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Abstract

DeMarco, Krieger, and Ye conjectured that there is a uniform bound B, depending only
on the degree d, so that any pair of holomorphic maps f, g : P1 → P1 with degree d will
either share all of their preperiodic points or have at most B in common. Here we show
that this uniform bound holds for a Zariski open and dense set in the space of all pairs,
Ratd × Ratd, for each degree d ≥ 2. The proof involves a combination of arithmetic
intersection theory and complex-dynamical results, especially as developed recently by
Gauthier and Vigny, Yuan and Zhang, and Mavraki and Schmidt. In addition, we
present alternate proofs of the main results of DeMarco, Krieger, and Ye [Uniform
Manin-Mumford for a family of genus 2 curves, Ann. of Math. (2) 191 (2020), 949–1001;
Common preperiodic points for quadratic polynomials, J. Mod. Dyn. 18 (2022), 363–413]
and of Poineau [Dynamique analytique sur Z II : Écart uniforme entre Lattès et con-
jecture de Bogomolov-Fu-Tschinkel, Preprint (2022), arXiv:2207.01574 [math.NT]]. In
fact, we prove a generalization of a conjecture of Bogomolov, Fu, and Tschinkel in a
mixed setting of dynamical systems and elliptic curves.

1. Introduction

Fix an integer d ≥ 2. Let P1 denote the complex projective line, and let Ratd denote the space of
all holomorphic maps f : P1 → P1 of degree d. Parameterizing these maps by their coefficients,
throughout this article, we identify Ratd with a Zariski-open subset of the complex projective
space P2d+1. For f ∈ Ratd(C), let Preper(f) denote its set of preperiodic points in P1(C).

Given any pair f, g : P1 → P1 of degrees> 1, it is known that either Preper(f) ∩ Preper(g) is a
finite set or Preper(f) = Preper(g) and the two maps have the same measure of maximal entropy
[BDeM11, YZ13]. Moreover, if we assume that f and g are non-exceptional, then equality of their
preperiodic points holds if and only if the maps satisfy a strong compositional relation [LP97].
Further background is provided in § 2.

In this article, we show there exists a uniform bound on the size of Preper(f) ∩ Preper(g)
for general pairs (f, g) of any given degree d ≥ 2, addressing a conjecture of [DeMKY22]. The
conjecture of [DeMKY22] was in part motivated by a conjecture of Bogomolov, Fu, and Tschinkel
in the setting of Lattès maps, that is, the maps arising as quotients of endomorphisms on elliptic
curves [BFT18]. We prove a generalization of their conjecture where f is a Lattès map and g is
arbitrary.
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Dynamics on P1

The proofs involve a combination of techniques from arithmetic geometry and complex
dynamics. As much as possible, we mimic the arguments for 1-parameter families of pairs (f, g)
acting on P1 × P1 of [MS22]. The new ingredients here involve the passage from one-parameter
families to higher-dimensional parameter spaces: we rely on the recent equidistribution results
of Yuan and Zhang [YZ21], and we take inspiration from the analysis of bifurcation currents in
[BB07, BE09, BBD18], and especially the recent work of Gauthier and Vigny [GV19].

1.1 Summary of main results
The first main goal of this article is to prove the existence of a uniform bound on the size of the
intersection Preper(f) ∩ Preper(g), for a general pair f, g : P1 → P1 in each degree.

Theorem 1.1. For each degree d ≥ 2, there is a proper closed algebraic subvariety Vd of Ratd ×
Ratd defined over Q and a constant Bd so that

|Preper(f) ∩ Preper(g)| ≤ Bd

for all pairs (f, g) ∈ (Ratd × Ratd \ Vd)(C).

The same result holds in the space of polynomial pairs.

Theorem 1.2. For each degree d ≥ 2, there is a proper closed algebraic subvariety Wd

of Polyd × Polyd defined over Q and a constant B′
d so that

|Preper(f) ∩ Preper(g)| ≤ B′
d

for all pairs (f, g) ∈ (Polyd × Polyd \Wd)(C), where Polyd is the (d+ 1)-dimensional space of all
complex polynomials of degree d.

Conjecture 1.4 of [DeMKY22] posited that, for each degree d ≥ 2, there should exist a
constant Bd so that every pair f, g ∈ Ratd has either Preper(f) = Preper(g) or |Preper(f) ∩
Preper(g)| ≤ Bd. The proof of Theorem 1.1 does not provide an explicit description of the sub-
variety Vd, and so it fails to provide a complete proof of this conjecture in any degree d, though
it allows us to deduce Theorem 1.2.

In some settings, our approach to Theorem 1.1 allows us to characterize the excluded
subvarieties, and we obtain new proofs of the main results of [DeMKY22] and [DeMKY20],
stated as Theorems 1.12 and 1.13 here. We also prove the following generalization of the
Bogomolov–Fu-Tschinkel conjecture [BFT18].

Theorem 1.3. For each d ≥ 2, there exists a uniform bound Md so that for each elliptic curve
E over C and each f ∈ Ratd(C) we have that either

|Preper(f) ∩ x(Etors)| ≤Md or Preper(f) = x(Etors),

where x(Etors) denotes the x-coordinates of the torsion points of a Weierstrass model of E.

The latter case, where Preper(f) = x(Etors), will only hold if f is a Lattès map arising as
the quotient of a map on the same elliptic curve E; see § 2.3 for background on the preperiodic
points of Lattès maps. The conjecture of Bogomolov, Fu, and Tschinkel is the case of Theorem 1.3
where f is assumed to be a Lattès map, and it is stated here as Corollary 8.2; the conjecture has
recently been established by Poineau [Poi22] and also follows by Kühne’s work [Küh23] and a
result of Gao, Ge, and Kühne [GGK21]. We also include a proof here to illustrate the differences
in approach.
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Easy examples (or an interpolation argument) show that there are maps f and g in every
degree d ≥ 2 so that

2d < |Preper(f) ∩ Preper(g)| <∞.

The question remains of how large this intersection can be (when finite), if we bound the degree.
Doyle and Hyde have shown there exist pairs (f, g) of degree d with

d2 + 4d < |Preper(f) ∩ Preper(g)| <∞
for every d ≥ 2 (see [DH22]). Corollary 1.7, stated in the following, shows that the general bound
Bd of Theorem 1.1 must be at least 4d− 1. In fact, we believe the following may hold.

Conjecture 1.4. We can take Bd = 4d− 1 in Theorem 1.1.

A key ingredient in the proof of Theorem 1.1 is the following result that we consider
interesting in its own right.

Theorem 1.5. For each degree d ≥ 2, the pairwise-bifurcation measure μΔ is nonzero on the
moduli space

(Ratd × Ratd)/Aut P1

of all pairs (f, g) of degree d.

Here, Aut P1 � PSL2C acts on the space Ratd × Ratd by simultaneous conjugation,

A · (f, g) = (A ◦ f ◦A−1, A ◦ g ◦A−1),

and the moduli space is well defined as a complex orbifold of dimension 4d− 1. The pairwise-
bifurcation current is a closed, positive (1, 1)-current on Ratd × Ratd defined by

T̂Δ := π∗(p∗1T̂ ∧ p∗2T̂ ), (1.1)

where π : (Ratd × Ratd) × P1 → Ratd × Ratd is the projection; T̂ is the dynamical Green current
on Ratd × P1 associated to the universal family; and pi is the projection (Ratd × Ratd) × P1 →
Ratd × P1 given by pi(f1, f2, z) = (fi, z) for i = 1, 2. (See § 2.5 for the definition of T̂ and § 4.1
for more information about T̂Δ.) The associated pairwise-bifurcation measure is defined by

μΔ := (T̂Δ)∧(4d−1) (1.2)

on Ratd × Ratd, which projects to a measure on the moduli space of pairs (f, g). The current
T̂Δ is a special case of the bifurcation currents introduced in [GV19], extending the notions of
bifurcation current and measure that characterize stability for holomorphic families of maps on
P1 (see [DeM01, DeM03, BB07, DF08]). With this perspective the statement of Theorem 1.5
may be compared with [BB07, Proposition 6.3] that the (standard) bifurcation measure does
not vanish identically on the moduli space Md = Ratd/Aut P1. More details are given in § 4.

In working towards Theorems 1.1 and 1.3, we actually prove two contrasting results in a
more general setting. Let S be a smooth and irreducible quasiprojective variety over C, and let
k = C(S) be its function field. An algebraic family of pairs (f, g) of degree d ≥ 2 over S is a pair
of rational functions f, g ∈ k(z) of degree d for which f and g each induce holomorphic maps
S × P1 → P1 via specialization (t, z) �→ ft(z). We say that the family (f, g) is isotrivial if the
induced map S → (Ratd × Ratd)/Aut P1 is constant; the family (f, g) is maximally non-isotrivial
if the induced map S → (Ratd × Ratd)/Aut P1 is finite-to-one.

Theorem 1.6. Let S be a smooth and irreducible quasiprojective variety over C. Suppose
that (f, g) is a maximally non-isotrivial algebraic family of pairs over S of degree d ≥ 2.
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Dynamics on P1

Let m = dimC S. Then the set of points

{(s, x1, . . . , x�) ∈ (S × (P1)�)(C) : xi ∈ Preper(fs) ∩ Preper(gs) for each i}
is Zariski dense in S × (P1)� for each 1 ≤ � ≤ m.

Corollary 1.7. In every degree d ≥ 2, the set of pairs (f, g) sharing at least 4d− 1 distinct
preperiodic points is Zariski dense in Ratd × Ratd.

Let (f, g) be an algebraic family of pairs parameterized by S, with m = dimC S. An m-tuple
x = (x1, . . . , xm) ∈ (P1)m is a rigid m-repeller at s0 ∈ S if (1) each xi is preperiodic to a repelling
cycle for fs0 and for gs0 , and (2) there is no non-constant holomorphic disk ϕ : D → S × (P1)m

parametrizing a family of m common preperiodic points for (fπ(ϕ(t)), gπ(ϕ(t))) with ϕ(0) = (s0,x),
where π is the projection to S.

The following non-density result should be contrasted with the density result of
Theorem 1.6.

Theorem 1.8. Fix degree d ≥ 2, and suppose that S is a smooth, irreducible quasiprojective
variety, parameterizing an algebraic family of pairs (f, g) of degree d, defined over Q. Let m =
dimC S. Suppose there exists a rigid m-repeller at some s0 ∈ S(C), and assume that f and g are
not both conjugate to z±d over the algebraic closure of k = Q(S). Then the set of points

{(s, x1, . . . , xm+1) ∈ (S × (P1)m+1)(Q) : xi ∈ Preper(fs) ∩ Preper(gs) for each i}
is not Zariski dense in S × (P1)m+1.

Under the hypotheses of Theorem 1.8, Theorem 1.6 implies that there is a Zariski-dense
collection of pairs (fs, gs) in S(C) which have at least m common preperiodic points. However,
we will deduce from Theorem 1.8 that if just one of them forms a rigid m-repeller at s0 ∈ S(C),
there will be a uniform bound on the number of common preperiodic points for a general pair
(fs, gs) for complex parameters s ∈ S(C). See Theorem 5.2 and Corollary 4.9.

Remark 1.9. The family defined by fs(z) = zd and gs(z) = sd−1 zd for s ∈ C∗ does not satisfy
the conclusion of Theorem 1.8, though it satisfies all the other hypotheses of the theorem.
For example, near s0 = 1, the common fixed point at z = 1 splits into distinct fixed points at
z = 1 for fs and z = 1/s for gs near s0, so it forms a rigid 1-repeller at s0. However, we have
Preper(fs) = Preper(gs) for all roots of unity s. In the terminology of [MS22], the diagonal in
P1 × P1 is weakly (f, g)-special for this example, over the function field C(s).

A proof of Theorem 1.1 is obtained from Theorem 1.8 by showing that the pair

f0(z) = zd and g0(z) = ζzd

for ζ = e2πi/(d+1) has a rigid (4d− 1)-repeller, which also implies Theorem 1.5. The rigidity for
this pair (f0, g0) is deduced from the following.

Theorem 1.10. Fix degree d ≥ 2. Let f0(z) = zd and g0(z) = ζzd for ζ = e2πi/(d+1), and let ψ =
(f, g) : D → Ratd × Ratd be a holomorphic map from the unit disk D ⊂ C with ψ(0) = (f0, g0).
If

Preper(ft) ∩ J(ft) = Preper(gt) ∩ J(gt)

for all t ∈ D, where J denotes the Julia set, then this family of pairs is isotrivial.

Remark 1.11. The conclusion of Theorem 1.10 is false if we allow ζ to be a root of unity
of any order ≤ d. See § 7.4. The proof of Theorem 1.10, and thus of Theorem 1.5, does not
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involve any arithmetic ingredients. This is in contrast to the proofs of related statements
in [MS22].

1.2 Background and proof ideas
Recently, there has been a series of breakthroughs in arithmetic geometry and dynamics,
leading to powerful height estimates and equidistribution results, and ultimately to uniform
bounds in related settings, especially for families of abelian varieties. Dimitrov, Gao, and
Habegger [DGH21b] and Kühne [Küh21] established uniformity in the Mordell–Lang conjecture
following the blueprint they laid out in [DGH21a, GH19, Hab13]. Kühne [Küh21] established
an arithmetic equidistribution theorem in families of abelian varieties and combined it with
Gao’s results [Gao20a, Gao20b] to prove uniformity in the Manin–Mumford and Bogomolov
conjectures for curves in their Jacobians, a result that Yuan also obtained later with a differ-
ent approach [Yua21]. Kühne’s approach has been extended to higher dimensional subvarieties
of abelian varieties by Gao, Ge, and Kühne [GGK21]; see Gao’s survey article and the refer-
ences therein for more about these developments [Gao21]. In a study of more general dynamical
systems, the recent complex-analytic results of Gauthier and Vigny [GV19] and the arithmetic
equidistribution theorems of Yuan and Zhang [YZ21] and Gauthier [Gau21] provide a whole
host of new tools. These equidistribution results played an important role in recent work by the
second author and Schmidt, who obtained for example a version of Theorem 1.1 for families of
pairs (f, g) on P1 parameterized by curves (see Theorem 1.14) [MS22]. This article grew out of
an effort to synthesize these ideas and to extend the results of the first author with Krieger and
Ye in [DeMKY20, DeMKY22].

For maps f, g : P1 → P1 defined over C, uniform bounds on the intersections Preper(f) ∩
Preper(g) were obtained by DeMarco, Krieger, and Ye for two families of maps, with proofs
that also involved both arithmetic and complex-dynamical techniques, but which relied on
computations specific to the families studied.

Theorem 1.12 [DeMKY22]. Suppose that ft is the family of quadratic polynomials, ft(z) =
z2 + t for t ∈ C. There is a uniform B so that

|Preper(ft1) ∩ Preper(ft2)| ≤ B

for all t1 = t2.

Theorem 1.13 [DeMKY20]. Suppose that ft is the family of flexible Lattès maps ft(z) =
(z2 − t)2/(4z(z − 1)(z − t)) for t ∈ C \ {0, 1}. There is a uniform B so that

|Preper(ft1) ∩ Preper(ft2)| ≤ B

for all t1 = t2.

Theorem 1.13 addressed a conjecture of Bogomolov, Fu, and Tschinkel [BFT18] about torsion
points on pairs of elliptic curves. Indeed, the preperiodic points of the Lattès map ft are the
images of the torsion points on the Legendre curve {y2 = x(x− 1)(x− t)} under the projection
to the x-coordinate. The full conjecture from [BFT18] is now a theorem: there exists a uniform
bound B so that every pair (f, g) of (flexible) Lattès maps (in any choice of coordinates on
P1) will either share all of their preperiodic points or have at most B in common. A proof was
recently obtained by Poineau in [Poi22], and it can also be deduced from the ‘relative Bogomolov’
theorem proved by Kühne [Küh23] or the main theorem of [GGK21]. We present an alternate
proof as a corollary to Theorem 1.3.

Note that Theorems 1.12 and 1.13 each covered a two-parameter family of pairs (t1, t2), but,
as mentioned above, the proofs were specific to these particular families. For one-parameter
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families of pairs, Mavraki and Schmidt recently obtained uniform bounds that did not rely on
particular dynamical features of the maps.

Theorem 1.14 [MS22]. Let C be any algebraic curve in Ratd × Ratd defined over Q, parame-
terizing a pair of maps (ft, gt) for t ∈ C(C). Then there exists a constant B = B(C) so that, for
each t ∈ C(C), either

|Preper(ft) ∩ Preper(gt)| ≤ B or Preper(ft) = Preper(gt).

In this article, we follow the strategy of [MS22] to treat more general families. Their approach
uses an arithmetic equidistribution theorem of Yuan and Zhang [YZ21] amongst other ingredi-
ents, allowing them to reduce the problem to a result of Levin and Przytycki on maps sharing
a measure of maximal entropy [LP97]. But in order to apply Yuan and Zhang’s equidistri-
bution theorem, the challenge is to prove that a non-degeneracy hypothesis is satisfied. This
non-degeneracy is defined in terms of a volume of a certain adelically metrized line bundle, and its
positivity can be deduced from showing that a certain measure is nonzero [YZ21, Lemma 5.4.4].
In [MS22] the authors relied on arithmetic ingredients to provide a characterization of this
positivity for 1-parameter families of products (f, g) acting on P1 × P1 (see [MS22, Theorems 4.1
and 4.3]). In contrast, to prove that this positivity condition is satisfied over the full space of
pairs Ratd × Ratd, we interpret it here as a notion of dynamical stability, inspired by the recent
work of Gauthier and Vigny [GV19]. The non-degeneracy condition is then reduced to showing
the positivity of the bifurcation measure μΔ defined above in (1.2). We exhibit this positiv-
ity by mimicking the proofs that Misiurewicz maps lie in support of the (usual) bifurcation
measure in the moduli space of maps of degree d on P1 (see [BE09]), and the proofs of [BBD18,
Proposition 3.7] and [GV19, Lemma 4.8]. Finally, the rigidity we rely upon to prove Theorem 1.1
(stated as Theorem 1.10), follows from a general treatment of monomial maps and symmetries
of maps on P1. The analogous rigidity result we rely upon for Theorem 1.3 follows by repeated
applications of the main theorem in [DeM16] on the stability of a family of maps f on P1 equipped
with a marked point.

1.3 Outline
In § 2, we provide some background on the dynamics of maps on P1, recalling the notion of
exceptional map and the relation between the measures of maximal entropy and the preperiodic
points of the map. In § 3 we prove Theorem 1.6 and deduce Corollary 1.7. These results are pre-
sented as a consequence of the main theorem in [DeM16]. For a proof of Theorem 1.8, we follow
the strategy of Mavraki and Schmidt in [MS22]. To prove that the non-degeneracy assumption
required to use the equidistribution result in [YZ21] is satisfied, we use the complex-analytic
tools (of bifurcation currents and measures) developed by Gauthier and Vigny in [GV19]. More
precisely, in § 4 we recall the definitions from [GV19] of a generalized bifurcation current associ-
ated to an arbitrary family of polarized dynamical systems and subvarieties. In Proposition 4.8
we show that certain rigid pre-repelling parameters are in the support of our (generalized) bifur-
cation measure, giving a criterion for non-degeneracy. We complete the proof of Theorem 1.8 in
§ 5 and deduce its consequence towards uniform bounds in the number of common preperiodic
points therein; see Theorem 5.2. In § 6, we include an explanation of how this method gives an
alternative proof of Theorem 1.12, using the special quadratic polynomial examples of [DH22]
and the results of Mavraki and Schmidt [MS22]. In § 7, we prove Theorem 1.10, and we construct
a rigid repeller, completing the proof of Theorems 1.1, 1.2, and 1.5. In § 8, we study pairs (f, g)
where f is a Lattès map and prove Theorem 1.3.
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2. Background on 1-dimensional dynamics

In this section, we provide some important background information on the dynamics of maps
f : P1 → P1 defined over C.

2.1 The measure of maximal entropy
For each rational map f : P1 → P1 of degree d ≥ 2, there is a unique probability measure μf

of maximal entropy. Its support is equal to the Julia set of f , and it is characterized by the
properties that it has no atoms, so μf ({z}) = 0 for all z ∈ P1(C), and 1

df
∗μf = μf , meaning that

1
d

∫
P1

( ∑
f(x)=y

ϕ(x)
)
μf (y) =

∫
P1

ϕ(x)μf (x)

for all continuous functions ϕ on P1 (see [Mañ83, FLM83, Lyu83a]).

2.2 Exceptional maps
We say that a map f : P1 → P1 of degree d ≥ 2 is exceptional if it is the quotient of an affine
transformation of C; see [Mil06] for details. Every exceptional f is conjugate by an element of
Aut P1 � PSL2C to a power map z±d, a Tchebyshev polynomial ±Td, or it is a Lattès map, mean-
ing that it is the quotient of a map on an elliptic curve. The exceptional maps are distinguished
by properties of their measures μf . In each case, the Julia set J(f) is a real submanifold of P1(C)
(with boundary, in the case of the Tchebyshev polynomials), and the measure μf is absolutely
continuous with respect to the Hausdorff measure on J(f). Zdunik proved the converse: the
exceptional maps are the only maps for which this absolute continuity can hold [Zdu90].

2.3 Preperiodic points and the maximal measure
It is well known that the preperiodic points of f are uniformly distributed with respect to the
measure μf . That is, defining discrete measures

μn,m =
1
dn

∑
fn(z)=fm(z)

δz

in P1 for every pair of integers n > m ≥ 0, then for any sequence (nk,mk) of integers nk > mk ≥ 0
with max{nk,mk} → ∞ as k → ∞, the measures μnk,mk

converge weakly to the measure μf (see
[Mañ83, FLM83, Lyu83a]).

But the preperiodic points determine the measure μf in a stronger sense, without ordering
them by period or orbit length.

Theorem 2.1 [LP97, BDeM11, YZ13]. For any maps f, g : P1 → P1 of degrees > 1 defined over
C, the following are equivalent:

(1) |Preper(f) ∩ Preper(g)| = ∞; and
(2) Preper(f) = Preper(g);

and these conditions imply that

(3) μf = μg.

Moreover, if at least one of f or g is not conjugate to a power map, then condition (3) is equivalent
to conditions (1) and (2).
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Remark 2.2. The main theorem of [LP97] states that if μf = μg, and if f and g are
non-exceptional, then there exist iterates fn and gm and positive integers � and k so that

(g−m ◦ gm) ◦ g�m = (f−n ◦ fn) ◦ fkn

for some (possibly multi-valued) branches of the inverse g−m and f−n. It follows that Preper(f) =
Preper(g); see [LP97, Theorem A and Remark 2].

As the equivalences of Theorem 2.1 are not stated this way in the literature, we outline the
proof ingredients.

Sketch proof of Theorem 2.1. The implication that condition (2) =⇒ condition (1) is imme-
diate, because all maps of degree > 1 have infinitely many distinct preperiodic points. The
implications condition (1) =⇒ condition (2) =⇒ condition (3) are proved in [BDeM11,
Theorem 1.2] and [YZ13, Theorems 1.3 and 1.4]. The key input is the equidistribution of points
of small canonical height for a map f : P1 → P1, working over number fields or, more generally,
fields that are finitely generated over Q.

If f and g are non-exceptional, then the implication condition (3) =⇒ condition (2) is
proved in [LP97, Theorem A and Remark 2]. See Remark 2.2.

It remains to carry out a case-by-case analysis of the measures for exceptional maps, appealing
to Zdunik’s characterization of exceptional maps by their measures in [Zdu90].

If f is a Tchebyshev polynomial ±Td, its measure μf is supported on a closed interval. If
μg = μf , then g must be equal to ±Te, where e = deg g; indeed, we know that g must be conjugate
to ±Te, but the only A ∈ Aut P1 for which A∗μg = μg are A(z) = ±z. All of these maps have
the same sets of preperiodic points.

If f(z) = z±d, then μf is the uniform distribution on the unit circle, and μf = μg implies
that g must also be a power map. In this case, either Preper(f) = Preper(g) or Preper(f) ∩
Preper(g) = ∅; writing g(z) = αz±e with |α| = 1 and depending on whether or not α is a root of
unity.

Finally, suppose f is a Lattès map. Then the measure μf is the projection of the Haar
measure from the associated elliptic curve. In particular, the measure knows the branch points
of this quotient map and the ramification degree at each point. In other words, the measure μf

uniquely determines the orbifold structure on the quotient Riemann sphere. As such, it uniquely
determines the isomorphism class of the elliptic curve over C and thus the set of preperiodic
points of f , which is equal to the projection of the torsion points of the elliptic curve. It follows
that if μf = μg for some g, then g is a Lattès map from the same elliptic curve with the same
set of preperiodic points. See [Mil06] for more information on these Lattès maps. �

Remark 2.3. In [Pak21], Pakovich proved that each f ∈ Ratd of degree d ≥ 4 with 2d− 2 distinct
critical values satisfies

{g ∈ Ratd : μg = μf} = {f}.
As these form a Zariski-dense and -open subset of Ratd, this implies, when combined with
Theorem 2.1 for degrees d ≥ 4, the set of pairs (f, g) with |Preper(f) ∩ Preper(g)| = ∞ is not
Zariski dense in the space Ratd × Ratd of all pairs with d ≥ 4.

2.4 Why not periodic points?
It is reasonable to ask why we work with all preperiodic points and not the subset Per(f)
of periodic points of f , which are also uniformly distributed with respect to μf . Of course,
the uniform bound on |Preper(f) ∩ Preper(g)| in Theorem 1.1 is stronger than a bound on
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|Per(f) ∩ Per(g)|, but there are two underlying reasons for our focus on preperiodic points.
First, if we were to replace Preper(f) with Per(f), then the equivalences of Theorem 2.1 would
break down. For example, if f and g are Lattès maps induced from P �→ 2P and P �→ 3P on
the same elliptic curve via the same projection to P1, then μf = μg with |Per(f) ∩ Per(g)| = ∞
but Per(f) = Per(f). In addition, there are many non-exceptional examples with μf = μg but
|Per(f) ∩ Per(g)| <∞, such as f(z) = z2 + c and g(z) = −(z2 + c) for c ∈ C. On the other hand,
it follows from the proof of [LP97, Theorem A] that if μf = μg for non-exceptional f and g, and if
there exists just one common repelling periodic point x ∈ Per(f) ∩ Per(g), then Per(f) = Per(g);
see [Ye15, Theorem 1.5]. A second reason is our method of proof and original motivation for this
project. For maps f : P1 → P1 defined over Q, the preperiodic points for f are precisely the
points in P1(Q) for which the canonical height ĥf vanishes [CS93]. Though somewhat hidden in
this article, much of our analysis is, fundamentally, about properties of these height functions.

2.5 Stability and the bifurcation current
Let Λ be a connected complex manifold and f : Λ × P1 → Λ × P1 a holomorphic map defined by
(λ, z) �→ (λ, fλ(z)) where each fλ has degree d ≥ 2. The measures μfλ

can be packaged together
into a positive (1, 1)-current on the total space Λ × P1 as follows. Let ω be a smooth and positive
(1, 1)-form on P1 with

∫
P1 ω = 1, and consider p∗ω on Λ × P1, where p : Λ × P1 → P1 is the

projection. The dynamical Green current for f on Λ × P1 is

T̂f = lim
n→∞

1
dn

(fn)∗(p∗ω). (2.1)

Then T̂f is a closed, positive (1, 1)-current on Λ × P1 with continuous potentials, and the slice
current T̂f |{λ}×P1 coincides with the measure μfλ

. See, for example, [DF08, § 3]. If Λ = Ratd is
the space of all maps of degree d, then we simply denote this current by T̂ , as in the introduction.

We say the family fλ, for λ ∈ Λ, is stable if the Julia sets of fλ are moving holomorphically
with λ; see [MSS83, Lyu83b, McM94] for background. Following [DeM01, DF08], the bifurcation
current for f is defined by

Tf,bif = (πΛ)∗(T̂f ∧ [C]), (2.2)

where πΛ : Λ × P1 → Λ is the projection and [C] is the current of integration along the critical
locus of f ; it is a closed and positive (1, 1)-current on Λ with continuous potentials. In [DeM01],
it is proved that Tf,bif = 0 if and only if the family is stable.

For algebraic families, namely where Λ is a smooth quasiprojective complex algebraic variety,
and f is a morphism, McMullen proved in [McM87] that the family {fλ : λ ∈ Λ} is stable if and
only if either f is isotrivial or f is a family of flexible Lattès maps. (The family f is isotrivial if
all fλ are conjugate by elements of Aut P1.) Specifically, McMullen proved that if f is stable but
not isotrivial, then each critical point of fλ is preperiodic for all λ ∈ Λ. In [DF08], Dujardin and
Favre extended this result by studying the iterates of each critical point independently. Namely,
if c : Λ → P1 parameterizes a critical point for fλ, they introduced the current

T̂f,c := (πΛ)∗(T̂f ∧ [Γc]) (2.3)

on Λ, where Γc ⊂ Λ × P1 is the graph of c, and they proved that T̂f,c = 0 if and only if f is
isotrivial or c is persistently preperiodic for fλ (see [DF08, Theorems 2.5 and 3.2]).

2.6 Stability of a marked point
Assume that Λ is a smooth quasiprojective complex algebraic variety. Suppose that a ∈ P1(k)
is any point defined over the function field k = C(Λ) defining a holomorphic map a : Λ → P1.
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The pair (f, a) is isotrivial if both f and a, after changing coordinates by Möbius transformation
defined over a finite extension of k = C(Λ), become independent of the parameter λ. In other
words, working over C, the group Aut P1 acts on pairs (f, a) ∈ Ratd × P1 by A · (f, a) = (A ◦
f ◦A−1, A ◦ a), and a pair (f, a) defined over k is isotrivial if the associated map Λ → (Ratd ×
P1)/Aut P1 is constant.

Similarly to (2.3), we can define T̂f,a := (πΛ)∗(T̂f ∧ [Γa]) by intersecting the graph Γa with
T̂f in Λ × P1. Then T̂f,a = 0 if and only if the pair (f, a) is either isotrivial or persistently
preperiodic [DeM16, Theorem 1.4]. (Strictly speaking, the theorem there is only proved for Λ
of dimension 1, but it holds more generally, and it is not formulated in terms of the current
T̂f,a. The equivalence between the stability condition there and the vanishing of T̂f,a is proved in
[DeM03, Theorem 9.1].) This characterization of stability was reproved and extended to a more
general setting by Gauthier and Vigny in [GV19]. We need the following consequence.

Theorem 2.4 [DeM16]. Suppose Λ is a smooth, irreducible complex quasiprojective algebraic
variety, and let k = C(Λ) be its function field. Suppose that f ∈ k(z) defines a holomorphic
family of maps fλ : P1 → P1 of degree d ≥ 2 for λ ∈ Λ; fix a ∈ P1(k) defining a holomorphic map
a : Λ → P1. If the pair (f, a) is neither isotrivial nor persistently preperiodic, then there exists
λ0 ∈ Λ for which a(λ0) is preperiodic to a repelling cycle for fλ0 .

Proof. The hypothesis that (f, a) is neither isotrivial nor persistently preperiodic on Λ implies
we can find an algebraic curve C in Λ along which (f, a) is neither isotrivial nor persistently
preperiodic. Indeed, if (f, a) is not isotrivial, then the associated map Λ → (Ratd × P1)/Aut P1

is non-constant; by the irreducibility of Λ, every λ ∈ Λ is contained in some algebraic curve along
which (f, a) is not isotrivial. But if the pair is persistently preperiodic along all such curves, then
the pair would be preperiodic on all of Λ. Note, moreover, that if (f, a) is neither isotrivial nor
persistently preperiodic on a curve C, then it is also the case on the complement of any finite
set of points in C. Thus, it suffices to prove the result for a smooth and quasiprojective curve Λ.

Now assume that Λ is a smooth, quasiprojective algebraic curve defined over C. From [DeM16,
Theorem 1.4], the hypothesis that (f, a) is neither isotrivial nor persistently preperiodic implies
that the sequence of holomorphic functions {λ �→ fn

λ (a(λ))}n≥0 fails to be normal on Λ. Thus,
as a consequence of Montel’s theorem, there must be a parameter λ0 ∈ U and positive integer
n0 so that fn0

λ0
(a(λ0)) is a repelling periodic point for fλ0 ; see [DeM16, Proposition 5.1]. �

3. Zariski density of preperiodic points

In this section we prove Theorem 1.6, restated here as Theorem 3.1.
Throughout, we assume that S is a smooth and irreducible quasiprojective variety over C.

Let k = C(S) be its function field. An algebraic family of pairs (f, g) over S is a pair of ratio-
nal functions f, g ∈ k(z) for which f and g each induce holomorphic maps S × P1 → P1 via
specialization (s, z) �→ fs(z). The pair (f, g) induces a holomorphic map we denote by

Φ = (f, g) : S × (P1 × P1) → S × (P1 × P1)

given by (s, x, y) �→ (s, fs(x), gs(y)). We say that Φ = (f, g) has degree d ≥ 2 if fs and gs are
both of degree d for each t ∈ S.

Recall that f ∈ k(z) is isotrivial if the induced map S → Ratd given by s �→ fs has constant
image in the quotient space Md = Ratd/Aut P1. Equivalently, there exists a finite extension k′

of k and a linear fractional transformation B defined over k′ so that B ◦ f ◦B−1 is in C(z). An
algebraic family of pairs (f, g) is isotrivial if the induced map S → Ratd × Ratd is constant when
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passing to the quotient space (Ratd × Ratd)/Aut P1. Here, Aut P1 � PSL2C is acting diagonally
by conjugation, so that A · (f, g) = (A ◦ f ◦A−1, A ◦ g ◦A−1) and dim(Ratd × Ratd)/Aut P1 =
4d− 1. We say that an algebraic family of pairs Φ = (f, g) over S is maximally non-isotrivial if
the family determines a finite map from S to (Ratd × Ratd)/Aut P1.

For each integer � ≥ 1, we let Φ(�) denote the map on S × (P1 × P1)� given by the product
action of Φ on the fiber power.

Theorem 3.1. Suppose Φ is a maximally non-isotrivial algebraic family of pairs over S, of
degree d ≥ 2, and let Δ ⊂ P1 × P1 be the diagonal. The preperiodic points of Φ(�) in S × Δ�

form a Zariski dense subset of S × Δ�, for every 1 ≤ � ≤ dimS.

The key ingredient in the proof is the characterization of stability of marked points (f, a),
for an algebraic family of maps f on P1 and holomorphic a : S → P1, from [DeM16]; see
Theorem 2.4.

3.1 Proof of Theorem 3.1 when dimension of S is 1
For simplicity, we first present the proof when S is a curve. Let Ω be any Zariski-open subset
of S × P1. It suffices to show there exists a single point (s0, z0) ∈ Ω for which z0 ∈ Preper(fs0) ∩
Preper(gs0). Choose any irreducible, algebraic curve P ⊂ S × P1 parameterizing a periodic point
of f that intersects Ω. Note that there are infinitely many choices of such curves, because fs

has infinitely many periodic points for every s ∈ S. In fact, there exists a choice of s so that
all periodic points of sufficiently large period for fs will lie in Ω (a fact that will be relevant
to our argument). We may view the curve P as the graph of a point in P1(k′) for some finite
extension k′ of k = C(S). Let S′ → S denote a finite branched covering map so that k′ = C(S′).
By construction, the pair (f, P ) is persistently preperiodic over S′.

Now assume that the pair (g, P ) is not isotrivial. If the pair (g, P ) is also persistently
preperiodic for g, then we are done. Otherwise, by Theorem 2.4, there exists s0 ∈ S′ at which
Ps0 is preperiodic for gs0 . This completes the proof under this assumption of non-isotriviality
of (g, P ).

If (g, P ) is isotrivial, it is convenient to pass to a further finite branched cover S′ → S,
if necessary, and change coordinates so that the family gs is independent of s ∈ S′ and the
point Ps is constant. In these new coordinates, if the pair (g, P ) is persistently preperiodic,
the proof is complete. If the pair (g, P ) is isotrivial but with infinite orbit, we then repeat the
argument with a different choice of curve P . If the pair (g, P ) is isotrivial for all curves P
parameterizing points of a given large period for f , then each of these periodic points for f
is constant in these coordinates over S′. In particular, by an interpolation argument, f itself
must be a constant family. More precisely, choosing any period N > 2d+ 1, we would be able to
find a set of distinct points z1, z2, . . . , zN ∈ P1(C) so that fs(zi) = zi+1 for all s ∈ S′ and all i =
1, . . . , N − 1, and this would imply that the maps fs are constant in s (see [DeM16, Lemma 2.5]).
In other words, the pair (f, g) is isotrivial, violating the hypothesis. This completes the
proof.

3.2 Proof of Theorem 3.1 for any base S
Let m = dimC S. Let Ω be any Zariski-open subset of S × (P1)m. It suffices to show that there
exists a single point (s0, z1, z2, . . . , zm) ∈ Ω for which

zi ∈ Preper(fs0) ∩ Preper(gs0)
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for all i = 1, . . . ,m. Indeed, this shows Zariski density of the preperiodic points of Φ(m) in
S × Δm. For S × Δ� with � < m, we observe that the projection, forgetting some factors of Δ,
will still be Zariski dense, which will complete the proof.

The proof proceeds by induction on the dimension of S.
First let P1 denote an irreducible subvariety in S × (P1)m of codimension 1 having nontrivial

intersection with Ω, and for which z1 is periodic for fs for all (s, z1, . . . , zm) ∈ P1. As the periodic
points of f are Zariski dense in S × P1, we can always find such a P1. Projecting P1 to the z1
coordinate, we may view this P1 as single marked point defined on a finite (branched) cover S′

of S. Now consider the pair (g, P1) over S′, abusing the notation slightly to identify P1 with
its projection. If this pair is isotrivial over S′, then there is a change of coordinates (passing
to a further finite branched cover of S′ if necessary) so that the pair is constant. In this case,
we select a different periodic point P1 for f . If all periodic points of large period for f lead to
isotrivial pairs for g, then we carry out an interpolation argument as in § 3.1 to deduce that f
must also be constant in the new coordinates over S′. In other words, the pair (f, g) is isotrivial,
a contradiction.

Thus, we may assume that there exists a periodic point P1 for f so that P1 ∩ Ω = ∅ and
the pair (g, P1) is not isotrivial over S. It follows from Theorem 2.4 that the pair (g, P1) is
either persistently preperiodic, in which case we let x1 be any element of P1 ∩ Ω, or there exists
a point x1 = (s1, z1, . . . , zm) ∈ P1 ∩ Ω so that z1 is preperiodic to a repelling cycle of gs1 . We
then consider an irreducible subvariety P ′

1 ⊂ P1 containing x1 along which z1 is persistently
preperiodic for g. Note that the codimension of P ′

1 is at most 1 and its projection to S will
have codimension at most 1. If the codimension is 1, we let S1 be its projection to the base.
If this codimension is 0, we replace P ′

1 with its intersection with π−1(S1) for an arbitrarily
chosen irreducible subvariety S1 of codimension 1 in S passing through s1. Therefore, P ′

1 has
nonempty intersection with Ω, the projection of P ′

1 to the base S has dimension m− 1, and the
z1-coordinate of P ′

1 is persistently preperiodic for both f and g. If S1 is singular, we replace
it with the regular part, so that it will be a smooth and irreducible quasiprojective variety of
dimension m− 1.

We now repeat the process, beginning with a subvariety P2 of codimension 1 in P ′
1, having

nonempty intersection with Ω, and for which the second coordinate z2 is periodic for f over all
of S1, with z2 not identically equal to z1 throughout P2. Projecting to the z2-coordinate, we
consider the associated pair (g, P2), passing to a further finite branched cover S′ → S if needed.
If this pair is isotrivial, we replace P2 with another choice of periodic point for f ; as above, if all
periodic points of sufficiently large period for f lead to isotrivial pairs (g, P2), then the pair (f, g)
would be isotrivial along S1. Here we use the assumption that (f, g) is maximally non-isotrivial,
not just non-isotrivial. So we can find a P2 that has nonempty intersection with Ω and so that,
when projecting to the z2-coordinate, the pair (f, P2) is persistently periodic and the pair (g, P2)
is not isotrivial.

In this way, we inductively reduce the problem to the argument of § 3.1. This completes the
proof of Theorem 3.1.

4. Non-degeneracy and the bifurcation measure

In this section, we work in the more general setting of families of polarized dynamical systems over
a complex quasiprojective variety S. We review some important notions introduced in [GV19]
and [YZ21] and remind the reader of their relations to the non-degeneracy conditions introduced
by Habegger [Hab13] and studied by Gao [Gao20a] for subvarieties in families of abelian varieties.
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Finally, in § 4.3, we establish a criterion for non-degeneracy for certain families of polarized
dynamical systems and subvarieties.

4.1 The bifurcation current and measure for families of endomorphisms
Suppose that S is a smooth and irreducible quasiprojective variety defined over C. A family
of ( k-dimensional) polarized dynamical systems (X → S,Φ,L) is given by a family of complex
projective varieties X → S, flat over S with smooth fibers Xs of dimension k over each s ∈ S, a
regular map Φ : X → X that preserves the fibers Xs, and a relatively ample line bundle L on X
such that for each s ∈ S, we have (Φ|Xs)∗(L|Xs) � (L|Xs)⊗d for some d > 0.

Example 4.1. Let Φ = (f, g) be an algebraic family of pairs over S, of degree d ≥ 1, as considered
in the previous section. Then Φ defines a family of 2-dimensional polarized dynamical systems.
The degree d is the degree of a polarization of Φ, taking line bundle L = p∗1O(1) ⊗ p∗2O(1) on
S × P1 × P1, where pi : S × P1 × P1 → P1 is the projection to the ith factor of P1, i = 1, 2.

As explained, for instance, in [GV19, § 2.3], to such a family we can associate a dynamical
Green current, denoted by T̂Φ, as follows. We let ω̂ be a smooth positive (1, 1)-form on X
cohomologous to a multiple of L such that ωs := ω̂|Xs is Kähler for all s ∈ S and∫

Xs

ωk
s = 1 (4.1)

for each s ∈ S, where k = dimXs. The sequence d−n(Φn)∗(ω̂) converges weakly to a closed
positive (1, 1)-current T̂Φ with continuous potentials.

Example 4.2. For X = S × P1 and family of maps f , the dynamical Green current of f coin-
cides with the current defined in (2.1), taking ω̂ to be p∗ω for the projection p : S × P1 → P1.
If Φ = (f, g) is an algebraic family of pairs over S, polarized as in Example 4.1, then T̂Φ =
(1/

√
2)(p∗1T̂f + p∗2T̂g), taking ω̂ = (1/

√
2)(p∗1ω̂ + p∗2ω̂) with pi : S × P1 × P1 → S × P1 the pro-

jection to the product of S with the ith factor of P1, i = 1, 2. Note that the constant 1/
√

2 comes
from the normalization (4.1).

Suppose (X → S,Φ,L) is a family of k-dimensional polarized dynamical systems. Suppose
that Y is closed subvariety of X of codimension equal to r, defining a flat family over S. As
defined in [GV19], the bifurcation current for the triple (X,Y,Φ) is defined by

T̂Φ,Y := π∗(T̂
∧(k−r+1)
Φ ∧ [Y ]), (4.2)

where π : X → S is the projection. The bifurcation measure is given by

μΦ,Y := (T̂Φ,Y )∧(dim S) (4.3)

on S. The wedge powers are well defined because the current has continuous potentials. Also as
a consequence of having a continuous potential, the bifurcation measure μΦ,Y does not charge
pluripolar sets in S (see [Kli91, Proposition 4.6.4]).

Example 4.3. Suppose that f is an algebraic family of maps on P1 of degree d > 1, parameterized
by a smooth and irreducible S. Let Y be the critical locus of f in S × P1. Then the bifurcation
current T̂f,Y coincides with the bifurcation current T̂f,bif defined above in (2.2), introduced in
[DeM01, DF08], and the bifurcation measure coincides with that of [BB07].

Example 4.4. For any algebraic family of pairs Φ = (f, g) over a smooth and irreducible complex
quasiprojective variety S, with projection π : S × (P1)2 → S, we let X = S × (P1 × P1) and set
Y = S × Δ, where Δ ⊂ P1 × P1 is the diagonal. Then we refer to T̂Φ,Y as the pairwise-bifurcation
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current associated to Φ and denote it by T̂Φ,Δ. In the notation of Example 4.2, we have

T̂Φ,Δ = π∗(T̂∧2
Φ ∧ [S × Δ])

= π∗(p∗1T̂f ∧ p∗2T̂g ∧ [S × Δ])

= π′∗(T̂f ∧ T̂g),

where π′ denotes the projection from S × P1 to S. In particular, when S is the total space
Ratd × Ratd, this agrees with the pairwise-bifurcation current T̂Δ defined in (1.1). The pairwise-
bifurcation measure is defined as

μΦ,Δ = (T̂Φ,Δ)∧(dim S).

4.2 Non-degeneracy and equidistribution
Suppose (X → S,Φ,L) is a family of k-dimensional polarized dynamical systems. Suppose that
Y is a closed subvariety of X of codimension equal to r, defining a flat family of subvarieties
in X. We say that the triple (X,Y,Φ) is non-degenerate if the current

T̂
∧(k−r+dim S)
Φ ∧ [Y ]

is nonzero on X. This is an exact analog of the notion of non-degeneracy introduced by Habegger
in [Hab13] and studied in general by Gao [Gao20a] for subvarieties in families of abelian varieties,
where the Betti form is replaced by T̂Φ on the total space X. This notion of non-degeneracy
agrees with the one introduced by Yuan and Zhang [YZ21, § 6.2.2] as they demonstrate in [YZ21,
Lemma 5.4.4].

For a family of hypersurfaces Y , Gauthier, Taflin, and Vigny recently observed a relation
between the bifurcation measure and non-degeneracy on a fiber power of X (see [GTV23];
compare [Yua21, Lemma 4.1]). For any integer m ≥ 1, let

Φ(m) : X(m) → X(m)

be the fiber power of Φ acting on the mth fiber power of X over S. It is polarized by the line
bundle p∗1L ⊗ · · · ⊗ p∗mL, where pi : X(m) → X is the projection to the ith factor. Let Y (m) be
the corresponding fiber power of Y over S. We continue to denote the projection to S by π.

Proposition 4.5 [GTV23, Proposition 1.4]. Suppose (X → S,Φ,L) is a family of k-dimensional
polarized dynamical systems, and let m = dimS. Assume that Y is a closed hypersurface in X,
defining a flat family of hypersurfaces over S. Then the bifurcation measure μΦ,Y on S satisfies

μΦ,Y = (T̂Φ,Y )∧m = π∗(T̂
∧(mk)

Φ(m) ∧ [Y (m)]).

In particular, the triple (X(m), Y (m),Φ(m)) is non-degenerate if and only if the bifurcation
measure μΦ,Y is nonzero.

Proof. The first equality is simply the definition of μΦ,Y , and we need to prove the second. Since
the dimension of each fiber of X → S is k, it follows that T̂∧(k+1)

Φ = 0 on X. Let m = dimS,
and note that the fibers of X(m) → S have dimension mk and Y (m) has codimension m. Let
pj : X(m) → X be the projection to the jth factor. Then there is a constant C > 0 so that

T̂
∧(mk)

Φ(m) = C(p∗1T̂Φ + · · · + p∗mT̂Φ)∧(mk)

= C
(mk)!
(k!)m

m∧
j=1

p∗j T̂
∧k
Φ .
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Because of the normalization that T̂∧(mk)

Φ(m) be a probability measure on each slice over t ∈ S, we
must take C = (k!)m/(mk)!. On the other hand, we have

[Y (m)] =
m∧

j=1

p∗j [Y ],

so that

T̂
∧(mk)

Φ(m) ∧ [Y (m)] =
m∧

j=1

p∗j (T̂
∧k
Φ ∧ [Y ])

and the conclusion follows. �
Now assume that the triple (X,Y,Φ) is defined over a number field and is non-degenerate.

Yuan and Zhang recently proved an equidistribution theorem in [YZ21] for points of small fiber-
wise canonical height in Y , extending a result of Kühne [Küh21]. A closely related result has
also recently been obtained by Gauthier [Gau21]. A sequence of points yn ∈ Y (Q) is said to be
generic if no subsequence lies in a proper, Zariski-closed subset of Y .

Theorem 4.6 [YZ21, Theorem 6.2.3]. Suppose (X → S,Φ,L) is a family of k-dimensional
polarized dynamical systems over smooth, irreducible, quasiprojective S, defined over a number
field K. Suppose that the triple (X,Y,Φ) is non-degenerate, where Y is a closed subvariety of X
of codimension r, defining a flat family over S, and also defined over K. Then for any generic
sequence of preperiodic points of Φ in Y (K), their Gal(K/K)-orbits are uniformly distributed

with respect to the measure T̂
∧(k−r+dim S)
Φ ∧ [Y ] on X(C). More precisely, given any continuous

function ϕ with compact support in X, and given any generic sequence {yn} of points in Y (K)
that are preperiodic for Φ, we have

1
# Gal(K/K) · yn

∑
y∈Gal(K/K)·yn

ϕ(y) −→ 1
vol(Y )

∫
X(C)

ϕ(T̂∧(k−r+dim S)
Φ ∧ [Y ]),

as n→ ∞ where vol(Y ) =
∫
X(C) T̂

∧(k−r+dim S)
Φ ∧ [Y ].

4.3 A repelling-cycle criterion to show non-degeneracy
Suppose (π : X → S,Φ,L) is a family of k-dimensional polarized dynamical systems. Now sup-
pose that Y is a closed subvariety of X of codimension m = dimS in X, defining a flat family of
subvarieties with codimension m. We say that a point y0 ∈ Y (C) is a rigid repeller for (X,Y,Φ)
if:

(1) some iterate x0 = Φn0(y0) is a repelling periodic point for Φs0 , where s0 = π(y0);
(2) the point y0 lies in the support of the equilibrium measure μs0 :=

(
T̂Φ|Xs0

)k in the fiber
Xs0 ; and

(3) there is a holomorphic section η over a neighborhood of s0 in S parameterizing a repelling
periodic point of Φs, with η(s0) = x0, so that x0 is an isolated point of the intersection of
Φn0(Y ) with the image of η.

Remark 4.7. If Φ = (f, g) is an algebraic family of pairs over S, as defined in § 3 and Example 4.1,
with m = dimS, a rigid repeller for the fiber product Φ(m) : X(m) → X(m) in Y = S × Δm ⊂
X(m), where X = S × P1 × P1, coincides with the notion of the rigid m-repeller for Φ from the
Introduction. In this setting, the repelling periodic points and their preimages are always in the
support of the equilibrium measure.
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The next proposition is a minor modification of [GV19, Lemma 4.8], and the proof is very
similar to that of [BBD18, Proposition 3.7].

Proposition 4.8. Suppose (X → S,Φ,L) is a family of k-dimensional polarized dynamical
systems over quasiprojective S. Suppose that Y is a closed subvariety of X of codimension equal
to dimS, defining a flat family over S. Suppose there exists a rigid repeller for (X,Y,Φ) at
y0 ∈ Y (C). Then y0 lies in the support of the (nonzero) measure

(T̂Φ)∧k ∧ [Y ]

on X(C). In particular, the triple (X,Y,Φ) is non-degenerate.

Proof. Let d ≥ 2 be the polarization degree of Φ. Let x0 = Φn0(y0) ∈ Φn0(Y ) be a repelling
periodic point in the orbit of y0. Let s0 = π(x0) ∈ S. Since y0 is in the support of the equilibrium
measure μs0 = (T̂Φ|Xs0

)k, it follows that x0 is also in this support. Let p be the period of x0. Let
η denote the parameterization of the nearby repelling periodic points over a neighborhood U of
s0, and let Γη denote its image in X. By hypothesis, x0 is an isolated point of the intersection
of Γη with Φn(Y0).

Shrinking U if necessary, there exists a tubular neighborhood N of Γη in π−1(U) and a
constant K > 1 so that

dXs(Φ
p
s(x),Φ

p
s(η(s))) ≥ K dXs(x, η(s))

for all x ∈ N ∩Xs and all s ∈ U and for any reasonable choice of distance function dXs on the
fibers. In particular, there exists a nested sequence of tubular neighborhoods Nn ⊂ N around
Γη ∩ π−1(U), for n ≥ 1, so that Φnp : Nn → N is proper and one-to-one. Then for all integers
n ≥ 0,

dnpk

∫
Nn

T̂∧k
Φ ∧ [Φn0(Y )] =

∫
Nn

(Φnp)∗T̂∧k
Φ ∧ [Φn0(Y )]

=
∫

N
T̂∧k

Φ ∧ (Φnp)∗[Φn0(Y )]

=
∫

N
T̂∧k

Φ ∧ [Φn0+np(Y )].

On the other hand, we have

lim
n→∞χN [Φn0+np(Y )] = α[Xs0 ∩N ]

for some α > 0, in the weak sense of currents, where χN is the indicator function. Indeed, since
N ∩ Φn0(Y ) ∩ Γη = {x0}, the vertical expansion of Φp shows that the limit must be supported
in the fiber Xs0 . As the limit current is closed and positive and nonzero, it must be (a scalar
multiple of) the current of integration along Xs0 ∩N . Finally, since x0 is in the support of the
measure μs0 = T̂∧k

Φ |Xs0
, we have ∫

N
T̂∧k

Φ ∧ [Xs0 ∩N ] > 0

so that ∫
N
T̂∧k

Φ ∧ [Φn0+np(Y )] > 0

for all sufficiently large n.
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Now choose an open set V around y0 so that Φn0 : V → N is proper. Then

dn0k

∫
V
T̂∧k

Φ ∧ [Y ] =
∫

V
(Φn)∗T̂∧k

Φ ∧ [Y ]

=
∫

N
T̂∧k

Φ ∧ (Φn0)∗[Y ]

≥
∫

N
T̂∧k

Φ ∧ [Φn0(Y )]

≥
∫

Nn

T̂∧k
Φ ∧ [Φn0(Y )]

for all n ≥ 1. Therefore, ∫
V
T̂∧k

Φ ∧ [Y ] > 0. �

Now let S be a smooth and irreducible complex quasiprojective variety. Recall that an
algebraic family of pairs Φ = (f, g) was defined in § 3, and the pairwise-bifurcation current
was defined in Example 4.4.

Corollary 4.9. Let S be a smooth and irreducible complex quasiprojective variety of dimen-
sion m. Suppose that Φ = (f, g) is an algebraic family of pairs over S. If there exists a rigid
m-repeller at some parameter s0 ∈ S(C), then the pairwise-bifurcation measure μΦ,Δ is nonzero
on S(C).

Proof. As observed above, a rigidm-repeller for Φ implies there is a rigid repeller for themth fiber
power Φ(m) in S × Δm ⊂ S × (P1 × P1)m. Proposition 4.8 implies that (T̂Φ(m))∧2m ∧ [S × Δm] is
nonzero. Proposition 4.5 then implies that the measure μΦ,Δ is nonzero on S. �

5. Proof of Theorem 1.8

We will deduce Theorem 1.8 from the following result, combined with the material of the previous
section. Recall that the pairwise-bifurcation measure μΦ,Δ was defined in Example 4.4.

Theorem 5.1. Fix degree d ≥ 2, and suppose that S is a smooth, irreducible quasiprojective
variety of dimension m parameterizing an algebraic family of pairs Φ = (f, g) of degree d ≥ 2
over S, all defined over Q. Assume that f and g are not both conjugate to z±d over the algebraic
closure of k = Q(S). If the pairwise-bifurcation measure μΦ,Δ is nonzero on S(C), then the set
of points

{(s, x1, . . . , xm+1) ∈ (S × (P1)m+1)(Q) : xi ∈ Preper(fs) ∩ Preper(gs) for each i}
is not Zariski dense in S × (P1)m+1.

To prove Theorem 5.1, we follow the proof strategy from [MS22], which exploits the product
structure of (f, g) acting on P1 × P1 and relies on the general equidistribution result of Yuan and
Zhang [YZ21], stated above as Theorem 4.6. As a consequence, we infer the following result.

Theorem 5.2. Fix degree d ≥ 2, and suppose that S is a smooth, irreducible quasiprojective
variety parameterizing an algebraic family of pairs Φ = (f, g) of degree d ≥ 2 over S, all defined
over Q. Assume that f and g are not both conjugate to z±d over the algebraic closure of k = Q(S).
If the pairwise-bifurcation measure μΦ,Δ is nonzero on S(C), then there exist a Zariski-closed
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proper subvariety V ⊂ S defined over Q and M > 0 such that

#Preper(fs) ∩ Preper(gs) ≤M,

for all s ∈ (S \ V )(C).

5.1 Product structure
Let Φ = (f, g) act on P1 × P1, defined over the field k = Q(S). Let Δ ⊂ P1 × P1 be the diag-
onal. For m = dimS, we let Φ(m) denote the product map acting on (P1 × P1)m over k.
Following [MS22], we consider the product of (P1 × P1)m with another copy of P1, acted on
by f or by g. This defines maps over C as

(Φ(m), f) : S × (P1)2m+1 → S × (P1)2m+1

(s, z1, . . . , z2m+1) �→ (s, fs(z1), gs(z2), fs(z3), . . . , gs(z2m), fs(z2m+1))

and

(Φ(m), g) : S × (P1)2m+1 → S × (P1)2m+1

(s, z1, . . . , z2m+1) �→ (s, fs(z1), gs(z2), fs(z3), . . . , gs(z2 dim S), gs(z2m+1)).

Let
p1 : S × (P1 × P1)m × P1 → S × (P1 × P1)m

be the projection forgetting the final factor of P1. Let

p2 : S × (P1 × P1)m × P1 → S × P1

denote the projection forgetting the intermediate factor.

Proposition 5.3. Let S be an irreducible quasiprojective complex algebraic variety of dimen-
sion m, and suppose Φ = (f, g) is an algebraic family of pairs of degree d > 1 over S. We
have

Mf := T̂
∧(2m+1)

(Φ(m),f)
∧ [S × Δm × P1] = p∗1R ∧ p∗2T̂f ,

where

R := T̂∧2m
Φ(m) ∧ [S × Δm].

Similarly for g and

Mg := T̂
∧(2m+1)

(Φ(m),g)
∧ [S × Δm × P1].

Consequently, if the bifurcation measure μΦ,Δ is nonzero for a family of pairs Φ = (f, g)
parameterized by S, then Mf and Mg are nonzero.

Proof. Suppose that f is an algebraic family of maps on P1 over S. Then T̂f on S × P1 satisfies
T̂∧2

f = 0. It follows that, for any fiber product of such maps, (f1, . . . , f�) on (P1)� over S, we have

T̂∧�
(f1,...,f�)

= q∗1T̂f1 ∧ · · · ∧ q∗mT̂f�

for the projections qi : S × (P1)� → S × P1. In the setting of the proposition, it follows that

T̂
∧(2m)

Φ(m) = q∗1T̂f ∧ q∗2T̂g ∧ · · · ∧ q∗2m−1T̂f ∧ q∗2mT̂g

and
T̂
∧(2m+1)

(Φ(m),f)
= p∗1T̂

∧(2m)

Φ(m) ∧ p∗2T̂f .
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The first statements of the proposition follow. Finally, since Δ ⊂ P1 × P1 is a hypersurface, we
know from Proposition 4.5 that μΦ,Δ is nonzero if and only if

R = T̂
∧(2m)

Φ(m) ∧ [S × Δm] > 0.

In this case, we see immediately that Mf and Mg are also nonzero. �

5.2 Proof of Theorem 5.1
Recall that a sequence of points zn in a variety Z is said to be generic if no subsequence lies in
a proper, Zariski-closed subset of Z.

Let m = dimC S. Note that the set

{(s, x1, . . . , xm+1) ∈ (S × (P1)m+1)(Q) : xi ∈ Preper(fs) ∩ Preper(gs) for each i}
in the statement of Theorem 5.1 is naturally identified with the set

Preper(Φ(m+1)) ∩ (S(Q) × Δm+1) ⊂ S × (P1 × P1)m+1,

for the (m+ 1)th fiber power of Φ over S.
Let K be a number field over which Φ and S are defined. Suppose, towards a contradiction,

that Preper(Φ(m+1)) is Zariski dense in S(K) × Δm+1. Via the projection of Δ ⊂ P1 × P1 to
the component P1’s, these preperiodic points of Φ(m+1) in S × Δm+1 project to define a generic
sequence of points in (S × Δm × P1)(K) that are preperiodic for both the maps (Φ(dim S), f)
and (Φ(dim S), g). Since the pairwise-bifurcation measure μΦ,Δ is nonzero on S(C), we know from
Proposition 5.3 that the measures Mg and Mf are nonzero on (S × (P1 × P1)m × P1)(C). In
other words, setting

X = S × (P1 × P1)m × P1 and Y = S × Δm × P1,

the triples (X,Y, (Φ(m), f)) and (X,Y, (Φ(m), g)) are non-degenerate. By Theorem 4.6, it follows
that the Gal(K/K)-orbits of these preperiodic points must be uniformly distributed with respect
to the measures Mf and Mg. Consequently, we have Mf = Mg in X(C).

Now let p1 : S × (P1 × P1)m × P1 → S × (P1 × P1)m be the projection forgetting the final
factor of P1, as in Proposition 5.3. By slicing Mf and Mg, we conclude that∫

S×(P1)2m

∫
P1

ϕ(t, x) dμfπ(t)
(x) dR(t) =

∫
S×(P1)2m

∫
P1

ϕ(t, x) dμgπ(t)
(x) dR(t) (5.1)

for every continuous and compactly supported function ϕ on S × (P1)2m+1 and the R of
Proposition 5.3. Here, π : S × (P1)m → S denotes the projection to the base, and μfπ(t)

and
μgπ(t)

are the measures of maximal entropy introduced in § 2.1. But since π∗R = μΦ,Δ, we infer
that

μfs = μgs

on P1 for μΦ,Δ-almost every parameter s ∈ S(C). Indeed, suppose there exists b ∈ S(C) with
μfb

= μgb
and so that μΦ,Δ(U) > 0 for every open neighborhood U of b. Then we can find

a continuous function ψ on P1(C) such that
∫
ψμfb

= ∫
ψμgb

. By continuity of the mea-
sures we find that

∫
ψμft =

∫
ψμgt for all t in a neighborhood U of b. Therefore, setting

ϕ(t, x1, . . . , x2m, x2m+1) = hb(t)ψ(x2m+1) on S × (P1)2m+1 for a bump function hb supported
in U , the equality (5.1) will fail.

Now we use the hypothesis that f and g are not both conjugate to a power map z±d

over all of S. Let V ⊂ S be the (possibly empty) proper subvariety over which the maps f
and g are both conjugate to ±zd. It follows from Theorem 2.1 that Preper(fs) = Preper(gs)
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for all s ∈ (suppμΦ,Δ \ V )(C). As μΦ,Δ does not charge pluripolar sets, we conclude that
Preper(fs) = Preper(gs) for all s ∈ (S \ V )(C). Indeed, the preperiodic points of f or g each form
a countable union of hypersurfaces in (S \ V ) × P1. For each irreducible hypersurface P ⊂ S × P1

which is preperiodic for f , its intersection with Preper(g) contains all of P ∩ π−1(suppμΦ,Δ \ V )
and so cannot lie in a countable union of hypersurfaces of P . Therefore P must be persistently
preperiodic for g. This shows that Preper(fs) ⊂ Preper(gs) for all s ∈ (S \ V )(C); equality follows
from the same argument in reverse.

Again using Theorem 2.1, it follows that μfs = μgs for all s ∈ (S \ V )(C). By continuity of
the equilibrium measures, we conclude that μfs = μgs for all s ∈ S(C). Now fix a small open D

in the base S, and let U be a continuous potential for T̂f − T̂g for (s, z) ∈ D × P1. As T̂f and
T̂g have the same slice measures for every s, we see that U depends only on the variable s ∈ D.
As T̂∧2

f = T̂∧2
g = 0, we compute

T̂Φ,Δ = π′∗(T̂f ∧ T̂g) = −1
2
ddcπ′∗(Udd

cU) = −1
2
(ddc)s

(∫
P1

U(s, z)(ddc)zU(s, z)
)

= 0,

for the projection π′ : S × P1 → S (as in Example 4.4). The current T̂Φ,Δ vanishes on
all open D ⊂ S, so we may conclude that μΦ,Δ = 0 on all of S(C), contradicting our
hypothesis. �

5.3 Proof of Theorem 1.8
We assume there exists a rigid m-repeller for the family (f, g) over S, where m = dimS.
Corollary 4.9 implies that the bifurcation measure μΦ,Δ is nonzero on the space S. Finally,
Theorem 5.1 gives us the result we desire. �

5.4 Proof of Theorem 5.2
Recall that a sequence of points sn ∈ S is said to be generic if no subsequence lies in a proper,
Zariski-closed subset of S. We start with the following lemma.

Lemma 5.4. Let Φ = (f, g) be an algebraic family of pairs parameterized by a smooth and
irreducible S, defined over C. If there is a generic sequence of points sn ∈ S(C), n ≥ 1,
over which the number of common preperiodic points for fsn and gsn is either infinite or
increasing to ∞, then the preperiodic points of Φ(m) are Zariski dense in S × Δm for every
m ≥ 1.

Proof. Fix m ≥ 1. For each n, let

M(n) ≤ # Preper(fsn) ∩ Preper(gsn) ∈ N ∪ {∞}
so be chosen so that M(n) → ∞ as n→ ∞. The points of Preper(fsn) ∩ Preper(gsn)
determine a configuration of M(n)m points in Δm that are preperiodic for Φ(m)

sn .
Note that this collection of points is symmetric under permutation of the coordinates
on Δm.

Let Z be the Zariski closure of these points in S × Δm. The symmetry of the preperiodic
points in Δm implies that Z is also symmetric under permuting the m coordinates of Δm.
Moreover, because the sequence {sn} is Zariski dense in S, we see that π(Z) = S for the projection
π : S × Δm → S.

Now suppose that Z is not all of S × Δm. Then, over a Zariski-open subset U ⊂ S, Z is
contained in a family of hypersurfaces in Δm � (P1)m over U that are symmetric under permuting
the m coordinates. Shrinking U if necessary, these hypersurfaces will have a well-defined degree
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(r, . . . , r) for some r ≥ 1; that is, each projection that forgets one component Δ will be of degree r.
But since the sequence {sn} is generic, this implies that M(n) ≤ r for all sufficiently large n.
This is a contradiction. �

Now to prove Theorem 5.2, let S be a smooth, irreducible quasiprojective variety parameter-
izing an algebraic family of pairs (f, g), all defined over Q as in its statement. By Theorem 5.1
and in view of Lemma 5.4 we infer that there exists a strict Zariski closed V ⊂ S defined over Q

and M ∈ R such that

#Preper(fs) ∩ Preper(gs) ≤M, (5.2)

for all s ∈ (S \ V )(Q). Write U := S \ V . We want to show that M can be chosen so that (5.2)
holds for all s ∈ U(C). Fix s0 ∈ U(C) \ U(Q) and let Ps0 := Preper(fs0) ∩ Preper(gs0). Let L
be a finitely generated subfield of C (with transcendence degree at least 1) such that Φs0 is
defined over L. Thus, there is a quasiprojective variety X over Q of finite type with function
field L over which we can extend Φs0 (viewing s0 as an element of L) to an endomorphism
ΦX : X × P1 × P1 → X × P1 × P1 defined over Q. We also extend Ps0 to PX ⊂ X × P1 × P1.
Note that each specialization (ΦX)t = (ft, gt) for t ∈ X(Q) is naturally identified with some Φs

for s ∈ U(Q). Thus, for each t ∈ X(Q) we have a uniform bound on #Preper(ft) ∩ Preper(gt).
But clearly the specializations of the distinct points in PX remain distinct at some t ∈ X(Q).
The proof is complete. �

6. Quadratic polynomials

Before proceeding to the proof of Theorem 1.1, we present in this section a new proof of
Theorem 1.12. The strategy of proof is the same as for Theorem 1.1, but the argument for
proving that the pairwise-bifurcation measure is nonzero is considerably simpler for these pairs
of quadratic polynomials. In addition, because the parameter space is two dimensional, we can
use Theorem 1.14 to complete the proof of Theorem 1.12, allowing us to provide a complete
description of the subset of pairs of quadratic polynomials for which the uniform bound cannot
exist.

Theorem 6.1. Let fc(z) = z2 + c for c ∈ C, and consider the algebraic family of pairs Φ(c1,c2) =
(fc1 , fc2) parameterized by (c1, c2) ∈ C2. The pairwise-bifurcation measure μΦ,Δ is nonzero
on C2.

Proof. We appeal to Corollary 4.9 and study the pair

f−21/16(z) = z2 − 21/16 and f−29/16(z) = z2 − 29/16.

These two polynomials have at least 26 common preperiodic points in C; see [DH22]
for a construction of these quadratic polynomials and similar examples in higher degrees.
We will show that two of the common preperiodic points define a rigid 2-repeller over
S = C2.

The procedure is as follows. Let (a0, b0) = (−21/16,−29/16) ∈ S. Suppose p0, q0 ∈ C are
common preperiodic points, each iterating to a repelling cycle for both fa0 and fb0 , and suppose
that we are given a holomorphic map R : U → C4 from a small neighborhood U of (a0, b0) ∈ S,
with coordinate functions defined by

R(c1, c2) = (p1(c1), p2(c2), q1(c1), q2(c2)) ∈ C4,
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so that R(a0, b0) = (p0, p0, q0, q0) ∈ Δ2 and R(c1, c2) is persistently preperiodic for the fiber power
Φ(2) over S. Then the pair (p0, q0) will form a rigid 2-repeller in (P1 × P1)2 at (a0, b0) if

det

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 0 p′1(a0) 0
0 0 1 0 0 p′2(b0)
0 0 0 1 q′1(a0) 0
0 0 0 1 0 q′2(b0)

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0

for any such R. The first four columns are a basis for the tangent space to S × Δ2 in S × (P1 ×
P1)2, while the second two columns span the tangent space to the graph of R over a neighborhood
of (a0, b0) ∈ S. In fact, showing this determinant is nonzero is stronger than being a rigid repeller,
since this will show the graph of R intersects Δ2 transversely over (a0, b0).

A simple computation shows that the above determinant is equal to

det
(
p′1(a0) p′2(b0)
q′1(a0) q′2(b0)

)
.

Now let us take p0 = 5/4 and q0 = −7/4. The orbits of p0 and q0 for fa0 are

5
4 �→ 1

4 �→ −5
4 �→ 1

4 ,

−7
4 �→ 7

4 �→ 7
4

with each landing on a repelling cycle. The orbits of p0 and q0 for fb0 are

5
4 �→ −1

4 �→ −7
4 �→ 5

4

with each in a repelling cycle of period 3. To compute the values of p′1(a0), p′2(b0), q′1(a0), and
q′2(b0), we determine the equations for these cycles as a function of the parameter c, and use
implicit differentiation.

The equation for a (strictly) preperiodic point z so that fc(z) is in a cycle of period 2 is

P1(c, z) = 1 + c− z + z2 = 0,

so that

p′1(a0) = −∂P1

∂c

/
∂P1

∂z

∣∣∣∣
c=a0,z=p0

= −2/3.

The prefixed points for fc satisfy

Q1(c, z) = c+ z + z2 = 0,

so

q′1(a0) = −∂Q1

∂c

/
∂Q1

∂z

∣∣∣∣
c=a0,z=q0

= 2/5.

The period-three cycles for fc satisfy

P2(c, z) = 1 + c+ 2c2 + c3 + z + 2cz + c2z + z2 + 3cz2

+ 3c2z2 + z3 + 2cz3 + z4 + 3cz4 + z5 + z6.
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This gives

p′2(b0) = −∂P2

∂c

/
∂P2

∂z

∣∣∣∣
c=b0,z=p0

= 2/9,

q′2(b0) = −∂P2

∂c

/
∂P2

∂z

∣∣∣∣
c=b0,z=q0

= 2/9.

We conclude that

det
(
p′1(a0) p′2(b0)
q′1(a0) q′2(b0)

)
= − 32

135
= 0.

With Corollary 4.9, this completes the proof of Theorem 6.1. �
Proof of Theorem 1.12. Let S = C2. In view of Theorem 6.1, Theorem 5.2 implies that there is a
finite collection of irreducible, algebraic curves C1, . . . , Cm ⊂ S all defined over Q and a constant
B so that

|Preper(ft1) ∩ Preper(ft2)| ≤ B, (6.1)

for all (t1, t2) ∈ C2 \ (
⋃

iCi). Applying Theorem 1.14 to each Ci we see that (enlarging B if
necessary) the bound in (6.1) holds for each (t1, t2) ∈ C2 unless Preper(ft1) = Preper(ft2). The
latter happens only if the Julia sets of ft1 and ft2 coincide, and so by [BE87], only if t1 = t2,
which completes our proof. �

7. Monomials

In this section, we complete the proof of Theorem 1.1. To achieve this, we will prove the following
result.

Theorem 7.1. For each degree d ≥ 2, the pair (zd, ζ zd) for primitive root of unity ζd+1 = 1 has
a rigid (4d− 1)-repeller.

Recall that the bifurcation measure μΔ on the (4d− 1)-dimensional moduli space of pairs
(Ratd × Ratd)/Aut P1 was defined in (1.2). Via Corollary 4.9, Theorem 7.1 will imply that μΔ

is nonzero. But we must be careful: the moduli space is likely to be singular at pairs (f, g) with
automorphisms, and this pair (zd, ζ zd) has automorphisms of the form A(z) = ωz for ωd−1 = 1.
Throughout this section, we work with the subspace

Sd ⊂ Ratd × Ratd

consisting of pairs (f, g) where

f(z) =
zd + ad−1z + · · · + a1z

bd−1zd−1 + · · · + b1z +
(
1 +

∑d−1
i=1 ai −

∑d−1
j=1 bj

)
with ai, bj ∈ C and g is arbitrary. Note that Sd is a smooth and irreducible quasiprojective
complex algebraic variety. This normalization for f fixes the three elements of {0, 1,∞} in P1,
and the projection from Sd to the moduli space (Ratd × Ratd)/Aut P1 is finite-to-one. In other
words, this Sd defines a maximally non-isotrivial algebraic family of pairs of degree d, with
dimSd = 4d− 1. It is not surjective to the moduli space of pairs, but it covers a Zariski-open
subset. The pair (zd, ζzd) is an element of Sd for any choice of primitive (d+ 1)th root of unity ζ.

7.1 Proof of Theorem 1.1, assuming Theorem 7.1
Let μΦ,Δ denote the pairwise-bifurcation measure on Sd(C) for the family of all pairs Φ = (f, g)
parameterized by Sd, as defined in (4.3) and Example 4.4. With Theorem 7.1, we may apply
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Corollary 4.9 to deduce that the pairwise-bifurcation measure μΦ,Δ is nonzero on Sd(C). We
then apply Theorem 5.2 to conclude that there is a Zariski-open subset U of Sd, defined over
Q, for which there is a uniform bound on the number of common preperiodic points of fs and
gs for all s ∈ U(C). Taking the union of all (Aut P1)-orbits of U in Ratd × Ratd completes the
proof. �

7.2 Proof of Theorem 1.5, assuming Theorem 7.1
From § 7.1, we know that the measure μΦ,Δ is nonzero on the space Sd. By construction, the
natural map from Sd to the moduli space of pairs (Ratd × Ratd)/Aut P1 is dominant and finite-
to-one to its image. Recall that the pairwise-bifurcation measure μΔ was defined in (1.2). It is
(a nonzero multiple of) the push-forward of μΦ,Δ under the natural map from Sd. Therefore μΔ

is nonzero. �

7.3 Proof of Theorem 1.2, assuming Theorem 7.1
Fix degree d ≥ 2. Let Pd be the space of polynomial pairs of the form

(zd + a2z
d−2 + · · · + ad, b0z

d + · · · + bd)

with ai, bj ∈ C and b0 = 0, parameterized by their coefficients. This space Pd has dimension
2d and maps surjectively and finite-to-one to the moduli space of polynomial pairs (Polyd ×
Polyd)/Aut C. Theorem 7.1 implies that the pair (zd, ζ zd) for primitive root of unity ζd+1 = 1
has a rigid (2d)-repeller over the parameter space Pd. As in § 7.1, we deduce the uniform bound
on the number of common preperiodic points for all pairs of polynomials in a Zariski open subset
of Pd. �

7.4 Rigidity of the monomial pair
We now aim to prove Theorem 1.10. Fix degree d ≥ 2. Let f0(z) = zd and g0(z) = ζzd for ζ =
e2πi/(d+1). By conjugating the image of ψ and shrinking the domain disk if necessary, we may
assume that its image lies in the subvariety Sd ⊂ Ratd × Ratd. Thus, let D ⊂ C denote the unit
disk, and suppose that ψ = (ψ1, ψ2) : D → Sd is a holomorphic map with ψ(0) = (f0, g0) so that

Preper(ψ1(t)) ∩ J(ψ1(t)) = Preper(ψ2(t)) ∩ J(ψ2(t))

for all t ∈ D. We need to show that ψ is constant.

Remark 7.2. The conclusion of Theorem 1.10 is false if we allow ζ to be a root of unity of any
order ≤ d. For each m ≤ d and ζ with ζm = 1, let

fc(z) = zd−m(zm + c) and gc(z) = ζfc(z)

for c ∈ C. Then ζ is a symmetry of the Julia set of fc, and fc(ζz) = ζd−mfc(z) = ζdfc(z). Note
that gn

c (z) = ζ1+···+dn−1
fn

c (z) for all n and all c. If a point x is preperiodic for fc, then the iterates
gn
c (x) must eventually cycle, and vice versa. That is, Preper(fc) = Preper(gc) for all c ∈ C and
J(fc) = J(gc) for all c ∈ C. See, for example, [BE87] for more information on symmetries.

Returning to our setting, where ζ = e2πi/(d+1), note that the second iterates of f0 and g0
coincide. We first observe that the same relation must hold throughout D; that is, we have

ψ1(t)2 = ψ2(t)2

for all t ∈ D. Indeed, both f0 and g0 are J-stable in Ratd, and so there is a holomorphic motion of
the Julia sets, inducing conjugacies between ψi(0) and ψi(t) on their Julia sets for t small, i = 1, 2.
In particular, because all preperiodic points of ψi(t), i = 1, 2, in the Julia set must coincide for
all t, the motions zt of these preperiodic points z ∈ J(ψ1(0)) = J(ψ2(0)) must coincide for ψ1(t)
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and for ψ2(t), for all t small. The induced conjugacy forces a relation on the second iterates,
ψ1(t)2(zt) = ψ2(t)2(zt), holding for all preperiodic points z ∈ J(ψ1(0)) = J(ψ2(0)) for all t small.
As there are infinitely many preperiodic points in the Julia set, we have equality of iterates
ψ1(t)2 = ψ2(t)2 for all t small. Finally, by holomorphic continuation, the equality persists for all
t ∈ D.

Now consider the map F = f2 − g2 from the space Ratd × Ratd to the set of all rational
functions R2d2 ⊂ C(z) of degree at most 2d2. Recall that the image of ψ lies in the subspace
Sd, which maps finite-to-one to (Ratd × Ratd)/Aut P1, and we have shown that F (ψ(t)) = 0
for all t ∈ D. We aim to conclude that ψ is constant. Choosing coefficients for coordinates on
Ratd × Ratd near the point (f0, g0) and on the target space R2d2 , it is enough to show that the
derivative matrix DF(f0,g0) has the maximal possible rank of 4d− 1. Indeed, since F vanishes on
the fiber of the quotient Ratd × Ratd → (Ratd × Ratd)/Aut P1 through (f0, g0), this will imply,
by the chain rule, that some (possibly higher-order) derivative of t �→ F (ψ(t))(z) will be nonzero
at t = 0, whenever ψ is non-constant.

We have thus reduced the proof of Theorem 1.10 to the following lemma.

Lemma 7.3. For d ≥ 2, let

f(z) =
adz

d + · · · + a0

bdzd + · · · + b1z + 1
and g(z) =

Adz
d + · · · +A0

Bdzd + · · · +B1z + 1
.

Let F = f2 − g2. Let �a = (1, 0, . . . , 0) corresponding to zd and �A = (ζ, 0, . . . , 0) corre-
sponding to ζzd for ζd+1 = 1 a primitive (d+ 1)th root of unity. Then the vectors
∂aiF (�a), ∂bjF (�a), ∂Ak

F ( �A), ∂B�
F ( �A), for all i, k ∈ {0, . . . , d} and j, � ∈ {1, . . . , d} generate a

subspace of C[z] of dimension 4d− 1.

Proof. First we compute the derivatives

∂Ak
F ( �A) = −1

ζ
dzd2−d+k − ζkzdk,

∂B�
F ( �A) = ζ�zd2+�d + dzd2+�,

∂aiF (�a) = dzd2−d+i + zid,

∂bjF (�a) = −zd2+jd − dzd2+j .

(7.1)

Let M be the matrix with sth column consisting of the coefficients of zs−1 as they occur in order
∂A0F ( �A), . . . , ∂Ad

F ( �A), ∂B1F ( �A), . . . , ∂Bd
F ( �A), ∂a0F (�a), . . . , ∂ad

F (�a), ∂b1F (�a), . . . , ∂bd
F (�a).

Each is a polynomial in z with degree at most 2d2, so this a (4d+ 2) × (2d2 + 1) matrix.
Set {ei} to be the standard basis vectors for C4d+2. Note that all powers of z that appear,

appear twice with the exception of zd(d−1) = zd2−d and zd2+d which appear 4 times. The 2d−
1 + 1 + 2d− 1 = 4d− 1 nonzero columns of M are as follows:

mkd+1 = −ζkek+1 + e2d+k+2, k = 0, . . . , d− 2,

m(d−1)d+1 = −d
ζ
e1 − ζd−1ed + de2d+2 + e3d+1,

m(d−1)d+1+i = −d
ζ
ei+1 + de2d+2+i, i = 1, . . . , d− 1.

(7.2)

This covers the first d(d− 1) + d columns of the matrix. The central column of M is

md2+1 = −1
ζ
(d+ 1)ed+1 + (d+ 1)e3d+2.
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The following nonzero columns are

md2+1+j = ded+1+j − de3d+2+j , j = 1, . . . , d− 1,

md(d+1)+1 = ζed+2 + de2d+1 − e3d+3 − de4d+2,

md(d+1)+1+sd = ζs+1ed+s+2 − e3d+3+s, s = 1, . . . , d− 1.

(7.3)

From (7.2) and (7.3) we infer

〈mkd+1,m(d−1)d+k+1〉 = 〈ek+1, e2d+k+2〉, k = 1, . . . , d− 2,

〈md2+k+1,md(d+1)+1+(k−1)d〉 = 〈ed+k+1, e3d+k+2〉, k = 2, . . . , d− 1,
(7.4)

and the space generated by the above column vectors V has dimension 2d− 4 + 2d− 4. Note
that we have not yet considered the column vectors

m1 = −e1 + e2d+2,

md2 = −d
ζ
ed + de3d+1,

md2+2 = ded+2 − de3d+3,

m2d2+1 =
1
ζ
e2d+1 − e4d+2,

md2+1 = −1
ζ
(d+ 1)ed+1 + (d+ 1)e3d+2,

(7.5)

which are mutually orthogonal and so generate a 5-dimensional space W . Further W is contained
in the orthogonal complement of V so that dimV +W = 4d− 3. Finally, look at the vectors

m(d−1)d+1 = −d
ζ
e1 − ζd−1ed + de2d+2 + e3d+1,

md(d+1)+1 = ζed+2 + de2d+1 − e3d+3 − de4d+2.

(7.6)

They are clearly linearly independent so generate a 2-dimensional U . We can easily see that they
do not belong in V +W . Indeed, the only vector in V +W involving e1 is m1, but note that
it also involves e2d+2 and the coefficients do not match that of m(d−1)d+1. Similarly, the only
vector involving ed+2 in V +W is md2+2, which also involves e3d+3 in a way that does not match
md(d+1)+1.

Thus the rank of our matrix is at least dimV +W + U = 4d− 1 and the lemma follows. �
Remark 7.4. It is necessary to take a root of unity with order at least (d+ 1) for the dimension
in Lemma 7.3 to be 4d− 1. Clearly, the dimension is smaller for ζ = 1. If, on the other hand,
we chose ζ with ζd = ζk for some k ∈ {0, . . . , d− 2}, then (at least) two nonzero columns of the
matrix M in the proof of Lemma 7.3 are related. For instance, we have

m(d−1)d+k+1 = dmkd+1 = −dζdek+1 + de2d+2+k.

7.5 Proof of Theorem 7.1
With Theorem 1.10 in hand, we can now complete the proof of Theorem 7.1.

Enumerate the roots of unity as {ξi}i≥1, in any order. For pairs (f, g) ∈ Sd near (f0, g0), let
Pi (respectively, Qi) denote a parameterization of the preperiodic point of f (respectively, g)
that agrees with ξi at (f0, g0). By stability, each of these Pi and Qi is well defined and smooth
at (f0, g0). Note also that the subvariety of Sd defined by V1 = {P1 = Q1} cannot be all of Sd,
because there exist pairs (f, g) with all of their preperiodic points disjoint. Thus, the codimension
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of V1 is 1. Now consider the subvarieties Vi = {Pi = Qi} and their intersections with V1, for
all i. If all of them coincide with V1 near (f0, g0), then we would have Preper(f) ∩ J(f) =
Preper(g) ∩ J(g) persistently along V1 near (f0, g0). This contradicts Theorem 1.10. Therefore,
there exists an index i so that V1 ∩ Vi has codimension 2 near (f0, g0). Continuing inductively in
this way, we find a (4d− 1)-tuple of roots of unity that form a rigid (4d− 1)-repeller at (f0, g0).

This completes the proof of Theorem 7.1. �

8. Lattès maps

In this final section, we prove Theorem 1.3, restated here as Theorem 8.1.
Let L denote the Legendre family of flexible Lattès maps in degree 4, defined by

ft(z) =
(z2 − t)2

4z(z − 1)(z − t)

for t ∈ C \ {0, 1}. This ft is the quotient of the multiplication-by-2 endomorphism of the Legendre
elliptic curve

Et = {y2 = x(x− 1)(x− t)}
via the projection (x, y) �→ x. The preperiodic points of ft coincide with the projection of the
torsion points of Et.

Theorem 8.1. For each degree d ≥ 2, there exists a uniform bound Md so that either

|Preper(f) ∩ Preper(g)| ≤Md or Preper(f) = Preper(g)

for all pairs (f, g) with f ∈ L and g ∈ Ratd.

Corollary 8.2. There exists a constantM > 0 such that for every pair of elliptic curves E1 and
E2 over C, equipped with degree-two projections πi : Ei → P1 ramified at the 2-torsion points
Ei[2], we have

|π1(Etors
1 ) ∩ π2(Etors

2 )| ≤M,

if and only if π1(E1[2]) = π2(E2[2]).

Corollary 8.3. Let μ∞ ⊂ C denote the set of roots of unity. There exists a constant B > 0
such that

|π(Etors) ∩ μ∞| ≤ B,

for every elliptic curve E defined over C and any degree-2 projection π : E → P1 ramified at the
2-torsion points of E.

8.1 Non-isotriviality
Fix a degree d ≥ 2. Let L(d) := L × Ratd. Consider the map L(d) → Ratd2 × Ratd2 which
sends a pair (ft, g) to the pair (fd,t, g

2), where fd,t is the quotient of the multiplication-
by-d endomorphism on the elliptic curve Et and g2 is the second iterate of g. Note that
Preper(ft) = Preper(fd,t) for all t ∈ C \ {0, 1} and Preper(g) = Preper(g2).

Proposition 8.4. The induced map L(d) → (Ratd2 × Ratd2)/Aut P1 to the moduli space of
pairs is finite-to-one, so S = L(d) parametrizes a maximally non-isotrivial family of pairs of
maps of degree d2.

Proof. Two maps fd,t1 and fd,t2 are conjugate if and only if the elliptic curves Et1 and Et2 are
isomorphic. Moreover, the map Ratd → Ratd2 defined by iteration is finite, because it is proper
between affine varieties; see, e.g., [DeM05, Corollary 0.3]. �
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8.2 Non-degeneracy
Fix a degree d ≥ 2. Let L(d) := L × Ratd parameterize the family of pairs of degree d2 as in § 8.1.

Proposition 8.5. Let S → L(d) be a finite map from a smooth, irreducible quasiprojective
algebraic variety S of dimension m ≥ 1, defined over C, and let Φ = (f, g) be the associated
algebraic family of pairs of degree d2 over S. Then either there exists a rigid m-repeller at some
point s0 ∈ S(C) or Preper(fs) = Preper(gs) for all s ∈ S(C).

Proof. First note that Φ = (f, g) is maximally non-isotrivial, because the map to L(d) is finite.
Let m = dimS. Assume that we do not have Preper(fs) = Preper(gs) for all s ∈ S(C). To show
the existence of a rigid m-repeller at a parameter s0 ∈ S(C), we repeat the arguments in the
proof of Theorem 1.6 to build common preperiodic points. While Theorem 1.6 shows there are
at least m common preperiodic points for a Zariski-dense set of pairs (fs, gs) in S(C), it does
not give control over whether they are repellers nor whether they will be rigid. We use the fact
that f is Lattès to provide this.

For simplicity, we first give the proof assuming that both f and g are Lattès maps throughout
S. In particular, the periodic points of fs and gs are all repelling, for all s ∈ S(C). Moreover,
the subset of pairs (fs, gs) ∈ S for which Preper(fs) = Preper(gs) is a Zariski-closed algebraic
subvariety Z. Indeed, we know from Theorem 2.1 and its proof that this set coincides with the
set of pairs for which μfs = μgs , and so the pairs for which the corresponding elliptic curves are
isomorphic and equipped with the same degree-2 projections to P1. By replacing S with the
Zariski open subset S \ Z, we may assume that Preper(fs) = Preper(gs) for all s ∈ S.

Let P1 denote a hypersurface in S × P1 parameterizing a periodic point for fs, chosen so
that it is not persistently preperiodic for g. If no such hypersurface exists, then we deduce that
Preper(f) = Preper(g) throughout S (as a consequence of Theorem 2.1), which is a contradic-
tion. Thus, we assume that we have such a P1. As in the proof of Theorem 1.6, we will apply
Theorem 2.4 to the pair (g, P1) over a branched cover S1 → S where P1 may be viewed as the
graph of a point in S1 × P1. If the pair (g, P1) is isotrivial over S1, then we replace P1 with
another periodic point for f . If the pair (g, P1) is isotrivial for all periodic points P1 of a given
large period > 2d2, then interpolation (as in the proof of Theorem 1.6) implies that the pair
(f, g) must be isotrivial, contradicting our assumption. We conclude from Theorem 2.4 that
there exists a parameter s1 ∈ S1(C) at which P1 is preperiodic to a repelling point for gs1 . We
then let P ′

1 ⊂ P1 be the subvariety of codimension 1 containing (s1, P1(s1)) along which both f
and g are persistently preperiodic. Then P ′

1 projects to a subvariety S′
1 ⊂ S1 of codimension 1.

We now repeat the argument with another periodic point P2 for f over S′
1, distinct from P ′

1.
We continue inductively, using the fact that (f, g) is maximally non-isotrivial, to find m distinct
common preperiodic points at some parameter s0 ∈ S(C) that form a rigid m-repeller.

Now we assume that g is not everywhere Lattès. As the Lattès pairs (f, g) form a proper
subvariety of S, we replace S with a Zariski-open subset so that g is not a Lattès map for any
s ∈ S(C).

Again let m = dimS. Let P1 denote a hypersurface in S × P1 parameterizing a periodic point
for f , chosen so that it is not persistently preperiodic for g. If no such curve exists, then, as above,
we have Preper(f) = Preper(g) and we are done. Thus, we may assume that P1 exists. Again as
in the proof of Theorem 1.6, we pass to a branched cover S1 → S so that P1 may be viewed as
the graph of a point in S1 × P1. If the pair (g, P1) is isotrivial, and if this holds for all choices of
P1, then the pair (f, g) is isotrivial by an interpolation argument, and we have a contradiction.
So from Theorem 2.4, there exists a parameter s1 ∈ S1(C) where the point P1 is preperiodic
to a repelling cycle for g, but not persistently so. As above, we let P ′

1 ⊂ P1 be the subvariety
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of codimension 1 containing (s1, P1(s1)) along which both f and g are persistently preperiodic.
Then P ′

1 projects to a subvariety S′
1 ⊂ S1 of codimension 1.

Since P ′
1 is preperiodic to a repelling cycle for gs1 , there is an open neighborhood U1 of

s1 in S′
1 on which that cycle remains repelling for gs. The density of stability implies that we

can find an open V1 ⊂ U1 on which the family gs is stable for s ∈ V1, so its Julia set (and, in
particular, including all repelling periodic points) is moving holomorphically. As the family f is
stable over all of S, we also have a holomorphic motion of its preperiodic points, and these are
dense in P1 over every s ∈ S. Thus there are only two possibilities: either there is a codimension-1
intersection of one of the pre-repelling points of g with a preperiodic point = P ′

1 of f at some
parameter in V1, or each of the preperiodic points of g in its Julia set becomes a leaf of the
holomorphic motion of the Julia set of f . In the latter case, by analytic continuation, this shared
holomorphic motion must persist over all of S′

1. But then the algebraic family of maps g must
itself be stable on all of S′

1, as there would be no collisions between the distinct periodic points;
see § 2.5. It follows from McMullen’s theorem [McM87] that g is also a family of Lattès maps,
which is a contradiction. Thus, we can find a parameter s2 ∈ V1 so that preperiodic points of f
and g in their Julia sets intersect in a subvariety of codimension 1 in V1 × P1.

The proof is completed by induction on dimension. �

8.3 Proof of Theorem 8.1 and its corollaries

Proof of Theorem 8.1. Fix a degree d ≥ 2. As in § 8.1, we let L(d) = L × Ratd and let Φ = (f, g)
denote the algebraic family of maps of degree d2 parameterized by L(d). This Φ is maximally
non-isotrivial, by Proposition 8.4. Note that dimL(d) = 2d+ 2.

Since there exist g ∈ Ratd with Julia sets J(g) = P1, we do not have Preper(fs) = Preper(gs)
for all s ∈ L(d). Thus, from Proposition 8.5, there exists a rigid (2d+ 2)-repeller at some param-
eter s0 ∈ L(d). It follows from Corollary 4.9 that the pairwise-bifurcation measure μΦ,Δ is
nonzero on L(d). Then from Theorem 5.2, there exists a Zariski-closed subvariety V1 ⊂ L(d)
of codimension 1, defined over Q, and a constant M1 so that

#Preper(fs) ∩ Preper(gs) ≤M1

for all s ∈ (L(d) \ V1)(C).
We then repeat these arguments on each irreducible component V ′

1 of V1. Either Preper(fs) =
Preper(gs) for all s ∈ V ′

1(C) or there is a subvariety V ′
2 ⊂ V ′

1 of codimension 1, defined over Q,
and a constant M2 so that #Preper(fs) ∩ Preper(gs) ≤M2 for all s ∈ V ′

1 \ V ′
2)(C). We let V2 be

the union over all of the V ′
2 . It has codimension 2 in L(d). Induction on dimension completes the

proof. �

Proof of Corollary 8.2. We apply Theorem 8.1 to the algebraic family of pairs Φ = (f, g) for
f ∈ L and g the family of all conjugates of maps in L. More precisely, we consider the subvariety
V ⊂ Rat4 of all maps that are conjugate to elements of L by Möbius transformations, and let
S = L × V . Theorem 8.1 then implies that there is a constant M so that either

|Preper(fs) ∩ Preper(gs)| ≤M or Preper(fs) = Preper(gs)

for all s ∈ S(C). For any pair of elliptic curves E1 and E2 over C, equipped with their degree-two
projections πi : Ei → P1, there exists a Möbius transformation A ∈ Aut P1 and an s ∈ S(C) so
that

A(π1(Etors
1 )) = Preper(fs) and A(π2(Etors

2 )) = Preper(gs).
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Observing also that π1(E1[2]) = π2(E2[2]) if and only if π1(Etors
1 ) = π2(Etors

2 ) if and only
Preper(fs) = Preper(gs), the proof is complete. �

Proof of Corollary 8.3. We apply Theorem 8.1 to the algebraic family of pairs Φ = (f, g) for
f ∈ L and g the family of all conjugates of the map g0(z) = z2. More precisely, let V ⊂ Rat2 be
the Aut P1-orbit of g0. Note that Preper(g0) ⊃ μ∞, the set of all roots of unity. Let S = L × V .
For any elliptic curve E over C, equipped with its degree-two projection π : E → P1, there exists
a Möbius transformation A ∈ Aut P1 and an s ∈ S(C) so that

A(π(Etors)) = Preper(fs) and A(μ∞) ⊂ Preper(gs).

Note that we cannot have Preper(fs) = Preper(gs) for any s ∈ S(C), because the Julia set of gs

is a circle while J(fs) = P1. We apply Theorem 8.1 to complete the proof. �
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