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industrial technology advances

Vision and language: from visual perception to
content creation

tao mei, wei zhang and ting yao

Vision and language are two fundamental capabilities of human intelligence. Humans routinely perform tasks through the
interactions between vision and language, supporting the uniquely human capacity to talk about what they see or hallucinate a
picture on a natural-language description. The valid question of how language interacts with vision motivates us researchers to
expand the horizons of computer vision area. In particular, “vision to language” is probably one of the most popular topics in the
past 5 years, with a significant growth in both volume of publications and extensive applications, e.g. captioning, visual question
answering, visual dialog, language navigation, etc. Such tasks boost visual perception with more comprehensive understanding
and diverse linguistic representations. Going beyond the progresses made in “vision to language,” language can also contribute
to vision understanding and offer new possibilities of visual content creation, i.e. “language to vision.” The process performs as a
prism through which to create visual content conditioning on the language inputs. This paper reviews the recent advances along
these two dimensions: “vision to language” and “language to vision.” More concretely, the former mainly focuses on the devel-
opment of image/video captioning, as well as typical encoder–decoder structures and benchmarks, while the latter summarizes
the technologies of visual content creation. The real-world deployment or services of vision and language are elaborated as well.
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I . I NTRODUCT ION

Computer vision (CV) and natural language processing
(NLP) are two most fundamental disciplines under a broad
area of artificial intelligence (AI). CV is regarded as a field
of research that explores the techniques to teach computers
to see and understand the digital content such as images and
videos. NLP is a branch of linguistics that enables comput-
ers to process, interpret, and even generate human language.
With the rise and development of deep learning over the
past decade, there has been a steady momentum of inno-
vation and breakthroughs that convincingly push the limits
and improve the state-of-the-art of both vision and language
modeling. An interesting observation is that the research in
the two area starts to interact and many previous experi-
ences have shown that by doing so can naturally build up
the circle of human intelligence.

In general, the interactions between vision and lan-
guage have proceeded along two dimensions: vision to lan-
guage and language to vision. The former predominantly
recognizes or describes the visual content with a set of
individualwords or a natural sentence in the formof tags [1],
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answers [2], captions [3–5], and comments [6]. For example,
a tag usually denotes a specific object, action, or event in
visual content. An answer is a response to a question about
the details depicted in an image or a video. A caption goes
beyond tags or answers by producing a natural-language
utterance (usually a sentence) and a comment is also a sen-
tence which expresses an emotional state on visual content.
The latter of language to vision basically generates visual
content according to natural language inputs. One typical
application is to create an image or a video from text. For
instance, given a textual description of “this small bird has
short beak and dark stripe down the top, the wings are a
mix of brown, white, and black,” the goal of text-to-image
synthesis is to generate a bird image which meets all the
details.

This paper reviews the recent state-of-the-art advances of
AI technologies which boost both vision to language, par-
ticularly image/video captioning, and language to vision.
The real-world deployments in the two fields are also pre-
sented as the good examples of how AI transforms the
customer experiences and enhances user engagement in
industrial applications. The remaining sections are orga-
nized as follows. Section II describes the development of
vision to language by outlining a brief road map of key
technologies on image/video captioning, distilling a typical
encoder–decoder structure, and summarizing the evalua-
tions on a popular benchmark. The practical applications of
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vision to language are further presented. Section III details
the technical advancements on language to vision in terms
of different conditions and strategies for generation, fol-
lowed by a summary of progresses on language to image,
language to video, and AI-empowered applications. Finally,
we conclude the paper in Section IV.

I I . V I S ION TO LANGUAGE

This section summarizes the development of vision to
language (particularly image/video captioning) in several
aspects, ranging from the road map of key techniques and
benchmarks, typical encoder–decoder architectures, to the
evaluation results of representative methods.

A) Road map of vision to language
In the past 10 years, we have witnessed researchers strived
to push the limits of vision to language systems (e.g.
image/video captioning). Figure 1 depicts the road map for
the techniques behind vision (image/video) to language and
the corresponding benchmarks. Specifically, the year of 2015
is actually a watershed in captioning. Before that, the main
stream of captioning is a template-based method [14,15] in
image domain. The basic idea is to detect the objects or
actions in an image and integrate these words into pre-
defined sentence templates as subjective, verb, and objec-
tive. At that time, most of the image captioning datasets
are ready to use, such as Flickr30K and MSCOCO. At the
year 2015, deep learning-based image captioning models
are first presented. The common design [13] is to employ a
Convolutional Neural Network (CNN) as an image encoder
to produce image representations and exploit a decoder of
Long Short-Term Memory (LSTM) to generate the sen-
tence. The attention mechanism [16] is also proposed at
that year which locates the most relevant spatial regions

when predicting each word. After that, the area of image
captioning is growing very fast. Researchers came up with
a series of innovations, such as augmenting image features
with semantic attributes [3] or visual relations [4], predict-
ing novel objects through leveraging unpaired training data
[17,18], and even going a step further to perform language
navigation [19]. Another extension direction of captioning
in image domain is to producemultiple sentences or phrases
for an image, aiming to recapitulate more details within
image. In between, dense image captioning [20] and image
paragraph generation [21] are typical ones, which generate
a set of descriptions or paragraph that describes image in a
finer fashion.

The start point of captioning in video domain is also
in the year of 2015. Then, researchers start to remould the
CNN plus RNN captioning framework toward the scenario
of captioning in video domain. A series of techniques (e.g.
temporal attention, embedding, or attributes) are explored
to further improve video captioning. Concretely, Yao et al.’s
technique [22] is one of the early attempts that incorporates
temporal attention mechanism into captioning framework
by learning to attend to the most relevant frames at each
decoding time step. Pan et al. [23] integrate LSTM with
semantic embedding to preserve the semantic relevance
between video content and the entire sentence. Pan et al.
[24] further augment captioning model to emphasize the
detected visual attributes in the generated sentence. It is
also worthy mentioned that in 2016, MSR-VTT video cap-
tioning dataset [25] is released which has been widely used
and already downloaded by more than 100 groups world-
wide. Most recently, Aafaq et al. [26] apply short Fourier
transform across all the frame-level features along the tem-
poral dimension to fuse all frame-level features into video-
level representation and further enhance video captioning.
Another recent attempt for video captioning is to speed
up the training procedure by fully employing convolutions

Fig. 1. A road map for the techniques and datasets in vision (image/video) to language in 10 years.
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Fig. 2. The typical architectures of (a) CNN encoder plus LSTM decoder and (b) transformer-based encoder–decoder for image captioning.

in both encoder and decoder networks [27]. Nevertheless,
considering that videos in real life are usually long and
contain multiple events, the conventional video captioning
methods generating only one caption for a video in general
will fail to recapitulate all the events in the video. Hence the
task of dense video captioning [28,29] is introduced recently
and the ultimate goal is to generate a sentence for each event
occurring in the video.

B) Typical architectures
According to the road map of vision to language, the main-
stream of modern image captioning follows the structure of
CNN encoder plus LSTM decoder, as shown in Fig. 2(a).
In particular, given an image, image features can be firstly
extracted throughmultiple ways: (1) directly taking the out-
puts of fully-connected layers as image features [13]; (2)
incorporating high-level semantic attributes into image fea-
tures [3]; (3) performing attention mechanism to measure
the contribution of each image region [16]; (4) extracting
region-level features [2] and further exploring relation [4]
or image hierarchy [5] on the region-level features. The
image featureswill be further fed into LSTMdecoder to gen-
erate the output sentence, one word at each time step. In the
training stage, the next word is generated based on the pre-
vious ground-truth words while during testing the model
uses the previously generated words to predict the next
word. In order to bridge themismatch between training and
testing, reinforcement learning [8,9,30] is usually exploited
to directly optimize LSTM decoder with the sentence-level
reward, such as CIDEr or METEOR.

Taking the inspiration from the recent successes of
Transformer self-attention networks [31] in machine trans-
lation, recent attention has been geared toward explor-
ing Transformer-based structure [32] in image captioning.
Figure 2(b) depicts the typical architecture of Transformer-
based encoder–decoder. Different from CNN encoder plus
LSTM decoder that capitalizes on LSTM to model word
dependency, Transformer-based encoder–decoder model
fully utilizes attention mechanism to capture the global
dependencies among inputs. For encoder, N multi-head
self-attention layers are stacked to model the self-attention

among input image regions. The decoder contains a stack
of N multi-head attention layers, each of which con-
sists of a self-attention sub-layer and a cross-attention
sub-layer. More specifically, the self-attention sub-layer is
firstly adopted to capture word dependency and the cross-
attention sub-layer is further utilized to exploit the co-
attention across vision (image regions from encoder) and
language (input words).

Similar to the mainstream in image captioning, the typ-
ical paradigm in video captioning is also essentially an
encoder–decoder structure. A video is first encoded into
a set of frame/clip/shot features via 2D CNN [13] or 3D
CNN [33,34]. Next, all the frame-level, clip-level or shot-
level visual features are fused into video-level representa-
tions through pooling [23], attention [22], or LSTM-based
encoder [35]. The video-level features are then fed into
LSTM decoder to produce a natural sentence.

C) Evaluation and applications
Evaluation. Here we summarize the reported performance
of representative image captioning methods on the testing
server of popular benchmark COCO [36] in Table 1. In
terms of all the evaluationmetrics, GCN-LSTM [4] andHIP
[5] lead to performance boost against other captioning sys-
tems,which verifies the advantage of exploring relations and
hierarchal structure among image regions.

Applications. Recently, there exist several emerging appli-
cations which involve the technology of vision to language.
For example, captioning is integrated into online chatbot
[37,38] and an ai-created poetry [39] is published in China.
In JD.com, we utilize captioning techniques for personal-
ized product description generation last year, which aims to
produce compelling recommendation reasons for billions of
products automatically.

I I I . LANGUAGE TO V IS ION

This section discusses from another direction of “lan-
guage to vision,” i.e. visual content generation guided by
language inputs. In this section, we start by reviewing
the road map development, as well as the technical
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Table 1. The reported performance () of image captioning on COCO testing server with 5 reference captions (c5) and 40 reference captions (c40).

B@4 METEOR ROUGE-L CIDEr-D

Model Group c5 c40 c5 c40 c5 c40 c5 c40

HIP [5] JD AI, ICCV’19 39.3 71 28.8 38.1 59 74.1 127.9 130.2
GCN-LSTM [4] JD AI, ECCV’18 38.7 69.7 28.5 37.6 58.5 73.4 125.3 126.5
RFNet [7] Tencent, ECCV’18 38 69.2 28.2 37.2 58.2 73.1 122.9 125.1
Up-Down [2] MSR, CVPR’18 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
LSTM-A [3] MSRA, ICCV’17 35.6 65.2 27 35.4 56.4 70.5 116 118
Watson Multimodal [8] IBM, CVPR’17 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7
G-RMI [9] Google, ICCV’17 33.1 62.4 25.5 33.9 55.1 69.4 104.2 107.1
MetaMind/VT-GT [10] Salesforce, CVPR’17 33.6 63.7 26.4 35.9 55 70.5 104.2 105.9
reviewnet [11] CMU, NIPS’16 31.3 59.7 25.6 34.7 53.3 68.6 96.5 96.9
ATT [12] Rochester, CVPR’16 31.6 59.9 25 33.5 53.5 68.2 94.3 95.8
Google [13] Google, CVPR’15 30.9 58.7 25.4 34.6 53 68.2 94.3 94.6

advancements in this area. Then we discuss the open
issues and applications particularly from the perspective of
industry.

Visual Content Generation. We briefly introduce the
domain of visual generation, since “language to vision” is
deeply rooted in the same techniques. Over the past few
years, we have witnessed great progresses in visual con-
tent generation. The origin of visual generation dates back
to [40], where multiple networks are jointly trained in an
adversarial manner. Subsequent works generate images in
specific domains such as face [41–43], person [44–46], as
well as generic domains [47,48]. From the perspective of
inputs, the generation can also be treated as conditioning on
different information, e.g. noise vector [40], semantic label
[49], textual captions [50], scene-graph [51], and images
[52,53]. Among all these works, visual generation based on
natural languages plays one of themost promising branches,
since semantics are directly incorporated into the pixel-wise
generation process.

A) Road map of language to vision
Figure 3 summarizes recent development of “language to
vision.” In general, both the vision and language modalities
are becoming more and more complicated, and the results
are much more visually convincing, compared to when it
was firstly introduced in 2014.

The fundamental architecture is based on a conditional
generative adversarial network, where the conditioning
input is usually the encoded natural language. After a series
of transposed-convolutions, the language input is gradually
mapped to a visual image with higher and higher resolu-
tion. The key challenges are in two folds: (1) how to interpret
the language input, i.e. language representation, and (2) how
to align the visual and textual modalities, i.e. the semantic
consistency between vision and language. Recent results on
single object (bottom) have already been visually plausible
to human perception. However, state-of-the-art models are
still struggling in generating scenes with multiple objects
interacting with each other.

Fig. 3. The road map of “language-to-vision” in past five years, while milestone techniques are marked along the year axis. Top: single object generation. Bottom:
multiple-objects scene generation.
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B) Technical advancements
The success in language to vision generation is mostly
based on the following technical advancements, which
have become standard practices commonly accepted by the
research community.

Conditioning Input. Following the standard GAN frame-
work [40,49] derived the conditional version GAN, which
allows visual generation according to language inputs. The
conditioning information can be in any form of language,
such as tag, sentence, paragraph, image, scene-graph, and
layout. Almost all subsequent works in “language to vision”
are based on the conditioning architecture. However at
that time, only MNIST [54] digits are demonstrated in low
resolution, and the conditioning information is merely a
digit-label.

Text Encoding. GAN-INT-CLS [50] is the firstwork based
on natural-language inputs. For the first time, it bridges the
gap from natural language sentences to image pixels. The
key step is based on learning a text representation based
on a recurrent network to capture visual clues. The rest is
mostly following [49]. Additionally, a matching-aware dis-
criminator is proposed to keep the consistency between the
generated image and textual input. Though the results still
look primitive, people can draw flower images by altering
textual inputs.

Stacked Architecture. Another big advancement is by
stackGAN [55,56], where stacked generators are introduced
for high-resolution image generation. Different from previ-
ous works, stackGAN can generate realistic 256 × 256-pixel
images by decomposing the generator into multiple stages
stacked sequentially. The Stage-I network only sketches the
primitive shape and color of the object based on text rep-
resentation, yielding a low resolution image. The Stage-II
network further fills details, such as textures, conditioning
on the Stage-I result. A conditioning augmentation tech-
nique is also introduced to augment the textual input and
stabilize the training process. Compared to [50], the visual
quality is much improved based on this stacked architec-
ture. Similar idea is also adopted in Progressively-Growing
GAN [42].

Attention Mechanism. As in other vision tasks, attention
is effective in highlighting key information. In “language to
vision,” attention is particularly useful in aligning keywords
(language) and image patches (vision) during the gener-
ation process. Two generations (v1.0 and v2.0) of atten-
tion basically follow this paradigm, but differs in many
details, e.g. network architecture, text encoding. Attention
1.0, AlignDraw [57], proposes to iteratively paint on a canvas
by looking at different words at different stages. However,
the results were not promising at that time. Attention 2.0,
AttnGAN [58] andDA-GAN [59], basically follows the sim-
ilar paradigm, but improves significantly on image quality,
e.g. fine-grained details.

Semantic Layout. Recent studies [46,60,61] have demon-
strated the importance of semantic layout in image gen-
eration, where layout acts as the blue-print to guide the
generation process. In language to vision, semantic layout

and scene-graph are introduced to reshape the language
input with more semantics. Hong et al. [62] propose to
generate object bounding-boxes first, and then refine by
estimating appearances inside each box. Johnson et al. [51]
encode objects relationship from scene graph to construct
the layout for decoder generation with graph convolutions.
Zheng et al. [63] introduce spatial constraint module and
contextual fusion module to model the relative scale and
offset among objects for commonsense layout generation,
and Hinz et al. [64] further propose an object pathway for
multi-objects generation with complex spatial layouts.

C) Progress and applications
The development of “Language to Vision” can be sum-
marized as follows. On one hand, the language descrip-
tion is becoming more complex, i.e. from simple words to
long sentences. On the other hand, the vision part is also
becoming more complex, where objects-interaction and
fine-grained detail are expected:

• Language: label → sentence → paragraph → scene graph
• Vision: single object → multiple objects

Language to Image. Early studies mainly focus on simple
words and single-object images, e.g. birds [65], flowers [66],
and generic objects [67]. As shown in Fig. 3 (bottom), the
visual quality is much improved over the past few years, and
some results are plausible enough to deceive human eyes.

Though single-object image can be well generated,
multi-objects scene still struggles for realistic results, as in
Fig. 3 (top). A general trend is to reduce the complexity
by introducing semantic layout as an intermediate repre-
sentation. Roughly, machines now can generate spatially
reasonable images, but fine-grained details are still far from
satisfactory at current stage.

Language to Video. Compared to image, language to
video is more challenging due to huge volume of infor-
mation and extra temporal constraint. There is only a few
works studying this area. For example, Pan et al. [68]
attempt to generate video out of captions based on 3D con-
volution operation. However, the results are quite limited
for practical applications.

Applications. The application of “language to vision” can
be roughly grouped into two categories: generation for
human eyes or for machines. In certain domains (e.g. face),
language to vision already starts to produce highly plausible
results with industrial standards1. For example, people can
generate royalty-free facial photos on demand2 for games
[69] or commercials, by manually specifying gender, hair,
eyes. Another direction is generating data for machine and
algorithms. For example, NVIDIA [70] proposed a large-
scale synthetic dataset (DG-Market) for training person Re-
ID models. Also some image recognition and segmentation
models start to benefit from machine-generated training

1https://thispersondoesnotexist.com/
2https://github.com/SummitKwan/transparent_latent_gan
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images. However, it is worth noting that despite the promis-
ing results, there is still a large gap for massive deployment
in industrial products.

I V . CONCLUS ION

Vision and language are two fundamental systems of human
representation. Integrating the two in one intelligent system
has long been an ambition in AI field. As we have discussed
in the paper, on one hand, vision to language is capable of
understanding visual content and automatically producing
a natural-language description, and on the other hand, lan-
guage to vision is able to characterize the intrinsic structure
in vision data and create visual content according to the lan-
guage inputs. Such interactions, while still at the early stage,
motivate us to understand the mechanisms in connecting
vision and language, reshape real-world applications, and
re-think the end result of the integration.
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