ON THE STRUCTURE OF FINITE $\mathrm{T}_{0}+\mathrm{T}_{5}$ SPACES

SHAWPAWN KUMAR DAS

The object of this paper is to study some structural aspects of finite $T_{0}+T_{4}$ and $T_{0}+T_{5}$ spaces in order to establish certain recursion relations that can be used to obtain the number of (labelled as well as unlabelled) $\mathrm{T}_{0}+\mathrm{T}_{5}$ topologies on a finite set. Here, as in [2], a topology \mathscr{T} is a $\mathrm{T}_{4}\left(\mathrm{~T}_{5}\right)$ space provided for any pair of disjoint closed sets A and B (separated sets A and $B \equiv A \cap$ closure $B=B \cap$ closure $A=\emptyset$) there exist disjoint open sets O_{A} and O_{B} of \mathscr{T} such that $A \subseteq O_{A}$ and $B \subseteq O_{B}$. An almost immediate consequence of these investigations is that the inherent simplicity of the connected $\mathrm{T}_{0}+\mathrm{T}_{5}$ topologies ensures that they are reconstructable.

This article assumes a complete familiarity with the material developed in [1]. The spaces in this paper are always T_{0} and are defined on a finite point set N. Let \mathscr{T} be a topology on N and A a subset of N. Then $A^{*}(\mathscr{T})$, or more simply A^{*} when there is no risk of confusion, will denote the minimal open set of \mathscr{T} that contains A. That is

$$
A^{*}(\mathscr{T})=\cap\{O \mid A \subseteq O \in \mathscr{T}\} .
$$

A consequence of the T_{0} property is that $\alpha \neq \beta$ and $\alpha \in \beta^{*}(\mathscr{T})$ implies $\beta \notin \alpha^{*}(\mathscr{T})$. A point α is a maximal point of \mathscr{T} provided $\alpha \notin \beta^{*}(\mathscr{T})$ for all $\beta \neq \alpha$. For any set $A,|A|$ will denote the cardinality of A. The single element set $\{\alpha\}, \alpha \in N$, will be written simply as α. The union of α with a set A is written $\alpha+A$, and the relative difference of two sets A and B as $A-B$.

Let \mathscr{T} be a topology on N. Let $\mathbf{C}=\left[\alpha_{1}, \ldots, \alpha_{m}\right]$ be a sequence of m distinct elements, $m \geqslant 1$, of $N . \mathbf{C}$ is called a chain of \mathscr{T} of length m provided:
(1) if $\alpha_{1}{ }^{*}-\alpha_{1}=\beta^{*}$ for some $\beta \in N$, then there exists a $\gamma \in N$ such that $\gamma \neq \alpha_{1}$ and $\gamma^{*}-\gamma=\beta^{*}$;
(2) if $\beta^{*}-\beta=\alpha_{m}{ }^{*}$ for some $\beta \in N$, then there exists a $\gamma \in N$ such that $\gamma \neq \beta$ and $\gamma^{*}-\gamma=\alpha_{m}{ }^{*}$, and if $m>1$ and $1 \leqq i<m$, then
(3) $\alpha_{i+1}{ }^{*}-\alpha_{i+1}=\alpha_{i}{ }^{*}$;
(4) $\beta^{*}-\beta=\alpha_{i}{ }^{*}$ for some $\beta \in N$ implies that $\beta=\alpha_{i+1}$.

The length of the chain \mathbf{C} will be denoted by $L(\mathbf{C})$. The supporting open set of \mathbf{C}, written as ${ }^{*} \mathbf{C}(\mathscr{T})$, or more simply as ${ }^{*} \mathbf{C}$, when there is no risk of confusion, is defined to be the open set $\alpha_{1}{ }^{*}-\alpha_{1}$ of \mathscr{T}. The notation $\{\mathbf{C}: i\}$, for $1 \leqq i \leqq m$, will be used to indicate the subset consisting of the first i terms of the sequence \mathbf{C}, and $\{\mathbf{C}: 0\}=\emptyset$. \mathbf{C} will be used to denote both the sequence

Received April 20, 1972 and in revised form, August 15, 1973.
$\left[\alpha_{1}, \ldots, \alpha_{m}\right]$ and the unordered set $\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. The meaning of \mathbf{C} will always be clear from the context in which it will be used.

It is shown in [1] that the collection of chains of a topology partitions N. Moreover, under a homeomorphism between two topologies, the elements of a chain are always mapped, in the prescribed order, onto the elements of a chain of equal length.

An equivalence relation $\approx(\mathscr{T})$ may be defined on the set of chains of a topology \mathscr{T} by requiring that if \mathbf{C}, \mathbf{D} are chains of \mathscr{T}, then $\mathbf{C} \approx(\mathscr{T}) \mathbf{D}$ if and only if * $\mathbf{C}={ }^{*} \mathbf{D}$. A collection \mathscr{C} of r distinct chains of a topology \mathscr{T} is a r chain cell, or more simply a cell, of \mathscr{T} if and only if \mathscr{C} is an equivalence class of the equivalence relation $\approx(\mathscr{T})$. The supporting open set of \mathscr{C}, denoted by $* \mathscr{C}(\mathscr{T})$, or more simply by $* \mathscr{C}$ when there is no risk of confusion, is the (uniquely defined) supporting open set of any chain of \mathscr{C}. If $\mathscr{C}=\left\{\mathbf{C}_{1}, \ldots, \mathbf{C}_{r}\right\}$ is a cell, then \mathscr{C} will denote both the collection of its constituent chains as well as the subset $\mathbf{C}_{1} \cup \ldots \cup \mathbf{C}_{r}$. The meaning of \mathscr{C} will be clear from the context in which it will be used. Like chains, the cells of a topology also behave like complete units under homeomorphisms.

1.

Lemma 1. Suppose that O is an open set of a topology \mathscr{T} on N. Let $\left\{\mathbf{C}_{1}, \ldots, \mathbf{C}_{i}\right.$, $\left.\ldots, \mathbf{C}_{p}\right\}$ be the collection of chains of \mathscr{T} that have non-void intersections with O. If $\left|\mathbf{C}_{i} \cap O\right| \leqq t_{i} \leqq L\left(\mathbf{C}_{i}\right)$ for $i=1, \ldots$, p then the set

$$
\bigcup_{i=1}^{p}\left\{\mathbf{C}_{i}: t_{i}\right\}
$$

is an open set of \mathscr{T}.
Proof. The case $t_{i}=\left|\mathbf{C}_{i} \cap O\right|$ for $i=1, \ldots, p$ is Lemma 7-(2) of [1]. Assume therefore that $\left|\mathbf{C}_{i} \cap O\right|<t_{i}$ for at least one i, so that $O \subset \cup\left\{\mathbf{C}_{i}: t_{i}\right\}$. If $\alpha \in \cup\left\{\mathbf{C}_{i}: t_{i}\right\}$ then $\alpha \in \mathbf{C}_{j}$ for some $\mathbf{C}_{j} \in\left\{\mathbf{C}_{1}, \ldots, \mathbf{C}_{p}\right\}$. Now $\alpha^{*}=$ ${ }^{*} \mathbf{C}_{j} \cup\left\{\mathbf{C}_{j}: k\right\}$ for some $k \leqq t_{j}$. Since $O \cap \mathbf{C}_{j} \neq \emptyset$, therefore

$$
{ }^{*} \mathbf{C}_{j} \subset O \subset \cup\left\{\mathbf{G}_{i}: t_{i}\right\}
$$

and since $\left\{\mathbf{C}_{j}: k\right\} \subseteq\left\{\mathbf{C}_{j}: t_{j}\right\}$, therefore $\alpha^{*} \subseteq \cup\left\{\mathbf{C}_{i}: t_{i}\right\}$ and so $\cup\left\{\mathbf{C}_{i}: t_{i}\right\}$ is open.

Lemma 2. Let \mathscr{C} be a cell of a topology \mathscr{T} on N, such that $* \mathscr{C} \neq \emptyset$. If A_{1} and A_{2} are two subsets of N such that $A_{1} \cap \mathscr{C} \neq \emptyset$ and $A_{2} \cap \mathscr{C} \neq \emptyset$, then there do not exist disjoint open sets O_{1}, O_{2} of \mathscr{T} such that $A_{1} \subseteq O_{1}$ and $A_{2} \subseteq O_{2}$.

Proof. The result follows immediately from Lemma 9-3(c) of [1].
Lemma 3. Let \mathbf{C} be a chain of a topology \mathscr{T} on N. If A_{1} and A_{2} are two open (closed) sets of \mathscr{T} such that $A_{1} \cap \mathbf{C} \neq \emptyset$ and $A_{2} \cap \mathbf{C} \neq \emptyset$, then $A_{1} \cap A_{2} \neq \emptyset$.

Proof. Let $\mathbf{C}=\left[\alpha_{1}, \ldots, \alpha_{m}\right]$. If A_{1} and A_{2} are open, then $\alpha_{1}{ }^{*} \subseteq A_{1} \cap A_{2}$. If A_{1} and A_{2} are closed, then $A_{1}=N-O_{1}$ and $A_{2}=N-O_{2}$ for some O_{1}, $O_{2} \in \mathscr{T}$. The assumption $A_{1} \cap \mathbf{C} \neq \emptyset \neq A_{2} \cap \mathbf{C}$ implies that there exist i,
$j \leqq m$ such that $\alpha_{i} \notin O_{1}$ and $\alpha_{j} \notin O_{2}$. Since O_{1} and O_{2} are open, this in turn implies that $\alpha_{m} \notin\left(O_{1} \cup O_{2}\right)$ so that $\alpha_{m} \in\left(A_{1} \cap A_{2}\right)$.

Lemma 4. For any topology \mathscr{T} on N, there exists a cell \mathscr{F}, called the first cell of \mathscr{T}, with the property that $* \mathscr{F}=\emptyset$. This first cell is uniquely defined in the sense that if \mathscr{C} is a cell of \mathscr{T} and $* \mathscr{C}=\emptyset$, then $\mathscr{C}=\mathscr{F}$.

Proof. The result is Lemma 10 of [1].
It is now necessary to introduce a partial order on the collection of cells of a topology. If \mathscr{C} and \mathscr{D} are two cells of a multi-cell topology \mathscr{T} on N, let $\mathscr{C} \triangleleft \mathscr{D}$ indicate that $\mathscr{C} \neq \mathscr{D}$ and there exists an $\alpha \in \mathscr{D}$ such that $\alpha^{*} \cap \mathscr{C} \neq \emptyset$. Then it is easily shown that $\mathscr{C} \triangleleft \mathscr{D}$ and $\mathscr{D} \triangleleft \mathscr{C}$ cannot be simultaneously true. Also, if \mathscr{T} is a multi-cell topology and (1) if \mathscr{F} is the first cell of \mathscr{T}, then $\mathscr{F} \triangleleft \mathscr{C}$ for any cell $\mathscr{C} \neq \mathscr{F}$, and (2) if $\mathscr{C}, \mathscr{D}, \mathscr{E}$ are distinct cells of \mathscr{T}, then $\mathscr{C} \triangleleft \mathscr{D}$ and $\mathscr{D} \triangleleft \mathscr{E}$ implies $\mathscr{C} \triangleleft \mathscr{E}$ so that \triangleleft defines a partial ordering on the collection of cells of \mathscr{T}.

Lemma 5. Let \mathscr{T} be a multi-cell topology. Then there exists at least one cell \mathscr{D} of \mathscr{T} such that the relation $\mathscr{D} \triangleleft \mathscr{C}$ does not hold for nay cell \mathscr{C}.

Comment. Such a cell will be termed a maximal cell of \mathscr{T}. If \mathscr{T} is a single cell topology, then this cell is both the maximal and the first cell of \mathscr{T}.

Proof. Let \mathscr{C}_{1} be an arbitrary cell and suppose \mathscr{C}_{1} is not maximal. A sequence $\mathscr{C}_{1} \triangleleft \ldots \triangleleft \mathscr{C}_{i} \triangleleft \mathscr{C}_{i+1} \ldots$ may be built up by searching for a cell \mathscr{C}_{i+1}, such that $\mathscr{C}_{i} \triangleleft \mathscr{C}_{i+1}$, if \mathscr{C}_{i} is not maximal. Clearly, since all the cells of this sequence are distinct and any two cells are disjoint subsets of N, therefore any such sequence of cells must terminate at a term \mathscr{C}_{j} such that \mathscr{C}_{j} is a maximal cell. For otherwise, the finiteness of N is contradicted.

In general, a topology may have more than one maximal cell. However, if a multi-cell topology satisfies the T_{4} or the T_{5} separation property and is connected, then it has precisely one maximal cell. In other words, if \mathscr{D} is a maximal cell of a connected T_{4} or a T_{5} topology and the cell $\mathscr{C} \neq \mathscr{D}$, then $\mathscr{C} \triangleleft \mathscr{D}$. This is demonstrated by the following sequence of Lemmas.

Lemma 6. Let \mathscr{M} be a maximal cell of a topology \mathscr{T} on N.
(1) The set $S_{1}=\bigcup\left\{\mathbf{C} \mid \mathbf{C} \cap^{*} \mathscr{M}=\emptyset\right\}$ is a closed set of \mathscr{T}. If \mathscr{T} is a multicell topology, then the set $S_{2}=\bigcup\left\{\mathbf{C} \mid \mathbf{C} \notin \mathscr{M}\right.$ and $\left.\mathbf{C} \cap{ }^{*} \mathscr{M}=\emptyset\right\}$ is also a closed set of \mathscr{T}.
(2) \mathscr{M} is a closed set of \mathscr{T}. If \mathscr{T} is a multi-cell topology then the set S_{2}, defined in (1) above, and \mathscr{M} are disjoint closed sets.
(3) If \mathscr{T} is a multi-cell topology and if \mathscr{M} is a multi-chain cell, then \mathscr{T} does not satisfy the T_{4} axiom.

Proof. Let $\left\{\mathbf{C}_{1}, \ldots, C_{i}, \ldots, \mathbf{C}_{p}\right\}$ be the collection of chains of \mathscr{T} having non-void intersections with ${ }^{*} \mathscr{M}$.
(1) Let $O_{1}=\cup_{i=1}^{p} \mathbf{C}_{i}$. By Lemma $1, O_{1}$ is an open set of \mathscr{T}. Clearly $S_{1}=$ $N-O_{1}$ and so S_{1} is a closed set of \mathscr{T}. Now let $O_{2}=O_{1} \cup \mathscr{M}$. Obviously,
$* \mathscr{M} \subseteq O_{1}$ so that $O_{2}=O_{1} \cup\left({ }^{*} \mathscr{M} \cup \mathscr{M}\right)$ and since ${ }^{*} \mathscr{M} \cup \mathscr{M} \in \mathscr{T}$, therefore $O_{2} \in \mathscr{T}$ and so $S_{2}=N-O_{2}$ is closed.
(2) If \mathscr{T} has only one cell, then $\mathscr{M}=N$. If \mathscr{T} is a multi-cell topology, let $O_{3}=\cup\{\mathscr{C} \mid \mathscr{C} \neq \mathscr{M}\}$. Since \mathscr{M} is maximal, therefore if $\mathscr{C} \neq \mathscr{M}$ then $* \mathscr{C} \cap \mathscr{M}=\emptyset$ which implies that ${ }^{*} \mathscr{C} \subset O_{3}$ and so $O_{3} \in \mathscr{T}$. Therefore $\mathscr{M}=$ $N-O_{3}$ is closed. Since $\mathscr{M} \subseteq O_{2}$, therefore \mathscr{M} and S_{2} are disjoint.
(3) Now suppose that \mathscr{T} is a multi-cell topology and that \mathbf{M}_{1} and \mathbf{M}_{2} are two chains of \mathscr{M}. Let $P_{i}=O_{3} \cup\left(\mathscr{M}-\mathbf{M}_{i}\right), i=1,2$. Since $\mathscr{M} \cap^{*} \mathscr{M}=\emptyset$, therefore ${ }^{*} \mathscr{M} \subseteq O_{3}$. If $\alpha \in\left(\mathscr{M}-\mathbf{M}_{i}\right)$, then $\alpha \in \mathbf{M}$ where \mathbf{M} is some chain of \mathscr{M} different from \mathbf{M}_{i}. Therefore $\alpha^{*} \subseteq{ }^{*} \mathbf{M} \cup \mathbf{M}={ }^{*} \mathscr{M} \cup \mathbf{M} \subseteq P_{i}$. Therefore P_{1} and P_{2} are open. Since $\mathbf{M}_{1}=N-P_{1}$ and $\mathbf{M}_{2}=N-P_{2}$, and since distinct chains are disjoint, therefore \mathbf{M}_{1} and \mathbf{M}_{2} are disjoint closed subsets. Since \mathscr{T} is a multi-cell topology and \mathscr{M} is maximal, therefore \mathscr{M} cannot be the first cell of \mathscr{T}. Hence ${ }^{*} \mathscr{M} \neq \emptyset$. If $Q_{1}, Q_{2} \in \mathscr{T}$ and $\mathbf{M}_{1} \subseteq Q_{1}$ and $\mathbf{M}_{2} \subseteq Q_{2}$, then ${ }^{*} \mathscr{M} \subseteq Q_{1} \cap Q_{2}$ so that \mathbf{M}_{1} and \mathbf{M}_{2} cannot be separated by disjoint open sets of \mathscr{T}.

Lemma 7. Let \mathscr{T} be a multi-cell T_{4} topology on N and \mathscr{M} a maximal cell of \mathscr{T}.
(1) If a chain of \mathscr{T} intersects * \mathscr{M}, then that chain is a subset of ${ }^{*} \mathscr{M}$.
(2) If \mathscr{C} is a multi-chain cell, other than the first cell, and if some chain of \mathscr{C} intersects ${ }^{*} \mathscr{M}$, then every chain of \mathscr{C} is a subset of ${ }^{*} \mathscr{M}$, that is $\mathscr{C} \subseteq \subseteq^{*} \mathscr{M}$.
(3) If $\mathscr{C} \neq \mathscr{M}$ is a cell such that $* \mathscr{C} \cap * \mathscr{M} \neq \emptyset$, then every chain of \mathscr{C} is a subset of ${ }^{*} \mathscr{M}$, that is $\mathscr{C} \subseteq{ }^{*} \mathscr{M}$.

Proof. Let $\left\{\mathbf{C}_{1}, \ldots, \mathbf{C}_{i}, \ldots, \mathbf{C}_{p}\right\}$ be the collection of chains of \mathscr{T} having non-void intersections with $* \mathscr{M}$.
(1) Let $\left|\mathbf{C}_{i} \cap * \mathscr{M}\right|=t_{i} \leqq L\left(\mathbf{C}_{i}\right)$. Suppose that the chain $\mathbf{C}_{i}=\left[\alpha_{1}, \ldots, \alpha_{q}\right]$ is not a subset of $* \mathscr{M}$, that is $1 \leqq t_{i}<q$. Since

$$
* \mathscr{M}=\bigcup_{i=1}^{p}\left\{\mathbf{C}_{i}: t_{i}\right\}
$$

therefore $\alpha_{q} \not{ }^{*} \mathscr{M}$. Further, since ${ }^{*} \mathscr{M} \cap \mathscr{M}=\emptyset$ and $\mathbf{C}_{i} \cap{ }^{*} \mathscr{M} \neq \emptyset$, therefore \mathbf{C}_{i} is not a chain of \mathscr{M} and so $\alpha_{q} \notin \mathscr{M}$. Therefore $\alpha_{q} \notin O=^{*} \mathscr{M} \cup \mathscr{M} \in \mathscr{T}$, and so $\alpha_{q} \in N-O$. Now let O_{1} and O_{2} be two open sets of \mathscr{T} such that $N-O \subseteq O_{1}$ and $\mathscr{M} \subseteq O_{2}$. Then ${ }^{*} \mathscr{M} \subseteq O_{2}$ which implies $\alpha_{1} \in O_{2}$, and $\mathbf{C}_{i} \subseteq \alpha_{q}{ }^{*} \subseteq O_{1}$ so that $\alpha_{1} \in O_{1} \cap O_{2}$. Thus the disjoint closed sets $N-O$ and \mathscr{M} cannot be separated by disjoint open sets and this contradicts the hypothesis that \mathscr{T} is T_{4}.
(2) Suppose that \mathbf{C} is a chain of \mathscr{C} and $\mathbf{C} \cap * \mathscr{M} \neq \emptyset$. Because of result (1) above, it will be sufficient to show that if \mathbf{D} is a chain of \mathscr{C}, then ${ }^{*} \mathscr{M} \cap \mathbf{D}=\emptyset$ implies that \mathscr{T} is not T_{4}. Let S be the union of all chains of \mathscr{T} that neither belong to the cell \mathscr{M} nor intersect * \mathscr{M}. Then the assumption ${ }^{*} \mathscr{M} \cap \mathbf{D}=\emptyset$ implies $\mathbf{D} \subseteq S$. Suppose that $S \subseteq O_{1}$ and $\mathscr{M} \subseteq O_{2}$, for some $O_{1}, O_{2} \in \mathscr{T}$. Then since ${ }^{*} \mathscr{M} \cap \mathbf{C} \neq \emptyset$, therefore ${ }^{*} \mathbf{D}={ }^{*} \mathbf{C}={ }^{*} \mathscr{C} \subseteq O_{1} \cap O_{2}$. Since \mathscr{C} is not the first cell, therefore $* \mathscr{C} \neq \emptyset$. Consequently S and \mathscr{M}, which are disjoint closed sets by Lemma $6-(2)$, cannot be separated by disjoint open sets of \mathscr{T}.
(3) By results (1) and (2) above, it follows that either $\mathbf{C} \cap{ }^{*} \mathscr{M}=\emptyset$ or $\mathbf{C} \subseteq{ }^{*} \mathscr{M}$ for every chain $\mathbf{C} \in \mathscr{C}$. Suppose that $\mathbf{C} \cap{ }^{*} \mathscr{M}=\emptyset$ for every chain $\mathbf{C} \in \mathscr{C}$. Then $\mathscr{C} \subseteq S$, where S is the closed set defined in (2) above. Now suppose that the disjoint closed sets S and \mathscr{M} are contained in the open sets O_{1} and O_{2} respectively. Then $* \mathscr{C} \cap * \mathscr{M} \subseteq O_{1} \cap O_{2}$ and, since, by hypothesis, $* \mathscr{C} \cap * \mathscr{M} \neq \emptyset$ therefore \mathscr{T} is not T_{4}.

Corollary. ${ }^{*} \mathscr{M}=\bigcup\left\{\mathbf{C} \mid \mathbf{C} \cap{ }^{*} \mathscr{M} \neq \emptyset\right\}$.
Lemma 8. Let \mathscr{T} be a multi-cell T_{4} topology on N and let \mathscr{M} be a maximal cell of \mathscr{T}. Then a necessary condition for \mathscr{T} to be connected is that $\mathbf{C} \subseteq{ }^{*} \mathscr{M}$ for every chain $\mathbf{C} \notin \mathscr{M}$.

Proof. Assume the contrary and let $\left\{\mathbf{C}_{1}, \ldots, \mathbf{C}_{i}, \ldots, \mathbf{C}_{p}\right\}$ be the non-void collection of chains of \mathscr{T} that do not belong to \mathscr{M} and are not subsets of ${ }^{*} \mathscr{M}$. By Lemma 7-(1), $\mathbf{C}_{i} \cap * \mathscr{M}=\emptyset$. Let $G=\mathbf{C}_{1} \cup \ldots \cup \mathbf{C}_{p}$. Clearly G and the open set ${ }^{*} \mathscr{M}=\bigcup\left\{\mathbf{D} \mid \mathbf{D} \cap{ }^{*} \mathscr{M} \neq \emptyset\right\}$ are disjoint sets. It will now be demonstrated that G is open. For this purpose it is sufficient to show that ${ }^{*} \mathbf{C}_{i} \subseteq G$ for all $i, 1 \leqq i \leqq p$. Let $\mathbf{C}_{i} \in \mathscr{C} \neq \mathscr{M}$. Since $\mathbf{C}_{i} \cap * \mathscr{M}=\emptyset$, therefore Lemma 7 -(3) implies that $* \mathscr{C} \cap * \mathscr{M}=\emptyset$. Since \mathscr{M} is maximal, therefore $* \mathscr{C} \cap \mathscr{M}=$ \emptyset. It is obvious that the pairwise disjoint sets G, \mathscr{M} and ${ }^{*} \mathscr{M}$ form a partition of N. Therefore ${ }^{*} \mathbf{C}_{i}=* \mathscr{C} \subseteq G$ and so $G \in \mathscr{T}$. Thus G and $\left(\mathscr{M} \cup \cup^{*} \mathscr{M}\right)$ is an open partition of N and so \mathscr{T} is disconnected.

An immediate consequence of Lemmas 6-(3) and 8 is:
Lemma 9. If \mathscr{T} is a connected multi-cell T_{4} topology on N, then
(1) there exists one, and only one, maximal cell of \mathscr{T},
(2) this uniquely defined cell \mathscr{M} is a single chain cell, and
(3) ${ }^{*} \mathscr{M}=N-\mathscr{M}$.

The demonstrations used in Lemmas 6, 7 and 8 indicate these results to be somewhat "negative" in the sense that they investigate conditions under which the T_{4} property is not violated. Let a trivially T_{4} space be one in which $A \cap B=\emptyset$ and both A, B closed imply that one of A, B is the void set. Trivially T_{4} spaces are clearly connected and T_{4}. Conversely, if a connected multi-cell space does not violate T_{4}, then it is trivially T_{4}. This is an immediate consequence of Lemma 9 and the next result.

Lemma 10. If \mathscr{T} is a T_{0} topology possessing a single maximal point, then \mathscr{T} is connected and is trivially T_{4}.

Proof. If α is the only maximal point of \mathscr{T}, then $\alpha^{*}=N . \mathscr{T}$ is therefore connected. Also, any non-void closed set contains α. Thus T_{4} is trivially satisfied as it is impossible to obtain a pair of disjoint closed subsets both of which are non-void.

However, there exist "non-trivial" connected $\mathrm{T}_{0}+\mathrm{T}_{5}$ spaces in the sense that they contain pairs of non-void separated sets.

Lemma 11. (1) Let \mathscr{T} be a single cell topology on the n point set N.
(a) If this cell is a single chain cell, then \mathscr{T} is connected and is trivially T_{4}.
(b) If this cell is a multi-chain cell, then \mathscr{T} is disconnected T_{4}.
(2) Every single cell topology has the T_{5} property.

Proof. (1a) In this case \mathscr{T} is of the form

$$
\mathscr{T}=\left\{\emptyset,\left\{\alpha_{1}\right\}, \ldots,\left\{\alpha_{1}, \ldots, \alpha_{i}\right\}, \ldots, N\right\}
$$

so that $\alpha_{n}{ }^{*}=N . \mathscr{T}$ is clearly connected.
(1b) In this case let $\mathscr{C}=\left\{\mathbf{C}_{1}, \ldots, \mathbf{C}_{i}, \ldots, \mathbf{C}_{p}\right\}$ be the only cell of \mathscr{T}. Then $* \mathscr{C}=* \mathbf{C}_{i}=\emptyset$ and so the union of an arbitrary collection of chains is an open set. The required result follows from the observation that if A and B are disjoint closed sets, then by Lemma $3, A \subseteq \cup\left\{\mathbf{C}_{i} \mid i \in I\right\}$ and $B \subseteq \cup\left\{\mathbf{C}_{j} \mid j \in J\right\}$ where I and J are disjoint subsets of $\{1, \ldots, p\}$.
(2) This result follows immediately from (1) and the fact [2, p. 92] that the T_{5} property is hereditary and moreover, a space is T_{5} if and only if it is hereditarily T_{4}.

Lemma 12. Let \mathscr{T} be a connected multi-cell T_{4} topology on N and let \mathscr{M} be the uniquely defined single chain and maximal cell of \mathscr{T}. Then the subspace \mathscr{U} induced on the open set $N^{\prime}=N-\mathscr{M}$ by \mathscr{T} is either non- T_{4} or disconnected T_{4}.

Proof. Let $\mathscr{M}=\{\mathbf{M}\}$. By the maximality of \mathscr{M}, it follows that if $\alpha \in N^{\prime}$ then $\alpha^{*}(\mathscr{T}) \cap \mathscr{M}=\emptyset$, so that $N^{\prime} \in \mathscr{T}$ and $\alpha^{*}(\mathscr{T})=\alpha^{*}(\mathscr{U})$. Therefore, apart from \mathscr{M} and \mathbf{M}, the collection of chains and cells of \mathscr{T} and \mathscr{U} are identical. Now suppose that \mathscr{U} is a connected T_{4} space. Then by Lemmas 9 and 11-(1), there exists a chain \mathbf{S} such that ${ }^{*} \mathbf{S}=N^{\prime}-\mathbf{S} . \operatorname{Let} \mathbf{S}=\left[\alpha_{1}, \ldots, \alpha_{p}\right]$ and $\mathbf{M}=\left[\beta_{1}, \ldots, \beta_{q}\right]$. Then $\alpha_{p}{ }^{*}={ }^{*} \mathbf{S} \cup \mathbf{S}=N^{\prime}$ and so $\beta_{1}{ }^{*}-\beta_{1}={ }^{*} \mathbf{M}=N^{\prime}=$ $\alpha_{p}{ }^{*}$. Condition (2) in the definition of a chain now asserts that there exists a $\gamma \neq \beta_{1}$ such that $\gamma^{*}-\gamma={ }^{*} \mathbf{M}$. At the same time, the fact that \mathscr{M} is a single chain cell implies that there does not exist any γ with these properties. This is a contradiction, and so \mathscr{U} is either disconnected T_{4} or non- T_{4}.

Let $\left[\alpha_{1}, \ldots, \alpha_{m}\right]$ be a sequence of $m, m<n$, distinct elements of N and let \mathscr{U} be a topology on $P=N-\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$. Then $\mathscr{U}+\left[\alpha_{1}, \ldots, \alpha_{m}\right]$ will denote that topology \mathscr{T} on N defined by the statement: O is an open set of \mathscr{T} if and only if either $O \in \mathscr{U}$ or $O=P \cup\left\{\alpha_{1}, \ldots, \alpha_{i}\right\}$ for $1 \leqq i \leqq m$. The results of the previous Lemmas are now strengthened and summarised into Theorem 1. No further proofs are needed except the observation that in Theorem 1-(2) use is made of the hereditary T_{4} property.

Theorem 1. (1) A multi-cell topology \mathscr{T} on N is a connected T_{4} space if and only if there exists a sequence $\left[\alpha_{1}, \ldots, \alpha_{m}\right], m<n$, of m distinct elements of N, and a topology \mathscr{U} on $N-\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ such that \mathscr{U} is either non- T_{4} or disconnected T_{4} and $\mathscr{T}=\mathscr{U}+\left[\alpha_{1}, \ldots, \alpha_{m}\right]$. A connected T_{4} space is always trivially T_{4}.
(2) If a T_{5} space has more than one cell, then the first cell (that is, the cell having \emptyset as the supporting open set) is a multiple chain cell. All other cells are single chain cells. Further, a multi-cell topology \mathscr{T} on N is a connected T_{5} space if and only if there exists a sequence $\left[\alpha_{1}, \ldots, \alpha_{m}\right], m<n$, and a disconnected T_{5} space \mathscr{U} on $N-\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ such that $\mathscr{T}=\mathscr{U}+\left[\alpha_{1}, \ldots, \alpha_{m}\right]$.
(3) Let \mathscr{T}_{1} and \mathscr{T}_{2} be topologies on N such that $\mathscr{T}_{1}=\mathscr{U}_{1}+\left[\alpha_{1}, \ldots, \alpha_{p}\right]$ and $\mathscr{T}_{2}=\mathscr{U}_{2}+\left[\beta_{1}, \ldots, \beta_{q}\right]$ where \mathscr{U}_{1} and \mathscr{U}_{2} are either non- T_{4} or disconnected T_{4} spaces on $N-\left\{\alpha_{1}, \ldots, \alpha_{p}\right\}$ and $N-\left\{\beta_{1}, \ldots, \beta_{q}\right\}$ respectively. Then
(a) $\mathscr{T}_{1}=\mathscr{T}_{2}$ if and only if $p=q, \alpha_{i}=\beta_{i}$ for $i \leqq p$ and $\mathscr{U}_{1}=\mathscr{U}_{2}$.
(b) \mathscr{T}_{1} and \mathscr{T}_{2} are homeomorphic if and only if $p=q$ and \mathscr{U}_{1} and \mathscr{U}_{2} are homeomorphic.

Theorem 1-(3) states that the space \mathscr{U} and the sequence $\left[\alpha_{1}, \ldots, \alpha_{m}\right]$ in Theorem 1-(1) and (2) are uniquely determined. In fact $\left[\alpha_{1}, \ldots, \alpha_{m}\right]$ appears as a chain of \mathscr{T} with $N-\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$ as its supporting open set. This chain will be referred to as the covering chain of the connected T_{4} space \mathscr{T} and \mathscr{U} as the base topology of \mathscr{T}.

Let $T_{0+4}^{c}(n)=$ number of distinct connected $\mathrm{T}_{0}+\mathrm{T}_{4}$ spaces, $T_{0+5}^{c}(n)=$ number of distinct connected $\mathrm{T}_{0}+\mathrm{T}_{5}$ spaces, $H_{0+4}^{c}(n)=$ number of homeomorphism classes of connected $\mathrm{T}_{0}+\mathrm{T}_{4}$ spaces and $H_{0+5}^{c}(n)=$ number of homeomorphism classes of connected $\mathrm{T}_{0}+\mathrm{T}_{5}$ spaces. The corresponding quantities for the disconnected case are denoted by $T_{0+4}^{d}(n), T_{0+5}^{d}(n), H_{0+4}^{d}(n)$ and $H_{0+5}^{d}(n) . \mathrm{T}_{0}(n)$ and $H_{0}(n)$ will represent, respectively, the number of distinct T_{0} spaces and the number of homeomorphism classes of T_{0} spaces. The argument n in all these quantities denotes the cardinality of the set on which the topologies are defined.

Theorem 2.
(1)
(a) $T_{0+4}^{c}(1)=T_{0+5}^{c}(1)=H_{0+4}^{c}(1)=H_{0+5}^{c}(1)=1$.
(b) $T_{0+4}^{c}(2)=T_{0+5}^{c}(2)=2$.
(c) $H_{0+4}^{c}(2)=H_{0+5}^{c}(2)=1$.
(2)
(a) $T_{0+4}^{d}(1)=T_{0+5}^{d}(1)=H_{0+4}^{d}(1)=H_{0+5}^{d}(1)=0$.
(b) $T_{0+4}^{d}(2)=T_{0+5}^{d}(2)=H_{0+4}^{d}(2)=H_{0+5}^{d}(2)=1$.

For (3) to (10), assume $n \geqq 3$.
(3) $T_{0+4}^{c}(n)=n!+\sum_{m=1}^{n-2} m!\binom{n}{m}\left\{T_{0}(n-m)-T_{0+4}^{c}(n-m)\right\}$.
(4) $T_{0+5}^{c}(n)=n!+\sum_{m=1}^{n-2}\left\{T_{0+5}^{d}(n-m)\binom{n}{m} m!\right\}$.
(5) $H_{0+4}^{c}(n)=1+\sum_{m=1}^{n-2}\left\{H_{0}(n-m)-H_{0+4}^{c}(n-m)\right\}$.
(6) $H_{0+5}^{c}(n)=1+\sum_{m=1}^{n-2} H_{0+5}^{d}(n-m)$.
(7) $T_{0+4}^{c}(n+1)=(n+1) T_{0}(n)$.
(8) $H_{0+4}^{c}(n+1)=H_{0}(n)$.
(9) $T_{0+m}^{d}(n)=\sum \frac{n!}{\left(n_{1}!\right)^{r_{1}} r_{1}!\ldots\left(n_{u}!\right)^{\tau_{u}} r_{u}!} \prod_{i=1}^{u}\left\{T_{0+m}^{c}\left(n_{i}\right)\right\}^{r_{i}}, m=4,5$.

$$
\begin{equation*}
H_{0+m}^{d}(n)=\sum \prod_{i=1}^{u}\binom{H_{0+m}^{c}\left(n_{i}\right)+r_{i}-1}{r_{i}}, m=4,5 . \tag{10}
\end{equation*}
$$

where in (9) and (10), the \sum extends over all possible partitions $\sum_{i=1}^{u} r_{i} n_{i}$ of n with $0<n_{1} \ldots<n_{u}$ and $r_{i} \geqq 1$.

Proof. (3) is an immediate consequence of Theorem 1-(1) and -(3) and the fact that it is possible to select exactly $\binom{n}{m} m$! distinct m-term sequences from a set of n elements. Similarly (4) follows from Theorem 1-(2). The $n!$ term in (3) and (4) is present to take into account the n ! distinct single chain (and therefore single cell) n point topologies that are all, by Lemma 10, both T_{4} and T_{5}. The fact that these single chain spaces are all homeomorphic explains the ' 1 ' term in (5) and (6). Let $\psi(k)=T_{0}(k)-T_{0+4}^{c}(k)$. Then from (3) it follows that:

$$
\begin{aligned}
T_{0+4}^{c}(n+1)=(n+1) & {\left[T_{0}(n)-T_{0+4}^{c}(n)\right.} \\
& \left.\quad+\left\{n!+\sum_{m=2}^{n-1} \psi(n+1-m)\binom{n}{m-1}(m-1)!\right\}\right] \\
=(n+1)[& \left.T_{0}(n)-T_{0+4}^{c}(n)+\left\{n!+\sum_{j=1}^{n-2} \psi(n-j)\binom{n}{j} j!\right\}\right],
\end{aligned}
$$

from which (7) is obvious. Similarly (8) is a consequence of (5). The rest of Theorem 2 is elementary.

Using these recursion relations it is easily verified that $T_{0+4}(4)=T_{0+4}^{c}(4)+$ $T_{0+4}^{d}(4)=76+61=137$, and $T_{0+5}(4)=T_{0+5}^{c}(4)+T_{0+5}^{d}(4)=64+61=$ 125 , so that 12 distinct, non- T_{5} and $\mathrm{T}_{0}+\mathrm{T}_{4}$ topologies can be defined on a four point set. They are all connected and trivially T_{4}. There do not exist spaces that are $T_{0}+T_{4}$ but not $T_{0}+T_{5}$ on sets with fewer than four points. It should be observed that the expressions (3) and (7) for T_{0+4}^{c} are not "pure" recursion relations, in the sense that they involve $T_{0}(n)$. However, the expressions for T_{5} spaces do not suffer from any such difficulties. The reason for this is the fact that the T_{5} property is hereditary.
2. For any topology \mathscr{T} on an n point set N, let \mathscr{T}_{v} denote the ($n-1$) point subspace induced by \mathscr{T} on the point set $N-v$. Then the reconstruction conjecture for finite topologies can be stated precisely as follows:

Reconstruction conjecture: Let \mathscr{T} be a topology on N. Suppose that each $\mathscr{T}_{v}, v \in N$, is known to within homeomorphism. Then \mathscr{T} is itself determined to within homeomorphism by the collection of the subspaces \mathscr{T}_{v}.

The reconstruction conjecture breaks down for certain three point topologies. For example, let

$$
\mathscr{S}=\{\emptyset,\{a\},\{b\},\{a, b\},\{a, b, c\}\}
$$

and

$$
\mathscr{T}=\{\emptyset,\{a\},\{a, b\},\{a, c\},\{a, b, c\}\} .
$$

Then \mathscr{S} and \mathscr{T} are not homeomorphic. However, both possess the same collection of two point subspaces: $\{\emptyset,\{x\},\{y\},\{x, y\}\},\{\emptyset,\{x\},\{x, y\}\}$ and $\{0,\{x\},\{x, y\}\}$. In the rest of this paper, all topologies will therefore be considered to have been defined on sets with at least four points.

Theorem 3. Let \mathscr{T} be a topology on N. Suppose that each subspace $T_{v}, v \in N$, is known to within homeomorphism. Then these subspaces determine whether or not \mathscr{T} is simultaneously connected, T_{0} and T_{5}. In the event that it is connected $\mathrm{T}_{0}+\mathrm{T}_{5}, \mathscr{T}$ is itself determined to within homeomorphism by the \mathscr{T}_{v}.

Proof. An Algorithm to reconstruct \mathscr{T} is outlined below. Lemmas 13 to 16, which follow later on, ensure a correct output. The word "collection" stands for "collection of subspaces \mathscr{T}_{v} ", $v \in N$. The collection is said to satisfy condition
$(+1)$ if each of at least $n-1$ of the subspaces \mathscr{T}_{v} have only one maximal point;
$(+2)$ if each of the n subspaces \mathscr{T}_{v} are single chain spaces;
$(+3)$ if only one of the subspaces \mathscr{T}_{v} is disconnected.
$\mathrm{S}_{\text {tart }} 1$. Test whether each $\mathscr{T}_{v}, v \in N$, is T_{0}. If not, then go to 9 . If yes, then \mathscr{T} is T_{0}. Now go to 2 .
2. Test whether the collection satisfies $(+1)$. If not, then go to 9 . If yes, then \mathscr{T} is connected and T_{4}. Now go to 3 .
3. Test whether each $\mathscr{T}_{v}, v \in N$, is T_{4}. If not, then go to 9 . If yes, then \mathscr{T} is connected $\mathrm{T}_{0}+\mathrm{T}_{5}$. Now go to 4 .
4. Test whether the collection satisfies $(+2)$. If yes, then go to 8 . If not, then go to 5 .

5 . Test whether the collection satisfies $(+3)$. If yes, then go to 7 . If not, then go to 6 .
End 6. Choose a \mathscr{T}_{v} such that the length k of its covering chain is not greater than the length of the covering chain of any other $\mathscr{T}_{w}, w \neq v$. Let $m=k+1$. Now arbitrarily label, from the collection $N-\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$, the points of the base topology of \mathscr{T}_{v} and call this labelled space \mathscr{U}. Then \mathscr{T} is homeomorphic to $\mathscr{U}+\left[\alpha_{1}, \ldots, \alpha_{m}\right]$.
End 7. Arbitrarily label the points of the only disconnected $n-1$ point subspace from the collection $\left\{\alpha_{2}, \ldots, \alpha_{m}\right\}$ and call this labelled space \mathscr{U}. Then \mathscr{T} is homeomorphic to $\mathscr{U}+\left[\alpha_{1}\right]$.

End $8 . \mathscr{T}$ is homeomorphic to $\left\{\emptyset,\left\{\alpha_{1}\right\}, \ldots,\left\{\alpha_{1}, \ldots, \alpha_{i}\right\}, \ldots, N\right\}$.
End $9 . \mathscr{T}$ is not simultaneously connected, T_{0} and T_{5}.
The supporting Lemmas now follow.
Lemma 13. $A \mathrm{~T}_{0}$ topology \mathscr{T} on N has only one maximal point if and only if condition $(+1)$ is satisfied.

Proof. If α is the only maximal point of \mathscr{T}, then $\alpha^{*}(\mathscr{T})=N$ and so $\alpha^{*}\left(\mathscr{T}_{v}\right)=N-v$ for all $v \neq \alpha$. Hence α is the only maximal point for each $\mathscr{T}_{v}, v \neq \alpha$. The condition is therefore necessary. Now suppose that \mathscr{T} has two maximal points. Since $n \geqq 4$, therefore there exist at least two non-maximal points γ, δ. Then both \mathscr{T}_{γ} and \mathscr{T}_{δ} have two maximal points. Another possibility is that \mathscr{T} has more than 2 maximal points. If α, β are maximal, then both \mathscr{T}_{α} and \mathscr{T}_{β} have more than one maximal point. This establishes the sufficiency.

Lemma 14. $A \mathrm{~T}_{0}$ topology \mathscr{T} on N is a single chain space if and only if condition $(+2)$ is satisfied.

The proof is elementary and is omitted.
Lemma 15. Let \mathscr{T} be a connected $\mathrm{T}_{0}+\mathrm{T}_{5}$ topology. Then the covering chain of \mathscr{T} has length $=1$ if and only if condition $(+3)$ is satisfied.

Proof. If $\mathscr{T}=\mathscr{U}+[\alpha]$, then $\mathscr{T}_{\alpha}=\mathscr{U}$ which is disconnected by Theorem 1 . If $\beta \neq \alpha$, then $\alpha^{*}\left(\mathscr{T}_{\beta}\right)=N-\beta$ and so \mathscr{T}_{β} is connected. The condition is therefore necessary. Now suppose that $\mathscr{T}=\mathscr{U}+\left[\alpha_{1}, \ldots, \alpha_{m}\right]$ where $m \geqq 2$. Then each \mathscr{T}_{v} is connected. This is because α_{m} is the only maximal point of \mathscr{T}_{v} if $v \neq \alpha_{m}$ and $\mathscr{T}_{\alpha_{m}}$ has α_{m-1} as the only maximal point. The condition is therefore sufficient.

Comment. The proof clearly demonstrates that there can exist at most one disconnected $n-1$ point subspace of a n point connected $\mathrm{T}_{0}+\mathrm{T}_{5}$ topology.

Lemma 16. Let \mathscr{T} be a connected $\mathrm{T}_{0}+\mathrm{T}_{5}$ topology, other than a single chain space. Suppose that the covering chain of \mathscr{T} has length $m, m \geqq 2$. Then
(1) There exists a subspace \mathscr{T}_{0} whose covering chain has length $m-1$.
(2) The length of the covering chain of any subspace \mathscr{T}_{0} is at least $m-1$.
(3) If the subspace \mathscr{T}_{v} has a covering chain with length $m-1$, then the base topologies of \mathscr{T} and \mathscr{T}_{v} are identical.

Proof. Let $\mathscr{T}=\mathscr{U}+\left[\alpha_{1}, \ldots, \alpha_{m}\right] . \mathscr{U}$ has at least two maximal points. Therefore if $v \in\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$, then \mathscr{T}_{v} has a covering chain of length $m-1$ and the base topologies of \mathscr{T} and \mathscr{T}_{v} are identical (to \mathscr{U}). If $v \in N^{\prime}=$ $N-\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$, then $\alpha_{1}{ }^{*}\left(\mathscr{T}_{v}\right)=N^{\prime}-v$ so that $\left[\alpha_{1}, \ldots, \alpha_{m}\right]$ is either the covering chain or a part of the covering chain of \mathscr{T}_{v}. Therefore in this case the length of the covering chain of \mathscr{T}_{0} is at least m. This proves (1) and (2). (3) follows as it is now clear that \mathscr{T}_{v} has a covering chain of length $m-1$ if and only if $v \in\left\{\alpha_{1}, \ldots, \alpha_{m}\right\}$.

Comment. If $\mathscr{T}=\left\{\emptyset,\left\{\alpha_{1}\left\{,\left\{\alpha_{2}\right\},\left\{\alpha_{1}, \alpha_{2}\right\}\right\}+\left[\alpha_{3}, \ldots, \alpha_{m}\right]\right.\right.$, then it is clear that $\mathscr{T}_{\alpha_{1}}$ and $\mathscr{T}_{\alpha_{2}}$ are both single chains of length $n-1$. Therefore, in instruction (6) of the reconstruction Algorithm, if a \mathscr{T}_{w} consists only of a single chain then this chain should be considered as the covering chain of \mathscr{T}_{w}.

Further discussion on the reconstruction problem for finite topologies will appear elsewhere.

References

1. Shawpawn Kumar Das, A partition of finite T_{0} topologies, Can. J. Math. 25 (1973), 1137-1147.
2. S. A. Gaal, Point set topology (Academic Press, New York, 1964).

10 Raja Dinendra Street,
Calcutta, 700009, India

