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ORTHOGONAL RECURRENCE POLYNOMIALS 
AND HAMBURGER MOMENTS 

BY 

A. G. LAW 

1. Introduction and Summary. A three-term recurrence 
/>-!(*) S 0, P0(X) = 1, 

(1) 
Pn+1(x) ^{Anx^Bn)Pn{x)-CnPn^{x\ n>0, 

where An (n>0), Bn (n>0) and Cn(n>0) are real numbers for which AnCn+1 

7̂ 0 (tf >0), generates a sequence {Pn} of real polynomials in which Pn has degree 
exactly n. Some (but not all) sequences so generated consist of orthogonal poly
nomials associated with a distribution di/j(x) over some interval [a, b] ; that is, they 
are polynomials for which there exists an integrator ip(x) such that 

(2) £p i(x)PX^)#(x) = 0, i * j , 

where I/J(X) is bounded, is nondecreasing and assumes infinitely many different 
values over [a, 6](1). 

It is first shown below that, for recurrence polynomials Pn, the orthogonality 
conditions (2) are simply 

i xn-1Pn(.x)d^j(x) = 0, « S i 

(3) and 

I xn~2Pn(x) dtjj{x) = 0, n > 2, 

although (2) and (3) are generally not equivalent for a polynomial family {Pn} 
which does not satisfy some recurrence (1). 

Now, let {Pn} be any family of real polynomials in which Pn has degree n. Then 
a corresponding sequence {/xn} of quasi-moments can be constructed successively 
(with relations (3) as the guide) as follows: for 

n 
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C1) A necessary and sufficient condition for such orthogonality is [2]: Cn\AnAn-x >0 for n> 1. 
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let 

(4) 

1 n - l 

"nn y = 0 

and 
1 n - l 

/*2n-2 = - — 2 fln#n + / -2 (» ^ 2). 
"nn ; = 0 

Thus, the Hamburger Moment Problem associated with the sequence {Pn} is the 
problem of determining when the corresponding quasi-moments are actually 
moments of some distribution dift(x) over some interval [a, b](2). It is shown here 
that recurrence polynomials Pn are orthogonal if, and only if, the corresponding 
quasi-moments are moments. 

2. Equivalent Form of Orthogonality. It is generally not true, for an arbitrary 
sequence {Pn} of polynomials, that (2) and (3) are equivalent. For example, the 
polynomials 

P0(x) = 1, Px(x) = * - i , 
(5) 

satisfy 

Pn(x) = * » - ^ - i + - ^ (n>2) 

f xn-1Pn(x)dx = 0 (n > 1) 

and f xn-2Pn(x) dx = 0 (n > 2), 

but f P0(x)Pn(x) dx^O (n> 2). 
Jo 

As a matter of fact, it is easy to verify directly that the polynomials (5) do not 
satisfy any recurrence of the form (1). Consequently [3] they cannot be orthogonal 
polynomials associated with any distribution over any interval. 

The following lemma shows the equivalence of conditions (2) and (3) for a 
recurrence family {Pn}. Thus, any family of polynomials Pn with properties (3) 
will be orthogonal when, and only when, the Pn satisfy a recurrence (1). 

LEMMA. Let {Pn} be a sequence of polynomials generated by a recurrence (1). Then 
(2) and (3) are equivalent. 

Proof. For convenience of notation, let 

<f(x),g(x)y = £7(*)s(*)#(*). 

(2)That is, nn = $b
a x11 dip(x)(n>0) for some (normalized) distribution d^ix) over some 

interval [a, b]. 
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Any xj is a linear combination of the Pi(x) for 0<i<j; hence, (2) implies (3). 
Suppose, then, that {Pn} is a family of polynomials, given by a recurrence (1), 
for which conditions (3) hold. Corresponding to an integer /c > 1, let Tk denote the 
statement: 

for each m = 1, 2, 3 , . . . , k, 
(6) 

<Pn(x), xn-m} = 0 for all n > m. 

The remainder of the proof follows easily once (6) is established (by induction). 
Conditions (3) surely give T2 and, thus, 7\. To show that Tk implies Tk + l9 it will 
be sufficient to conclude that <Pn(x), xn_(fc+1)>=0 for all n>(k+l). Pick any 
integer n>(k+l); multiplication throughout the recurrence (1) by xn~(k+1), 
followed by an integration, yields : 

(7) 

Now, <Pn-i(x), Jcn"fc> = <Pn-.1(x), xCn-1)-m> where w = / c - l ; this vanishes (by 
the induction hypothesis, since m<k) whenever («— l)>ra. That is, (JPn-i{x)9 

xn-k\ = 0 for all «>/ : ; but this implies that the coefficient of An-X in (7) is zero for 
any n>(k+l). A similar argument shows that the coefficients of 2?n_i and Cn_i 
in (7) also are zero, which completes the induction. For the remainder of the proof, 
let j be any positive integer; the statement Tj shows in particular that <P/x), 
xJ'~m}=0 for m = 1, 2, 3,...,,/—whence (Pj(x)9 Pi(x)}=0 whenever i<j. 

3. Moments for Recurrence Polynomials. Let {Pn} be any family of real poly
nomials in which Pn has degree exactly n. The corresponding quasi-moments 
fan} (as prescribed in (4)) might, in fact, be moments even though the polynomials 
are not orthogonal. For example, the moments 

f1 1 
fin = xn dx = ——, n > 0, 

Jo « + 1 

are the quasi-moments corresponding to the nonorthogonal family (5). It is shown 
below that this situation cannot occur when the Pn are recurrence polynomials. 

THEOREM. Let {Pn} be a sequence of polynomials generated by a recurrence (1), 
and let {^n} be the corresponding sequence of quasi-moments. Then the /xn are moments, 
if and only if the Pn are orthogonal 

Proof. Suppose, first, that the Pn are orthogonal polynomials associated with a 
distribution difj(x) over an interval [a, b]. Let {vn} (v0 = 1) be the sequence of moments 
of dtfj(x) over [a, b]. Surely {vn}, as well as {/vh satisfies (4); then {/xn — vn} satisfies a 
difference scheme of the form (4), but with initial condition zero. Hence fin = vn 

for all n—that is, the /xn are moments of di/j(x) over [a, b]. 
For the converse, suppose the /xn are moments of some distribution di/j(x) over 
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some interval [a, b]. The relations (4) are precisely relations (3); hence, by the pre
ceding lemma, the Pn are orthogonal polynomials associated with dfcx) over 
[a,bl 
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