J. Austral. Math. Soc. (Series A) 36 (1984), 126-129

ON BITOPOLOGICAL QUASI-PSEUDOMETRIZATION

S. ROMAGUERA

(Received 6 November 1981; revised 10 October 1982)

Communicated by J. H. Rubinstein

Abstract

In this paper we give a sufficient condition of quasi-pseudometrization for bitopological spaces. From this condition we obtain, as immediate corollaries, some known results.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 54 E 55; secondary 54 E 35. Keywords and phrases: Bitopological spaces, quasi-pseudometrization.

1. Introduction

A quasi-pseudometric space is a pair (X, d) where X is a set and d is a mapping from $X \times X$ into the real numbers **R** satisfying for all x, $y, z \in X$: (i) $d(x, y) \ge 0$, (ii) d(x, x) = 0, (iii) $d(x, y) \le d(x, z) + d(z, y)$. From a quasi-pseudometric, we can determine two topologies on X in a natural way: $\tau_d = \{A \subset X: \forall x \in A \text{ there}\$ is a r > 0 such that $B_d(x, r) \subset A\}$ with $B_d(x, r) = \{y \in X: d(x, y) < r\}$ and $\tau^d = \{A \subset X: \forall x \in A \text{ there is a } r > 0 \text{ such that } B^d(x, r) \subset A\}$ with $B^d(x, r) \subset A\}$ with $B^d(x, r) = \{y \in X: d(y, x) < r\}$.

Kelly [2] began the study of bitopological spaces and its quasi-pseudometrizability. Also Patty [4], Lane [3] and Salbany [5] have contributions. Salbany gives an interesting sufficient condition for quasi-pseudometrizability from which we deduce a generalization of the Nagata-Smirnov theorem, solving with it a conjecture of Patty. Here we obtain (Theorem 1) another sufficient condition of quasi-pseudometrization from which we deduce (Corollary 1.1) that is $(X, \mathfrak{P}, \mathfrak{Q})$ is a pairwise perfectly normal space, \mathfrak{P} has a \mathfrak{Q} - σ -locally finite base and \mathfrak{Q} has a

^{© 1984} Australian Mathematical Society 0263-6115/84 \$A2.00 + 0.00

 \mathfrak{P} - σ -locally finite base, then $(X, \mathfrak{P}, \mathfrak{Q})$ is quasi-pseudometrizable. This result modifies an incorrect assertion of Salbany (Example 1). Several standard theorems of the theory of quasi-pseudometrizability are easily deduced from Corollary 1.1.

2. Results

THEOREM 1. Let $(X, \mathfrak{P}, \mathfrak{D})$ be a bitopological space such that \mathfrak{P} has a \mathfrak{D} -o-locally finite base $\mathfrak{A} = \bigcup_{n=1}^{\infty} \mathfrak{A}_n$ and \mathfrak{D} has a \mathfrak{P} -o-locally finite base $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$. Then, $(X, \mathfrak{P}, \mathfrak{D})$ is quasi-pseudometrizable if, and only if, we verify:

(a) For every $A \in \mathcal{A}$ there is a function $f_A: X \to [0, 1]$ 2-upper semi-continuous such that $f_A^{-1}(0) = X - A$.

(b) For every *j* and every sequence $\{A_n\}_{n=1}^{\infty} \subset \mathcal{R}_j$, if $\mathcal{P} - \lim_n x_n = x$ then $\lim_n \max[f_A(x) - f_A(x_n), 0] = 0$.

(a') For every $B \in \mathfrak{B}$ there is a function $g_B: X \to [0, 1]$ \mathfrak{P} -upper semi-continuous such that $g_B^{-1}(0) = X - B$.

(b') For every *j* and every sequence $\{B_n\}_{n=1}^{\infty} \subset \mathfrak{B}_j$, if $2 - \lim_n x_n = x$ then $\lim_n \max[g_{B_n}(x) - g_{B_n}(x_n), 0] = 0$.

PROOF. For each couple of points $x, y \in X$ and each $n \in \mathbb{N}$ we can define $d_n(x, y) = \sup_{A \in \mathcal{A}} \{\max[f_A(x) - f_A(y), 0]\}$ and $d(x, y) = \sum_{n=1}^{\infty} 2^{-n} d_n(x, y)$.

The mapping d is a quasi-pseudometric for X. We have to prove that $\tau_d = \mathcal{P}$ and $\tau^d \subset \mathcal{Q}$.

To verify the first equality we use a technique of Borges [1]: If $\lim_n d(x, x_n) = 0$ but $\mathfrak{P} - \lim_n x_n \neq x$ then there exists $A \in \text{some } \mathfrak{C}_m$ which is a neighbourhood of x and a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ such that $A \cap \{x_{n_k}\}_{k=1}^{\infty} = \emptyset$. Then $f_A(x_{n_k}) = 0$ for every k, and $f_A(x) \neq 0$, therefore $\lim_k d(x, x_{n_k}) \neq 0$. Now, if $\mathfrak{P} - \lim_n x_n = x$, for every $\varepsilon > 0$ there is an $m \in \mathbb{N}$ such that $2^{-m+2} < \varepsilon$; then $\varepsilon/2 > \sum_{r=m}^{\infty} 2^{-r} d_r(x, x_n)$ for every x_n . If r < m, $\lim_n d_r(x, x_n) = 0$: otherwise, there exists p < m such that $\lim_n d_p(x, x_n) \neq 0$; so we can find $\delta > 0$ and a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ such that $d_p(x, x_{n_k}) \ge \delta$ for every k. Consequently, there is an $A_k \in \mathfrak{C}_p$ for every k, with $\max[f_{A_k}(x) - f_{A_k}(x_k), 0] > \delta/2$; then we have $\lim_k \max[f_{A_k}(x) - f_{A_k}(x_k), 0] \ge \delta$ which is a contradiction with (b). Then $\mathfrak{P} = \tau_d$.

To prove $\tau^d \subset \mathfrak{Q}$ it suffices to show that, for every $x \in X$ and $\varepsilon > 0$, $\{y \in X: d(y, x) < \varepsilon\}$ is a 2-open set. For a fixed $x_0 \in X$, let $x \in X$ and $\varepsilon > 0$, then there is a 2-neighbourhood W of x with $W \cap A_i \neq \emptyset$, i = 1, 2, ..., p, being $A_i \in \mathcal{Q}_n$, and $W \cap A = \emptyset$ for every $A \in \mathcal{Q}_n - \{A_1, A_2, ..., A_p\}$. Since f_{A_i} is 2-upper

S. Romaguera

semi-continuous, i = 1, 2, ..., p, there is a 2-neighbourhood V_i of x with $f_{A_i}(x) - f_{A_i}(y) < \varepsilon$ for every $y \in V_i$. Let $V = W \cap (\bigcap_{i=1}^p V_i)$; V is a 2-neighbourhood of x and for every $y \in V$ we get that:

$$d_n(y, x_0) - d_n(x, x_0) \leq d_n(y, x) = \sup_{A \in \mathcal{B}_n} \{ \max[f_A(y) - f_A(x), 0] \}$$

= $\max\{ \max[f_{A_i}(y) - f_{A_i}(x), 0], i = 1, 2, ..., p \} < \varepsilon.$

Then $\tau^d \subset \mathfrak{Q}$.

Similarly, we can define for every $x, y \in X$ and every $n \in \mathbb{N}$ $d'_n(x, y) = \sup_{B \in \mathfrak{B}_n} \{\max[g_B(x) - g_B(y), 0]\}$ and $d'(x, y) = \sum_{n=1}^{\infty} 2^{-n} d'_n(x, y)$, d' is a quasipseudometric for X with $\tau_{d'} = \mathfrak{Q}$ and $\tau^{d'} \subset \mathfrak{P}$. Then, the quasi-pseudometric d''(x, y) = d'(y, x) verifies $\tau^{d''} = \mathfrak{Q}$ and $\tau_{d''} \subset \mathfrak{P}$. Now, let $\overline{d}(x, y) = d(x, y) + d''(x, y)$. This quasi-pseudometric for X verifies $\mathfrak{P} = \tau_{\overline{d}}$ and $\mathfrak{Q} = \tau^{\overline{d}}$.

Conversely, let $(X, \mathcal{P}, \mathcal{Q})$ be a quasi-pseudometrizable bitopological space. There is a quasi-pseudometric d such that $\tau_d = \mathcal{P}$ and $\tau^d = \mathcal{Q}$, we can suppose that d has diameter lower than 1. Let A be a \mathcal{P} -open set in X and $f_A(x) = d(x, X - A)$. Obviously, f_A verifies (a) and (b). In the same way we verify (a') and (b'). The proof is complete.

The above result is a weak bitopological version of Borges' topological theorem [1], page 801, since we only obtain a sufficient condition for quasi-pseudometrization.

COROLLARY 1.1. If $(X, \mathfrak{P}, \mathfrak{Q})$ is a pairwise perfectly normal space, \mathfrak{P} has a \mathfrak{Q} - σ -locally finite base $\mathfrak{Q} = \bigcup_{n=1}^{\infty} \mathfrak{Q}_n$ and \mathfrak{Q} has a \mathfrak{P} - σ -locally finite base $\mathfrak{B} = \bigcup_{n=1}^{\infty} \mathfrak{B}_n$, then $(X, \mathfrak{P}, \mathfrak{Q})$ is quasi-pseudometrizable.

PROOF. For each $A \in \mathcal{A}$, there is by [3] a \mathcal{P} -lower semi-continuous and \mathcal{D} -upper semi-continuous function $f_A: X \to [0, 1]$ such that $f_A^{-1}(0) = X - A$. By the \mathcal{D} -local finiteness of every \mathcal{Q}_j condition (b) of Theorem 1 follows. Likewise are verified conditions (a') and (b'). By Theorem 1, $(X, \mathcal{P}, \mathcal{D})$ is quasi-pseudometrizable.

COROLLARY 1.2 (Salbany). If $(X, \mathcal{P}, \mathcal{D})$ is a pairwise regular space, \mathcal{P} has a \mathcal{D} - σ -locally finite base and \mathcal{D} has a \mathcal{P} - σ -locally finite base, then $(X, \mathcal{P}, \mathcal{D})$ is quasi-pseudometrizable.

PROOF. By [4] $(X, \mathcal{P}, \mathcal{Q})$ is pairwise perfectly normal and by Corollary 1.1 we have the result.

Note. This corollary is also obtained by Salbany as corollary of another more general result.

COROLLARY 1.3 (Kelly). If $(X, \mathcal{P}, \mathcal{Q})$ is a pairwise regular space and \mathcal{P} and \mathcal{Q} have countable basis, then $(X, \mathcal{P}, \mathcal{Q})$ is quasi-pseudometrizable.

Salbany asserts, [5], page 302, that if $(X, \mathcal{P}, \mathcal{Q})$ is pairwise normal and \mathcal{P} has a \mathcal{Q} - σ -locally finite base, then $\mathcal{P} = \tau_d$ and $\mathcal{Q} \supset \tau^d$ for some quasi-pseudometric d. The following example proves that this result is not correct.

EXAMPLE 1. Let $(X, \mathcal{P}, \mathcal{Q})$ be such that $X = \mathbf{R}$ (the set of reals), \mathcal{P} is the euclidean topology and \mathcal{Q} is the trivial topology. $(X, \mathcal{P}, \mathcal{Q})$ is pairwise normal and if *d* is a quasi-pseudometric such that $\mathcal{P} = \tau_d$ and $\mathcal{Q} \supset \tau^d$, then $\mathcal{Q} = \tau^d$ which is a contradiction since $(X, \mathcal{P}, \mathcal{Q})$ is not pairwise regular.

Acknowledgement

The author is grateful to Professor Manuel López Pellicer for his assistance with the writing of this paper.

References

- [1] C. J. Borges, 'On metrizability of topological spaces', Canad. J. Math. 20 (1968), 795-804.
- [2] J. C. Kelly, 'Bitopological spaces', Proc. London Math. Soc. 13 (1963), 71-89.
- [3] E. P. Lane, 'Bitopological spaces and quasi-uniform spaces', Proc. London Math. Soc. 17 (1967), 241-256.
- [4] C. W. Patty, "Bitopological spaces', Duke Math. J. 34 (1967), 387-392.
- [5] S. Salbany, 'Quasi-metrization of bitopological spaces', Arch. Math. (Basel) 23 (1972), 299-306.

Departmento de Matemáticas II ETSICCP Universidad Politécnica Valencia-22 Spain