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Abstract

Objective: Preclinical Alzheimer disease (AD) has been associated with subtle changes inmemory, attention, and spatial navigation abilities. The
current study examined whether self- and informant-reported domain-specific cognitive changes are sensitive to AD-associated biomarkers.
Method: Clinically normal adults aged 56–93 and their informants completed the memory, divided attention, and visuospatial abilities (which
assesses spatial navigation) subsections of the Everyday Cognition Scale (ECog). Reliability and validity of these subsections were examined using
Cronbach’s alpha and confirmatory factor analysis. Logistic regression was used to examine the ability of ECog subsections to predict AD-related
biomarkers (cerebrospinal fluid (CSF) ptau181/Aβ42 ratio (N= 371) or hippocampal volume (N= 313)). Hierarchical logistic regressionwas used
to examine whether the self-reported subsections continued to predict biomarkers when controlling for depressive symptomatology if available
(N= 197). Additionally, logistic regression was used to examine the ability of neuropsychological composites assessing the same or similar cog-
nitive domains as the subsections (memory, executive function, and visuospatial abilities) to predict biomarkers to allow for comparison of the
predictive ability of subjective and objective measures. Results: All subsections demonstrated appropriate reliability and validity. Self-reported
memory (with outliers removed) was the only significant predictor of AD biomarker positivity (i.e., CSF ptau181/Aβ42 ratio; p= .018) but was not
significant when examined in the subsample with depressive symptomatology available (p= .517). Self-reportedmemory (with outliers removed)
was a significant predictor of CSF ptau181/Aβ42 ratio biomarker positivity when the objective memory composite was included in the model.
Conclusions: ECog subsections were not robust predictors of AD biomarker positivity.
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Introduction

Alzheimer disease (AD) is characterized by the deposition of
amyloid plaques and neurofibrillary tangles in the brain, as well
as early neurodegeneration of specific regions, such as the hippo-
campus, and these neuropathologic changes may be detected dec-
ades before the onset of clinical symptoms (Dubois et al., 2016;
Jack et al., 2018). The stage at which a person is clinically normal
but exhibits AD-related neuropathological changes is referred to
as preclinical AD and is associated with increased risk of devel-
oping symptomatic AD (Davatzikos et al., 2011; Dubois et al.,
2016; Dumurgier et al., 2017; Jack et al., 2018; Sperling et al.,
2011). Although people with preclinical AD perform within

expected limits (e.g., within 1.5 standard deviations of the age-
corrected mean) on standardized psychometric tasks, there are
subtle observable cognitive changes associated with this stage
(Sperling et al., 2011). Previous work suggests that subtle changes
in memory, attention, and spatial navigation abilities are associ-
ated with concurrent preclinical status and with risk of clinical
progression.

Subtle changes in hippocampal-based episodic memory have
been identified in preclinical AD cross-sectionally and as a predic-
tor of clinical progression (for a review, see Collie &Maruff, 2000).
Meta-analyses have found that amyloid burden is associated with
concurrent episodic memory and subsequent decline in episodic
memory in clinically normal older adults (Baker et al.,

Corresponding author: Taylor F. Levine; Email: trhendershott@wustl.edu
*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the

ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can
be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

Cite this article: Levine T.F., Allison S.L., Dessenberger S.J., & Head D. for the Alzheimer’s Disease Neuroimaging Initiative. (2024) Clinical utility of self- and informant-reported
memory, attention, and spatial navigation in detecting biomarkers associated with Alzheimer disease in clinically normal adults. Journal of the International Neuropsychological Society, 30:
232–243, https://doi.org/10.1017/S1355617723000528

Copyright © INS. Published by Cambridge University Press, 2023. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (https://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited.

Journal of the International Neuropsychological Society (2024), 30, 232–243

doi:10.1017/S1355617723000528

https://doi.org/10.1017/S1355617723000528 Published online by Cambridge University Press

https://orcid.org/0000-0001-6699-9679
https://orcid.org/0000-0002-7069-2634
mailto:trhendershott@wustl.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1017/S1355617723000528
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S1355617723000528
https://doi.org/10.1017/S1355617723000528


2017; Hedden et al., 2013). Notably, Hedden and colleagues (2013)
observed a greater association of amyloid burden with episodic
memory than global cognition.

It has been postulated that a breakdown in the attention net-
work is directly associated with a decline in memory ability in
AD (Balota & Duchek, 2015). Cross-sectionally, attention has been
associated with CSF Aβ42 and can discriminate between clinically
normal older adults and early-stage AD (Aschenbrenner et al.,
2015; Hutchison et al., 2010; Millar et al., 2017). Longitudinally,
CSF Aβ42 and total tau have been associated with declines on atten-
tion tasks (Aschenbrenner et al., 2015; Millar et al., 2017).
Additionally, Balota and colleagues (2010) observed that attention
predicted progression to symptomatic AD from clinical normality.
Collectively, these findings suggest that attention is affected during
the earliest AD stages.

Although there is a body of literature examining spatial naviga-
tion in both symptomatic AD and mild cognitive impairment
(MCI; Cushman et al., 2008; Hort et al., 2007; Weniger et al.,
2011), there is less information available on changes in spatial nav-
igation in preclinical AD.Work from our group demonstrated that
performance on a computerized spatial navigation task was asso-
ciated with CSF Aβ42 and ptau181 in clinically normal older adults
(Allison et al., 2016, 2019). Longitudinally, performance on this
task was a predictor of clinical progression to symptomatic AD
from clinical normality (Levine et al., 2020).

Due to the increasing prevalence of AD (Alzheimer’s
Association, 2021), there is a need for a widely distributable screen-
ing measure for identifying those at increased risk of developing
symptomatic AD. Current methods (i.e., lumbar puncture, PET,
MRI, and bloodmarkers) used to assess neuropathological changes
associated with disease progression are oftentimes invasive and/or
expensive (Jack et al., 2018). Thus, these methods may not be
accessible to people with limited finances or those living in rural
areas with inadequate resources. Although standard neuropsycho-
logical and experimental tasks assessingmemory, attention, and/or
spatial navigation abilities are not invasive, they may not represent
the most time- and cost-effective measures as they frequently
require individuals to travel to a clinic or research laboratory.
There is an emerging body of literature demonstrating potential
utility of computerized cognitive assessment in preclinical AD
(for a review, see Öhman et al., 2021); however, this requires par-
ticipants to have access to expensive devices such as personal com-
puters, smart phones, or tablets. Questionnaires are potentially less
time consuming (e.g., typically taking 5–10 minutes), can require
fewer materials to administer, and can be adjusted to ask both
about current deficits and changes over time. Importantly, ques-
tionnaires are particularly accessible for individuals without the
technology required for digital assessment and can be sent via mail
or conducted over the phone. An easily distributable, time- and
cost-effective screening tool that can be completed remotely would
be a more ideal metric for identifying individuals in the population
at the highest risk of AD. Furthermore, this tool could help stream-
line use of more conclusive biomarker-based procedures. As such,
questionnaires assessing difficulties and/or changes in the domains
sensitive to preclinical AD represent a potential screening tool for
AD pathology.

In terms of preclinical AD samples, previous literature has pri-
marily focused on subjective memory changes, with a significantly
smaller body of literature examining subjective spatial navigation
change and, to our knowledge, there is no published work exam-
ining subjective attention change. Self-reported memory decline
has been associated with CSF biomarker burden and hippocampal

neurodegeneration (e.g., Cantero et al., 2016; van der Flier et al.,
2004; but see, Buckley et al., 2013; Kawagoe et al., 2019). Self-
and informant-reported memory declines predict clinical progres-
sion from preclinical to symptomatic AD (e.g., Buckley et al., 2016;
Ferreira et al., 2017; Rönnlund et al., 2015). Past research suggests
that informant-reported memory may provide novel information
to self-reported memory (Bellaali et al., 2021; Yim et al., 2017).

In terms of spatial navigation, self-reported current spatial nav-
igation ability differentiated healthy older adult controls from cog-
nitively impaired groups (Cerman et al., 2018). In addition, self-
reported sense of direction has been associated with objective spa-
tial navigation performance (Mitolo et al., 2015). Our group’s work
has yielded equivocal results; two cross-sectional studies observed
an association between self-reported spatial navigation and CSF
Aβ42 in clinically normal older adults, but a longitudinal study
failed to find an association between AD-associated biomarkers
and change in self-reported spatial navigation ability (Allison
et al., 2018, 2019; Levine et al., 2022). Notably, our group previ-
ously developed reliable and valid self- and informant-report ques-
tionnaires assessing change in navigation ability, wherein the self-
reported questionnaire was significantly associated with concur-
rent CSF Aβ42, but the informant-report was not (Allison et al.,
2019). Importantly, the questionnaires did not show practice
effects, whereas the learning phase of an objective cognitive map-
ping task did.

The Everyday Cognition Scale (ECog) represents a well-estab-
lished, validated, and accessible self- and informant-reported ques-
tionnaire that has demonstrated utility in measuring cognitive
change in the preclinical population and assesses three cognitive
domains affected during the preclinical stage (i.e., memory, atten-
tion, and spatial navigation; Farias et al., 2008). Additionally, an
online version of the self-reported ECog has been validated
(Howell et al., 2021, 2022). Self- and informant-reported total
ECog has been associated with clinical progression from clinical
normality to symptomatic AD and with objective cognitive perfor-
mance (Banh et al., 2021; Nosheny et al., 2019). Decline on the
ECog has been associated with smaller superior temporal volumes
bilaterally and greater accumulation of white matter hyperinten-
sities in the temporal and parietal lobes over time in clinically nor-
mal older adults (Morrison et al., 2022, 2023). The short form of
the self-reported ECog has been associated with PET amyloid pos-
itivity in individuals with MCI or dementia (Tsoy et al., 2021). In
addition, the memory, attention, and spatial navigation subsec-
tions of the ECog were correlated with hippocampal volume in
a sample that included clinically normal, MCI, and dementia par-
ticipants (Farias et al., 2013). Additionally, the self-reported
memory subsection was correlated with PET amyloid in a sample
of clinically normal older adults and individuals with early-stage
probable AD (Hsu et al., 2017). Another study identified individual
self- and informant-reported items that were sensitive to progres-
sion from clinical normality to MCI (Marshall et al., 2014).
Longitudinally, the informant-reported memory and spatial navi-
gation subsections were associated with functional disability in
participants who were clinically normal or MCI at baseline (Lau
et al., 2015).

When examining subjective cognitive change as a potential
screening measure, it is critical to consider additional, non-AD-
related factors that may influence subjective reporting.
Depression is one such factor that has been associated with self-
reported and objective measures of cognitive ability. Notably,
one study found that self-reported prospective memory and
objective prospective memory were highly correlated in
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participants with low levels of memory complaints, but not par-
ticipants with high levels of complaints (Zeintl et al., 2006).
Instead, in the high-complaint group, self-reported prospective
memory was associated with depressive symptomatology
(Zeintl et al., 2006). This suggests a potential moderating effect
of depressive symptoms on the association of self-reported
memory and objective ability. Additionally, preclinical AD has
been associated with increased risk of developing depression
(Harrington et al., 2017). Given the association between depres-
sive symptoms and self-reported cognition and the association
between depression and the preclinical stage of AD, it is relevant
to consider whether associations between self-reported cognitive
change and preclinical AD-related biomarkers are independent
of depressive symptoms. Because depression is associated with
both preclinical AD and subjective cognition, it is central to
examine whether endorsing both greater depressive symptoms
and subjective cognitive complaints would lead to an additive
ability to predict AD biomarker burden.

The existing literature examining self- and informant-reported
cognitive change in preclinical AD has largely focused on global
cognition rather than domain-specific cognition; as such, it is cur-
rently unclear whether questionnaire-based assessment of
domain-specific cognitive change may represent an effective
screening tool for preclinical AD. The first aim of the current study
was to assess the reliability and validity of the ECogmemory, atten-
tion, and spatial navigation subsections. The second aim was to
examine the ability of ECog subsections to predict CSF ptau181/
Aβ42 ratio or hippocampal volume biomarker positivity. Thirdly,
we examined whether self-reported change continued to predict
biomarker positivity when controlling for depressive symptoma-
tology. We also assessed the interaction between self-reported cog-
nitive change and depressive symptoms in predicting AD
biomarkers in order to determine whether individuals with more
depressive symptoms exhibited a stronger association between
self-reported change and AD biomarker burden. Lastly, we exam-
ined neuropsychological composites of the same or similar domain
to the ECog (e.g., memory, executive function, and visuospatial
abilities) to assess whether subjective and objective measures dif-
fered in their ability to identify biomarker positivity.

Methods

Participants

Data used in this manuscript were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database on January 10,
2021 (adni.loni.use.edu). The ADNI was established in 2003 as a
public-private partnership, led by Principal Investigator Michael
W. Weiner. The primary goal of ADNI is to test whether serial
MRI, PET, and other biological markers, as well as clinical and
neuropsychological assessment, can be combined to measure the
progression of AD. All procedures were approved by local IRBs
and participants provided informed consent to all procedures in
accordance with the Helsinki Declaration. For further information,
see: www.adni-info.org. The current study included all clinically
normal participants (Clinical Dementia Rating Scale®= 0;
Morris, 1993) within (±) 1 year of ECog (absolute valuem= 40.07
days, SD = 36.25 days, absolute value range= 0–271 days, full
range=−271 to 0 days) who completed the ECog and had CSF
data available within 2 years of completing the ECog. Their

informant data were included as well, when available. There were
no further exclusionary criteria.

Everyday cognition scale

The ECog is a 39-item questionnaire, with self- and informant-
reported versions, that assesses changes in functional activities
across six cognitive domains (memory, language, visuospatial abil-
ities, planning, organization, and divided attention) compared to
10 years earlier (Farias et al., 2008). The participant and informant
ECog memory (eight items), divided attention (four items), and
visuospatial abilities (seven items which assess spatial navigation
ability) subsections were considered for the purposes of this study
given evidence that these cognitive domains are impacted by pre-
clinical AD. Ratings were made on a four-point Likert scale: 1=
better or no change compared to 10 years earlier, 2= question-
able/occasionally worse, 3= consistently a little worse, 4= consis-
tently much worse. Items were averaged within each domain to
include participants and informants who skipped items and, there-
fore, maximize sample size. When a participant had completed
multiple ECogs, the first available was used.

Geriatric Depression Scale: short form (GDS)

The GDS is a 15-item self-reported questionnaire of depressive
symptomatology. The GDS has strong reliability and validity
(Sheikh & Yesavage, 1986; Herrmann et al., 1996; Lesher &
Berryhill, 1994). The GDS was included if collected within thirty
days of the ECog (N= 197; absolute value m= 18.95 days,
SD = 10.13 days, full/absolute value range= 0–29 days).

Cerebrospinal fluid (CSF)

CSF collected by ADNI were analyzed using Elecsys immunoas-
says, following the Roche Study Protocol at the UPenn/ADNI
Biomarker Laboratory as previously described (Bittner et al.,
2016). CSF data were included if collected within (±) 2 years of
completing the ECog (absolute value m = 27.76 days,
SD = 76.98 days, absolute value range = 0–688 days, full
range =−404 to 688 days). The sample used in CSF analyses
included 371 participants and 366 informants.

Structural MRI

ADNI 3T MRI acquisition and pre-processing methods have been
described (http://adni-info.org; Jack et al., 2008). MRI data were
used if collected within (±) 2 years of completing the ECog (absolute
value m= 35.99 days, SD = 78.83 days, absolute value range= 0–
728 days, full range=−728 to 397 days). The hippocampus was
the region-of-interest given its association with preclinical AD
(Csernansky et al., 2005). The FreeSurfer image analysis was used
for image processing and hippocampal delineation (Fischl et al.,
2002). Volumetric data obtained through FreeSurfer procedure
are highly correlated with manually generated volumes (Desikan
et al., 2006; Fischl et al., 2002). Volumes were summed across hemi-
spheres and estimated intracranial volume was used to adjust vol-
umes for body size differences using an analysis of covariance
approach (Buckner et al., 2004). The sample in hippocampal volume
analyses included 313 participants and 309 informants.
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Defining biomarker positivity

CSF ptau181/Aβ42 ratio with a> 0.0198 cutoff was used to identify
biomarker positivity as this is highly associated with PET amyloid
(Schindler et al., 2018). Using this methodology, 160 participants
were categorized as biomarker positive and 211 participants were
categorized as biomarker normal (Table 1). Of note, there is not an
established cutoff to indicate preclinical status using hippocampal
volume. Thus, when considering the hippocampus as a dichoto-
mous marker of preclinical status, participants with volumes in
the lowest tertile of the total sample were considered to be bio-
marker positive and participants with hippocampal volumes in
the highest two tertiles were considered biomarker normal.
Using this methodology, 105 participants were categorized as bio-
marker positive and 208 participants were categorized as bio-
marker normal (Table 2). Fifty-three participants were
considered biomarker positive based on both biomarker measures.

Neuropsychological assessment

Memory, executive function, and visuospatial standardized
composite scores were previously derived and validated using
the ADNI neuropsychological battery (Choi et al., 2020; Crane
et al., 2012; Gibbons et al., 2012). The memory composite was
derived using confirmatory factor analyses (for details on psycho-
metric development, see Crane et al., 2012) and included the Rey
Auditory Verbal Learning Test (Rey, 1964), AD Assessment
Schedule-Cognition list learning task (Mohs et al., 1997), Mini-
Mental State Examination word recall (Folstein et al., 1975), and
immediate and delayed recall on the Logical Memory subtest
(Wechsler, 1987). The executive function composite was derived
using item response theory (for details on psychometric develop-
ment, see Gibbons et al., 2012) and includedWAIS-RDigit Symbol
Substitution (Wechsler, 1981), WAIS-R Digit Span Backwards
(Wechsler, 1981), Trails A and B (Reitan & Wolfson, 1985),

Table 1. Participant sample based on CSF ptau181/Aβ42 ratio

Total sample Biomarker normal Biomarker positive

N 371 211 160
Gender (m/f) 154/217 94/117 60/100
Race (White/Black/American Indian/Asian/More than one race) 336/19/2/5/9 186/14/2/4/5 150/5/0/1/4
Ethnicity (% Non-Hispanic) 94.88% 93.84% 96.25%
Age (years) (mean (SD))* 73.03 (6.76) 71.34 (6.28) 75.25 (6.75)
Age range (years) 56–93 56–93 56–92
Education (years) (mean (SD)) 16.67 (2.39) 16.86 (2.37) 16.43 (2.40)
Education range (years) 10–20 10–20 6–20
Self-reported memory (N; mean (SD))* 371; 1.65 (.51) 211; 1.60 (.52) 160; 1.71 (.49)
Self-reported attention (N; mean (SD))* 371; 1.51 (.56) 211; 1.46 (.54) 160; 1.58 (.58)
Self-reported navigation (N; mean (SD)) 370; 1.15 (.25) 210; 1.14 (.24) 160; 1.17 (.25)
Informant-reported memory (N; mean (SD)) 366; 1.33 (.40) 207; 1.35 (.42) 159; 1.31 (.38)
Informant-reported attention (N; mean (SD)) 364; 1.29 (.48) 206; 1.28 (.49) 158; 1.30 (.47)
Informant-reported navigation (N; mean (SD)) 366; 1.07 (.16) 207; 1.06 (.13) 159; 1.08 (.19)
Objective memory (N; mean (SD))* 371; 1.07 (.60) 211; 1.13 (.59) 160; .98 (.60)
Objective executive function (N; mean (SD))* 371; .94 (.84) 211; 1.11 (.84) 160; .72 (.78)
Objective visuospatial (N; mean (SD)) 371; .20 (.64) 211; .22 (.63) 160; .16 (.65)
Geriatric Depression Scale (N; mean (SD)) 197; .67 (1.01) 90; .67 (.83) 107; .66 (1.13)
CSF ptau181/Aβ42 ratio (N; mean (SD))* 371; .025 (.019) 211; .013 (.003) 160; .041 (.019)

Note. Biomarker normal status indicated by CSF ptau181/Aβ42 ratio≤ 0.0198; Biomarker positive status indicated by CSF ptau181/Aβ42 ratio>0.0198; * indicates a significant difference between
groups (p< .05).

Table 2. Participant sample based on hippocampal volume

Total sample Biomarker normal Biomarker positive

N 313 208 105
Gender (m/f)* 126/187 74/134 52/53
Race (White/Black/American Indian/Asian/More than one race) 282/18/2/5/6 186/12/2/4/4 96/6/0/1/2
Ethnicity (% Non-Hispanic) 94.89% 93.33% 98.10%
Age (years) (mean (SD))* 72.84 (6.65) 70.95 (5.94) 76.60 (6.40)
Age range (years) 56–93 56–85 60–93
Education (years) (mean (SD)) 16.59 (2.43) 16.59 (2.36) 16.60 (2.57)
Education range (years) 6–20 10–20 6–20
Self-reported memory (N; mean (SD)) 313, 1.65 (.50) 208, 1.61 (.49) 105, 1.71 (.52)
Self-reported attention (N; mean (SD)) 313, 1.51 (.58) 208, 1.50 (.57) 105, 1.53 (.59)
Self-reported navigation (N; mean (SD)) 312, 1.15 (.25) 207, 1.13 (.23) 105, 1.19 (.28)
Informant-reported memory (N; mean (SD)) 309, 1.35 (.40) 205, 1.34 (.42) 104, 1.35 (.37)
Informant-reported attention (N; mean (SD)) 307, 1.31 (.51) 204, 1.29 (.51) 103, 1.34 (.51)
Informant-reported navigation (N; mean (SD)) 309, 1.07 (.15) 205, 1.07 (.14) 104, 1.08 (.17)
Objective memory (N; mean (SD))* 313, 1.09 (.60) 208, 1.19 (.57) 105, .90 (.62)
Objective executive function (N; mean (SD))* 313, .933 (.85) 208, 1.10 (.82) 105, .60 (.85)
Objective visuospatial (N; mean (SD))* 313, .20 (.64) 208, .25 (.59) 105, .10 (.73)
Geriatric Depression Scale (N; mean (SD)) 168, .70 (1.03) 110, .61 (.86) 58, .86 (1.29)
Hippocampal volume (cm3) (N; mean (SD))* 313, 7475.68 (774.38) 208, 7902.57 (524.74) 105, 6630.02 (405.51)

Note. Biomarker normal status indicated by top two tertiles of sample based on hippocampal volume; Biomarker positive status indicated by bottom tertile of sample based on hippocampal
volume; * indicates a significant difference between groups (p< .05).
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Category Fluency (Morris et al., 1989), and Clock Drawing
(Goodglass & Kaplan, 1983). The visuospatial composite was
derived using item response theory (for details on psychometric
development, see Choi et al., 2020) and included a five-point clock
copy (Goodglass & Kaplan, 1983), MMSE interlocking pentagon
copy (Folstein et al., 1975), and ADAS-Cog constructional praxis
(Mohs et al., 1997). Neuropsychological composite data were
included if collected within (±) 1 year of completing the ECog
(absolute value m= 14.85 days, SD = 68.70 days, absolute value
range= 0–365 days, full range=−365 to 0 days).

Statistical analyses

Reliability and validity
Internal consistency of each ECog subsection was assessed using
Cronbach’s alpha. Confirmatory factor analyses assuming three-
factor and one-factor models separately for the self- and inform-
ant-reported questionnaires were used to examine validity. We
hypothesized that both self and informant models would support
a three-factor structure in that each questionnaire will represent a
separate factor. This would suggest that the questionnaires are
measuring three separable cognitive functions. Model fit was
evaluated using the comparative fit index (CFI), root mean square
error of approximation (RMSEA), and standardized root mean
square residual (SRMR). Using previously published criteria, good
fit was defined by CFI> .95, RMSEA < .06, and SRMR < .06 (Hu&
Bentler, 1999). Acceptable fit was defined by CFI> .90,
RMSEA< .08, and SRMR< .08 (Brown & Cudeck, 1993;
Brown, 2006).

Predictive ability of questionnaires and neuropsychological
composites
Logistic regression analyses were conducted using IBM SPSS
Statistics 28. These analyses were conducted to determine whether
ECog subsections and neuropsychological composites predicted
biomarker positivity defined by either CSF ptau181/Aβ42 or hippo-
campal volume. Self- and informant-reports of the same domain
were summed to create a combined subsection score, and this com-
bined score was entered as a predictor in the logistic regression
models. To compare self-reported and objective measures of the
same or similar cognitive domain (i.e., memory, attention/execu-
tive functioning, and spatial navigation/visuospatial ability), both
were included in the same model. Age, sex, and education were
covariates in all models.

Consideration of depressive symptoms
If the self-reported ECog subsection was significant in the initial
logistic regression model, a four-step hierarchical logistic regres-
sion was used to examine the unique predictive information pro-
vided by self-reported subsection when controlling for depressive
symptoms. The dependent variable was CSF ptau181/Aβ42 or
hippocampal volume biomarker positivity. In step one, demo-
graphic variables of age, sex, and education were entered as cova-
riates. In step two, the subsection of interest was added to the
model (i.e., memory, attention, or spatial navigation). In step three,
depressive symptomatology was added to the model. Finally, the
interaction between the ECog subsection and depressive symptoms
was added to the model in step 4.

Predictor variables
For all logistic regression analyses, predictors were z-scored within
our sample in order to obtain standardized beta coefficients, as well

as to aid in interpretation and comparison of slopes across regres-
sion models.

Outliers
Variables greater than three standard deviations from the group
mean were identified as outliers. Results were the same with and
without outliers, unless otherwise specified.

Results

Reliability

The self- and informant-reported memory and attention subsec-
tions demonstrated good internal consistency using Cronbach’s
alpha, whereas self- and informant-reported spatial navigation
subsections demonstrated fair internal consistency (Table 3).

Validity

A CFA was conducted to assess whether self-reported ECog
memory, attention, and spatial navigation were loaded onto three
independent factors. Model fit indices were good (CFI= .956,
RMSEA = .059) or acceptable (SRMR= .083) for the hypothesized
latent structure, but the χ2 test indicated potential model misspe-
cification (χ2(149)= 340.246, p< .001). Additionally, a one-factor
model was considered, assuming all self-reported questionnaires
converged onto a single factor; however,
model fit was poor (CFI= .876, RMSEA= .098, SRMR= .108,
χ2(152) = 695.991, p< .001). Chi-square difference testing indi-
cated that self-reported one- and three-factor models were signifi-
cantly different (χ2(3)= 129.511, p< .001).

The same pattern was observed in informant-reported models,
with the three-factor model providing better fit than the one-factor
model, but with indications of model misspecification. The
informant three-factor model provided some indication of good
or acceptable fit (CFI= .951 and RMSEA = .072) but also showed
indications of poor fit (SRMR= .120 and χ2(149)= 433.994,
p< .001). The one-factor model demonstrated poor fit overall
(CFI= .901, RMSEA = .102, SRMR= .160, χ2(152)= 730.337,
p< .001). Chi-square difference testing indicated informant-
reported one- and three-factor models were significantly different
(χ2(3)= 145.347, p< .001).

Self- and informant-reported memory (r(364) = .372, p< .001)
and attention (r(362) = .369, p< .001) were moderately correlated.
Self- and informant-reported spatial navigation were significantly
but weakly correlated (r(363) = .104, p= .047).

Predictive ability of questionnaires

CSF ratio
Self-reported memory demonstrated a trend toward predicting
biomarker positivity, which became significant with outliers
removed (p= .052 and p= .018, respectively). Self-reported

Table 3. Internal consistency of ECog subsections

α (95% CI)

Self-reported memory (N= 371) .85 (.83–.88)
Self-reported attention (N= 371) .85 (.83–.88)
Self-reported spatial navigation (N= 370) .74 (.71–.78)
Informant-reported memory (N= 366) .87 (.84–.89)
Informant-reported attention (N= 364) .89 (.87–.91)
Informant-reported spatial navigation (N= 366) .71 (.67–.75)

Note. α= Cronbach’s Alpha; CI= Confidence Interval.
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attention and spatial navigation were not predictors of biomarker
positivity (p= .060 and p= .586, respectively). Informant-reported
and combined self- and informant-reported subsections were not
predictors of biomarker positivity (ps> .079). See Table 4 and
Figure 1 for full results.

Hippocampal volume
Self-reported, informant-reported, and combined self- and
informant-reported subsections were not predictors of biomarker
positivity (ps> .083). See Table 5 and Figure 2 for full results.

Consideration of depressive symptoms

As self-reported memory was the only predictor of CSF ptau181/
Aβ42 ratio biomarker positivity, this was the only subsection con-
sidered individually for these analyses (Table 6). In this more lim-
ited sample of participants with available GDS (N = 197), self-
reported memory was no longer a predictor of CSF ptau181/
Aβ42 ratio biomarker positivity (p = .517). This remained true
when GDS, and the interaction between self-reported-memory
and GDS, were added to the models (p = .482 and p = .355,
respectively).

Table 4. Logistic regression predicting biomarker positivity defined by CSF
ptau181/Aβ42 ratio

Standardized
β SE OR OR 95% CI p-value

Self-reported memory
(full sample; N= 371)

.217 .112 1.242 .998–1.545 .052

Self-reported memory (no
outliers; N= 364)

.543 .229 1.721 1.099–2.695 .018*

Self-reported attention
(N= 371)

.206 .109 1.229 .992–1.523 .060

Self-reported navigation
(N= 370)

.059 .109 1.061 .857–1.314 .586

Informant-reported
memory (N = 366)

−.094 .114 .911 .728–1.140 .413

Informant-reported
attention (N= 364)

.089 .111 1.093 .879–1.359 .423

Informant-reported
navigation (N= 366)

.104 .114 1.110 .888–1.387 .361

Combined-reported
memory (N = 366)

.106 .112 1.112 .893–1.386 .343

Combined-reported
attention (N= 364)

.194 .111 1.214 .978–1.508 .079

Combined-reported
navigation (N= 365)

.123 .112 1.131 .908–1.408 .271

Objective memory
(N= 371)

.160 .123 1.173 .921–1.484 .196

Objective executive
function (N = 371)

.292 .125 1.340 1.050–1.710 .019*

Objective visuospatial
(N= 371)

−.012 .113 .988 .791–1.235 .918

Note. SE= Standard Error; CI= Confidence Interval; OR=Odds Ratio; * indicates p< .05. Each
predictor was examined in a separatemodel that included only the predictor of interest noted
in the table and covariates (age, gender, education).

Table 5. Logistic regression predicting biomarker positivity defined by
hippocampal volume

Standardized
β SE OR OR 95% CI p-value

Self-reported memory
(N= 313)

.229 .132 1.257 .970–1.629 .083

Self-reported attention
(N= 313)

.076 .128 1.079 .840–1.386 .552

Self-reported
navigation (N= 312)

.207 .122 1.230 .968–1.563 .091

Informant-reported
memory (N= 309)

−.005 .130 .995 .771–1.283 .967

Informant-reported
attention (N= 307)

.113 .123 1.120 .881–1.424 .357

Informant-reported
navigation (N= 309)

.053 .137 1.054 .807–1.378 .698

Combined-reported
memory (N= 309)

.156 .150 1.168 .871–1.567 .299

Combined-reported
attention (N= 307)

.117 .123 1.124 .883–1.432 .341

Combined-reported
navigation (N= 308)

.217 .128 1.242 .966–1.596 .091

Objective memory
(N= 313)

.311 .149 1.364 1.018–1.829 .038*

Objective executive
function (N= 313)

.384 .150 1.468 1.093–1.971 .011*

Objective visuospatial
(N= 313)

.148 .134 1.160 .893–1.507 .267

Note. SE= Standard Error; CI= Confidence Interval; OR= Odds Ratio; * indicates p< .05. Each
predictor was examined in a separatemodel that included only the predictor of interest noted
in the table and covariates (age, gender, education).

Figure 1. Logistic regression for self- and informant-reported
memory, attention, and spatial navigation ECog subsections pre-
dicting CSF ptau181/Aβ42 ratio biomarker positivity.
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Comparison to neuropsychological composites

CSF ratio
The objective executive function composite was a predictor of bio-
marker positivity (p= .019; Table 4). The objective executive func-
tion composite remained significant, whereas self-reported
attention was not, when both were in the same model (p= .029
and p= .095, respectively). Self-reported memory (with outliers
removed) was a predictor of biomarker positivity, whereas the
objective memory composite was not, when both were in the same
model (p= .014 and p= .186, respectively). Self-reported naviga-
tion and the objective visuospatial composite were not significant
when both were in the same model (p= .586 and p= .902, respec-
tively). See Table 7 for full results.

Hippocampal volume
The objective memory and executive function composites were
predictors of biomarker burden (ps< .038; Table 5). The objective
executive function composite remained significant, whereas self-
reported attention was not, when both were in the same model (p
= .012 and p= .795, respectively). When outliers were removed,
the objective memory composite remained significant, whereas
self-reported memory was not, when both were in the same model

(p= .027 and p= .177, respectively). Self-reported navigation and
the objective visuospatial composite were not significant when
both were in the same model (p= .094 and p= .285, respectively).
See Table 7 for full results.

Discussion

The current study suggests that the self- and informant-reported
memory, attention, and spatial navigation ECog subsections are
not robust predictors of CSF ptau181/Aβ42 ratio or hippocampal
volume biomarker positivity. Only self-reportedmemory was a sig-
nificant predictor of CSF ptau181/Aβ42 ratio biomarker positivity,
which remained significant when the objective memory composite
was added to the model (with outliers removed); however, self-
reported memory was not a significant predictor of CSF ptau181/
Aβ42 biomarker positivity in a more limited sample when control-
ling for depressive symptoms. None of the subsections were pre-
dictors of hippocampal volume biomarker positivity. These
results demonstrate the limited ability of the ECog subsections
to detect AD-associated biomarkers in clinically normal older
adults and highlight the need to adjust current subjective measures
or develop new measures to enhance clinical utility in the preclini-
cal stage.

Table 6. Self-reported memory predicting biomarker positivity defined by CSF ptau181/Aβ42 ratio controlling for depressive symptoms (N= 197)

Model AIC Standardized β SE OR OR 95% CI p-value

Step 1 model 266
Age .555 .161 1.742 1.271–2.387 <.001*
Sex .207 .156 1.230 .907–1.668 .184
Education .163 .155 1.177 .869–1.595 .292

Memory
Step 2 model 267.57

Self-reported memory .095 .147 1.100 .825–1.467 .517
Step 3 model 269.47

Self-reported memory .106 .151 1.112 .827–1.495 .482
Depressive symptoms −.050 .153 .951 .705–1.283 .744

Step 4 model 268.94
Self-reported memory .145 .157 1.156 .850–1.573 .355
Depressive symptoms .060 .172 1.062 .757–1.489 .728
Self-reported memory × depressive symptoms −.245 .169 .783 .562–1.091 .148

Note. SE= Standard Error; CI= Confidence Interval; OR=Odds Ratio; * indicates p< .05. The association between self-reportedmemory and CSF ptau181/Aβ42 ratio was examined in the context
of depressive symptoms because this was the only significant relationship observed in the full sample logistic regressions (Tables 4 and 5).

Figure 2. Logistic regression for self- and informant-reported
memory, attention, and spatial navigation ECog subsections pre-
dicting hippocampal volume biomarker positivity.
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Reliability and validity

Consistent with the existing literature, all subsections were within
the fair to good range for internal consistency (DeVellis, 2012;
Farias et al., 2011; Russo et al., 2018). When comparing the sub-
sections, it is unclear why the spatial navigation subsection had rel-
atively lower internal consistency compared to the memory and
attention subsections. One possibility is that participants may be
less adept at reflecting on their own navigation abilities, as the
behaviors queried may not be engaged in on a regular basis
(e.g., “reading a map and helping with directions when someone
else is driving”). Similarly, informants may not be observing par-
ticipants engaging in these navigation behaviors on a frequent
enough basis (e.g., “finding his/her car in a parking lot;” Allison
et al., 2019).

Confirmatory factor analyses supported that each domain-spe-
cific subsection represented a unique aspect of cognition.
Importantly, this suggests that both participants and informants
were able to differentially report changes across cognitive domains
and were not simply reporting general cognitive change. Broadly,
these results support the proposed concept of the development of a
domain-specific questionnaire for preclinical AD.

Predictive ability of questionnaires

Given the overall reliability and validity of the subsections, we fur-
ther examined the ability of ECog subsections to predict biomarker
positivity. Significant results were only observed for self-reported
memory and CSF ptau181/Aβ42 ratio biomarker positivity (with
outliers removed). This is consistent with the substantial body
of literature associating objective performance on neuropsycho-
logical and experimental memory tasks with AD biomarkers
and progression along the AD continuum (Baker et al., 2017;

Hedden et al., 2013); however, when these analyses were conducted
in a smaller sample due to limited availability of GDS, self-reported
memory was no longer a significant predictor of CSF ptau181/Aβ42
ratio biomarker positivity. The observed slope for self-reported
memory was reduced by more than 50% in the smaller sample (full
sample β= .217 and GDS sample β= .095), and the effect size also
diminished (full sample OR= 1.242 and GDS sample OR= 1.100).
Thus, self-reported memory, as measured by ECog, is not a robust
predictor of preclinical AD-related pathology. Of note, repeating
analyses increased the possibility of Type 1 error.

We may have observed limited associations between ECog sub-
sections and biomarker positivity due to a skew in all ECog sub-
sections wherein participants and informants reported little
cognitive change (average score in sample ranging 1.07–1.65 out
of 4). This skew was particularly noticeable in the spatial naviga-
tion subsections with 55% of participants and 74% of informants
denying change across ECog items, followed by attention with 32%
of participants and 60% of informants denying change across ECog
items. Self-reported memory demonstrated the greatest distribu-
tion with only 9% of participants denying change across all items,
but 34% of informants denied changes across all items. The greater
distribution of self-reported memory data may have contributed to
this being the only subsection with some evidence of a significant
association with biomarker positivity. Notably, informants tended
to report less cognitive change than participants across all
domains, suggesting limited ability of informant reports to capture
subtle cognitive changes associated with preclinical AD. This may
be due to informants not readily observing the abilities queried on
the ECog (e.g., “remembering the current date or day of the week”
and “ability to do two things at once”).

The spatial navigation subsection demonstrated the greatest skew
toward participants and informants denying change. Notably, this

Table 7. Comparison of self-reported subsections and objective neuropsychological composites

Standardized β SE OR OR 95% CI p-value

CSF ptau181/Aβ42 ratio
Memory (N= 371)
Self-reported memory .205 .112 1.227 .985–1.529 .068
Objective memory .138 .124 1.148 .900–1.465 .266

Memory without outliers (N= 362)
Self-reported memory .577 .234 1.780 1.126–2.814 .014*
Objective memory .173 .131 1.189 .920–1.536 .186

Attention/executive function (N= 371)
Self-reported attention .185 .111 1.203 .968–1.494 .095
Objective executive function .274 .125 1.315 1.028–1.682 .029*

Navigation/visuospatial (N= 370)
Self-reported navigation .059 .109 1.061 .857–1.314 .586
Objective visuospatial -.014 .113 .986 .789–1.232 .902

Hippocampal volume
Memory (N= 313)
Self-reported memory .200 .133 1.221 .941–1.585 .134
Objective memory .286 .151 1.332 .991–1.789 .057

Memory without outliers (N= 310)
Self-reported memory .370 .274 1.448 .846–2.478 .177
Objective memory .350 .159 1.419 1.040–1.937 .027*

Attention/executive function (N= 313)
Self-reported attention .034 .131 1.035 .801–1.337 .795
Objective executive function .379 .151 1.461 1.086–1.966 .012*

Navigation/visuospatial (N= 312)
Self-reported navigation .205 .123 1.228 .966–1.561 .094
Objective visuospatial .143 .134 1.154 .887–1.501 .285

Note. SE= Standard Error; CI= Confidence Interval; OR=Odds Ratio; * indicates p< .05. All subsections were compared to same or similar objective composite, regardless of either predictor’s
significance in prior models (Tables 4 and 5).
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subsection primarily focused on reading maps (two items) and nav-
igating familiar environments (three items), and only had two items
querying wayfinding in potentially novel locations. Navigating
familiar environments is relatively easier than navigating novel envi-
ronments for individuals with AD, and therefore changes in the lat-
ter may be more noticeable earlier in the disease process (Jheng &
Pai, 2009). Furthermore, navigating familiar environments may be
related to neural substrates that are not as impacted early in the AD
process (e.g., caudate) vs. navigating a new environment, which
tends to rely on brain regions that are impacted early (e.g., hippo-
campus; Kaplan et al., 2014; Park et al., 2014). A self-reported ques-
tionnaire developed byAllison and colleagues (2019) to detect subtle
spatial navigation change in clinically normal older adults was sen-
sitive to preclinical AD.

The lack of significant results in terms of hippocampal volume
may relate to the methodology used to define biomarker positivity,
as there is no established cutoff for hippocampal volume indicative
of preclinical AD. Thus, a sample-specific cutoff was calculated
using the bottom tertile based on the sample’s distribution of
hippocampal volume. In addition, cerebral amyloidosis is thought
to be the first neuropathological change that occurs on the AD con-
tinuum with hippocampal volume change occurring later (Jack
et al., 2018). The current samples consisted entirely of clinically
normal participants, and it is possible that the participants in
the sample did not exhibit hippocampal volume change that would
be reliably associated with cognitive change.

A current conceptualization of subjective cognitive decline does
not require the presence of informant-reported cognitive change
(Jessen et al., 2014). Previous work suggests that informant-
reported cognitive change may have particular utility in the later
stages of the AD continuum (i.e., MCI and symptomatic AD),
whereas self-reported cognitive change may be most useful in
the preclinical stage (for a review, see Rabin et al., 2017). Null find-
ings in informant-reported models may be a result of limiting our
sample to clinically normal participants.

Comparison to neuropsychological composites

Self-reported memory remained a significant predictor of CSF
ptau181/Aβ42 ratio biomarker positivity when the objective
memory composite was added to the model with outliers removed;
however, this result must be interpreted with caution in light of
null findings in the more limited GDS sample. In terms of hippo-
campal volume biomarker positivity, the observation that the
objective executive function and memory composites remained
significant when controlling for self-reported change in attention
and memory, respectively, is consistent with the substantial body
of literature associating objective performance on memory and
attention neuropsychological and experimental tasks with AD bio-
markers and progression along the AD continuum (Baker et al.,
2017; Balota et al., 2010; Hedden et al., 2013; Millar et al., 2017).

The visuospatial composite may have demonstrated limited dis-
criminative ability because the skills assessed were limited to con-
struction ability (e.g., copying a clock and interlocking pentagons)
and did not include other skills highly associated with AD, such as
topographical tasks (Salimi et al., 2018). Broadly, this is consistent
with findings that neuropsychological assessments of memory and
executive functioning have significant, but often small, associations
with preclinical AD, whereas neuropsychological assessments of
non-navigational visuospatial abilities are variably related to

preclinical AD (for meta-analyses, see Bäckman et al., 2005 and
Hedden et al., 2013; for a review, see Salimi et al., 2018).

Limitations

The ECog has several potential limitations that may have impacted its
ability to produce robust discriminative accuracy for AD biomarkers
in clinically normal older adults. First, the ECog assesses basic func-
tioning, and such functions may not yet be impacted in preclinical
AD; thus, the more subtle cognitive changes observed in preclinical
AD may not be captured by the measure. As previously discussed,
the ECog subsections were skewed toward participants and inform-
ants reporting no observed cognitive change across all items. Thus, the
ECog is not capturing cognitive change noticed at the earliest stages of
AD. The Subjective Cognitive Decline Initiative (SCD-I) working
group has identified features that may increase the likelihood of
observing subjective cognitive decline in preclinical AD, including
onset of subjective cognitive decline within the last 5 years (Jessen
et al., 2014). The ECog asks about changes observed over the past
10 years; thus, the ECog may be capturing more general age-related
cognitive decline rather than preclinical-specific changes, limiting its
predictive ability for biomarker positivity.

There are several limitations with using data from ADNI. First,
our sample was approximately 95% Non-Hispanic White, limiting
generalizability of our findings as there may be racial and ethnic
differences in AD biomarker burden (for a review, see Gleason
et al., 2022). While using the ADNI database allowed for the cre-
ation of a relatively large sample to examine current questions,
neuropsychological composite scores were not available for atten-
tion and spatial navigation. Instead, we relied on related measures
of executive functioning (of which attention is considered to be one
facet) and visuospatial abilities (which are thought to be utilized
during spatial navigation). This significantly limited our ability
to directly compare the respective ECog subsections to these
domains. In addition, data regarding informant cognitive status
was not available. It is possible that informant’s cognitive abilities
may have impacted their ability to accurately assess the partici-
pant’s cognitive change.

Additionally, analyses required coordination of multiple clini-
cal and biomarker measures that were collected at varying times
while the participant was enrolled in the ADNI study. This intro-
duces the possibility of clinical or biomarker changes during the
delay between measures. While we attempted to balance maximiz-
ing sample size and minimizing biomarker change over the time
interval, we must acknowledge there may be an impact of time
delay. Additionally, this approach resulted in varying sample sizes
across analyses, thus limiting our ability to directly compare results
across study aims.

Lastly, we examined multiple questions in this study: AD bio-
marker positivity was operationalized using both CSF ptau181/Aβ42
and hippocampal volume, significantmodels were rerun in a subsam-
ple with depressive symptomatology available, self-reported subsec-
tions were compared to objective neuropsychological composites,
and sensitivity analyses were run to consider the influence of outliers.
This resulted in 36models (18with and 18without outliers) for exam-
ining the ability of individual and combined subsections to predictAD
biomarker positivity, 6 models (3 with and 3 without outliers) to
examine the impact of depressive symptomatology in previously sig-
nificant models, and 12 models (6 with and 6 without outliers) to
compare the predictive ability of self-reported subsections and

240 Taylor F. Levine et al.

https://doi.org/10.1017/S1355617723000528 Published online by Cambridge University Press

https://doi.org/10.1017/S1355617723000528


objective neuropsychological composites (totaling 54 models). This
increases our risk of Type 1 error.

Conclusion

Collectively, this study suggests that the ECog subsections have
limited utility as screening tools for preclinical-related biomarkers.
This highlights the need for questionnaires developed to specifi-
cally assess subtle cognitive changes associated with preclinical
AD. The potential impact of depressive symptomatology on self-
reported cognitive ability in the preclinical stage must be further
examined in the context of more robust measures. Additionally,
longitudinal analyses should be conducted to examine whether
utility of participant and informant reports change as the partici-
pant progresses along the AD continuum. Through longitudinal
analyses, we can further examine the dynamic nature of informant
reports across the AD continuum and explore whether the predic-
tive ability of informant reports improves when participants have
progressed from the preclinical stage to symptomatic AD.
Importantly, there needs to be a focus on potential ways to improve
informants’ ability to report cognitive changes in the preclinical
stage of AD, such as querying behaviors thatmay be observedmore
often.
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