8) is a consequence of (5). The rest of Theorem 2 is elementary.

Using these recursion relations it is easily verified that $T_{0+4}(4) = T_{0+4}^{e}(4) + T_{0+4}^{d}(4) = 76 + 61 = 137$, and $T_{0+5}(4) = T_{0+5}^{e}(4) + T_{0+5}^{d}(4) = 64 + 61 = 125$, so that 12 distinct, non- T_5 and $T_0 + T_4$ topologies can be defined on a four point set. They are all connected and trivially T_4 . There do not exist spaces that are $T_0 + T_4$ but not $T_0 + T_5$ on sets with fewer than four points. It should be observed that the expressions (3) and (7) for T_{0+4}^{e} are not "pure" recursion relations, in the sense that they involve $T_0(n)$. However, the expressions for T_5 spaces do not suffer from any such difficulties. The reason for this is the fact that the T_5 property is hereditary.

2. For any topology \mathcal{T} on an *n* point set *N*, let \mathcal{T}_v denote the (n-1) point subspace induced by \mathcal{T} on the point set N - v. Then the reconstruction conjecture for finite topologies can be stated precisely as follows:

SHAWPAWN KUMAR DAS

Reconstruction conjecture: Let \mathscr{T} be a topology on N. Suppose that each $\mathscr{T}_v, v \in N$, is known to within homeomorphism. Then \mathscr{T} is itself determined to within homeomorphism by the collection of the subspaces \mathscr{T}_v .

The reconstruction conjecture breaks down for certain three point topologies. For example, let

$$\mathscr{S} = \{\emptyset, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}\}$$

and

 $\mathscr{T} = \{\emptyset, \{a\}, \{a, b\}, \{a, c\}, \{a, b, c\}\}.$

Then \mathscr{S} and \mathscr{T} are not homeomorphic. However, both possess the same collection of two point subspaces: $\{\emptyset, \{x\}, \{y\}, \{x, y\}\}, \{\emptyset, \{x\}, \{x, y\}\}$ and $\{\emptyset, \{x\}, \{x, y\}\}$. In the rest of this paper, all topologies will therefore be considered to have been defined on sets with at least four points.

THEOREM 3. Let \mathcal{T} be a topology on N. Suppose that each subspace $T_v, v \in N$, is known to within homeomorphism. Then these subspaces determine whether or not \mathcal{T} is simultaneously connected, T_0 and T_5 . In the event that it is connected $T_0 + T_5, \mathcal{T}$ is itself determined to within homeomorphism by the \mathcal{T}_v .

Proof. An Algorithm to reconstruct \mathscr{T} is outlined below. Lemmas 13 to 16, which follow later on, ensure a correct output. The word "collection" stands for "collection of subspaces \mathscr{T}_{v} ", $v \in N$. The collection is said to satisfy condition

(+1) if each of at least n-1 of the subspaces \mathcal{T}_v have only one maximal point;

(+2) if each of the *n* subspaces \mathscr{T}_{v} are single chain spaces;

(+3) if only one of the subspaces \mathcal{T}_{v} is disconnected.

START 1. Test whether each \mathcal{T}_v , $v \in N$, is T₀. If not, then go to 9. If yes, then \mathcal{T} is T₀. Now go to 2.

2. Test whether the collection satisfies (+1). If not, then go to 9. If yes, then \mathscr{T} is connected and T₄. Now go to 3.

3. Test whether each \mathscr{T}_{v} , $v \in N$, is T₄. If not, then go to 9. If yes, then \mathscr{T} is connected T₀ + T₅. Now go to 4.

4. Test whether the collection satisfies (+2). If yes, then go to 8. If not, then go to 5.

5. Test whether the collection satisfies (+3). If yes, then go to 7. If not, then go to 6.

END 6. Choose a \mathcal{T}_v such that the length k of its covering chain is not greater than the length of the covering chain of any other $\mathcal{T}_w, w \neq v$. Let m = k + 1. Now arbitrarily label, from the collection $N - \{\alpha_1, \ldots, \alpha_m\}$, the points of the base topology of \mathcal{T}_v and call this labelled space \mathcal{U} . Then \mathcal{T} is homeomorphic to $\mathcal{U} + [\alpha_1, \ldots, \alpha_m]$.

END 7. Arbitrarily label the points of the only disconnected n-1 point subspace from the collection $\{\alpha_2, \ldots, \alpha_m\}$ and call this labelled space \mathscr{U} . Then \mathscr{T} is homeomorphic to $\mathscr{U} + [\alpha_1]$.

END 8. \mathscr{T} is homeomorphic to $\{\emptyset, \{\alpha_1\}, \ldots, \{\alpha_1, \ldots, \alpha_i\}, \ldots, N\}$. END 9. \mathscr{T} is not simultaneously connected, T_0 and T_5 .

The supporting Lemmas now follow.

LEMMA 13. A T₀ topology \mathcal{T} on N has only one maximal point if and only if condition (+1) is satisfied.

Proof. If α is the only maximal point of \mathscr{T} , then $\alpha^*(\mathscr{T}) = N$ and so $\alpha^*(\mathscr{T}_v) = N - v$ for all $v \neq \alpha$. Hence α is the only maximal point for each $\mathscr{T}_v, v \neq \alpha$. The condition is therefore necessary. Now suppose that \mathscr{T} has two maximal points. Since $n \geq 4$, therefore there exist at least two non-maximal points γ, δ . Then both \mathscr{T}_{γ} and \mathscr{T}_{δ} have two maximal points. Another possibility is that \mathscr{T} has more than 2 maximal points. If α, β are maximal, then both \mathscr{T}_{α} and \mathscr{T}_{β} have more than one maximal point. This establishes the sufficiency.

LEMMA 14. A T₀ topology \mathscr{T} on N is a single chain space if and only if condition (+2) is satisfied.

The proof is elementary and is omitted.

LEMMA 15. Let \mathscr{T} be a connected $T_0 + T_5$ topology. Then the covering chain of \mathscr{T} has length = 1 if and only if condition (+3) is satisfied.

Proof. If $\mathscr{T} = \mathscr{U} + [\alpha]$, then $\mathscr{T}_{\alpha} = \mathscr{U}$ which is disconnected by Theorem 1. If $\beta \neq \alpha$, then $\alpha^*(\mathscr{T}_{\beta}) = N - \beta$ and so \mathscr{T}_{β} is connected. The condition is therefore necessary. Now suppose that $\mathscr{T} = \mathscr{U} + [\alpha_1, \ldots, \alpha_m]$ where $m \geq 2$. Then each \mathscr{T}_v is connected. This is because α_m is the only maximal point of \mathscr{T}_v if $v \neq \alpha_m$ and \mathscr{T}_{α_m} has α_{m-1} as the only maximal point. The condition is therefore sufficient.

Comment. The proof clearly demonstrates that there can exist at most one disconnected n - 1 point subspace of a *n* point connected $T_0 + T_5$ topology.

LEMMA 16. Let \mathscr{T} be a connected $T_0 + T_5$ topology, other than a single chain space. Suppose that the covering chain of \mathscr{T} has length $m, m \geq 2$. Then

(1) There exists a subspace \mathcal{T}_v whose covering chain has length m-1.

(2) The length of the covering chain of any subspace \mathcal{T}_v is at least m-1.

(3) If the subspace \mathcal{T}_v has a covering chain with length m-1, then the base topologies of \mathcal{T} and \mathcal{T}_v are identical.

Proof. Let $\mathscr{T} = \mathscr{U} + [\alpha_1, \ldots, \alpha_m]$. \mathscr{U} has at least two maximal points. Therefore if $v \in \{\alpha_1, \ldots, \alpha_m\}$, then \mathscr{T}_v has a covering chain of length m-1and the base topologies of \mathscr{T} and \mathscr{T}_v are identical (to \mathscr{U}). If $v \in N' =$ $N - \{\alpha_1, \ldots, \alpha_m\}$, then $\alpha_1^*(\mathscr{T}_v) = N' - v$ so that $[\alpha_1, \ldots, \alpha_m]$ is either the covering chain or a part of the covering chain of \mathscr{T}_v . Therefore in this case the length of the covering chain of \mathscr{T}_v is at least m. This proves (1) and (2). (3) follows as it is now clear that \mathscr{T}_v has a covering chain of length m-1if and only if $v \in \{\alpha_1, \ldots, \alpha_m\}$.

SHAWPAWN KUMAR DAS

Comment. If $\mathscr{T} = \{\emptyset, \{\alpha_1\}, \{\alpha_2\}, \{\alpha_1, \alpha_2\}\} + [\alpha_3, \ldots, \alpha_m]$, then it is clear that \mathscr{T}_{α_1} and \mathscr{T}_{α_2} are both single chains of length n - 1. Therefore, in instruction (6) of the reconstruction Algorithm, if a \mathscr{T}_w consists only of a single chain then this chain should be considered as the covering chain of \mathscr{T}_w .

Further discussion on the reconstruction problem for finite topologies will appear elsewhere.

References

Shawpawn Kumar Das, A partition of finite T₀ topologies, Can. J. Math. 25 (1973), 1137-1147.
 S. A. Gaal, Point set topology (Academic Press, New York, 1964).

10 Raja Dinendra Street, Calcutta, 700009, India