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Liquid spreading through a randomly packed particle-resolved bed influenced by capillary
or inertial (ABs ∼ 1), and gravitational force (moderately (ABs ∼ 0.1) and strongly (ABs ∼
0.01)) is investigated using the volume-of-fluid simulations. The relative contribution of
governing forces at different stages of spreading is analysed using the time evolution
of Weber (WeI) and ABI numbers. We show that the dynamics of liquid spreading at
ABs ∼ 1 is primarily governed by the inertial force in the beginning (ABI > 1, WeI > 1)
followed by the capillary force at t/t∗ ∼ 1. This interplay of governing forces leads to
inertia- and capillary-induced bubble entrapments at the void scale and promote lateral
liquid spreading. When the ABs ∼ 0.1, the t/t∗ for which the flow is governed by inertial
(ABI > 1, WeI > 1) and capillary forces (ABI > 1, WeI < 1) decreases and the relative
contribution of gravitational force is substantial at large t/t∗ (ABI < 1). This force balance
leads to unified-void filling characterised by negligible bubble trapping and results in a
decrease in the lateral spreading. Further decrease in the ABs to ∼0.01 results in liquid
spreading primarily governed by gravitational force (ABI < 1) with small contribution of
inertial and capillary forces at the very beginning leading to trickling flow and a further
decrease in lateral spreading. Finally, a regime map is proposed, which provides the
relationship between different forces, void-scale events, and the resultant liquid spreading
at t/t∗ ∼ 1.
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1. Introduction

Several applications in the chemical process industry involve gas–liquid flow through
packed beds, e.g. hydrodesulphurisation of petroleum fractions using trickle bed reactors,
catalytic hydrogenations and gas clean-up using absorption columns. The overall
performance of these processes is a strong function of local liquid distribution. The liquid
spreading inside packed beds is substantially influenced by the gas–liquid interaction
(defined by gas and liquid flow rates, viscosity, density, surface tension, etc.), fluid–solid
interaction (i.e. wettability), and particle characteristics (such as particle shape and size)
other than the operating conditions. The dynamics of liquid spreading is governed by
inertial force exerted by the injected liquid stream; the viscous force which resists the
motion of liquid; the capillary force which either drives or resists liquid spreading
depending on the wettability of particles; and gravitational force which either acts in the
direction of flow or opposite based on the operating mode of these processes.

Eulerian multiphase models are widely used to predict the macroscopic (bed-scale)
liquid spreading in packed beds as a function of the aforementioned parameters. In this
approach, the fluid phases are assumed to be in an interpenetrating continuum, and the
contributions of the governing forces are accounted for using semi-empirical models,
e.g. the capillary force is incorporated using one of the models proposed by Attou &
Ferschneider (1999), Grosser, Carbonell & Sundaresan (1988) or Lappalainen, Manninen
& Alopaeus (2009); the cumulative effect of inertial and viscous force is accounted for
using the interphase momentum exchange (proposed by Attou & Ferschneider 1999)
and mechanical dispersion (proposed by Lappalainen et al. 2009) models. In order to
establish a reasonable agreement between the predictions of Eulerian multiphase model
and measurements, the semi-empirical capillary force and/or the interphase momentum
exchange models are either modified and/or the contribution of the mechanical dispersion
force model is neglected (see Jindal & Buwa (2017), Dhanraj & Buwa (2018) and articles
cited therein for further details). Therefore, to understand the physics of liquid spreading in
packed beds and to improve the force models used in the Eulerian multiphase framework,
it is essential to comprehend how different forces contribute to the dynamics of liquid
spreading at the particle scale, and the corresponding void-scale flow behaviour.

Several researchers have investigated two-phase flow through porous media
(characterised by length scales of a few micrometres) at the particle/pore scale using
measurements and numerical simulations. Many of these studies investigate two-phase
flows in horizontal configurations wherein, the effect of gravitational force is negligible.
With the aid of measurements and simulations (e.g. Ambekar, Mondal & Buwa (2021),
Holtzman & Segre (2015), Hu et al. (2019), Lenormand (1990), Lenormand, Touboul &
Zarcone (1988), Primkulov et al. (2021, 2019), Wang et al. (2022), Xiao et al. (2021) and
Zhao, MacMinn & Juanes (2016)), it is shown that such a two-phase flow phenomenon is
governed by the interplay between capillary and viscous force. Therefore, the two-phase
flow phenomenon is investigated with the aid of capillary number (ratio of viscous to
capillary force) and viscosity ratios. These investigations have subsequently resulted in the
identification of various two-phase flow regimes, i.e. stable, viscous and capillary fingering
as a function of capillary number and viscosity ratio. The aforementioned information is
further used to propose regime maps for two-phase flow through porous media. A few
studies also report the investigation of two-phase flow phenomena through porous media
under the influence of gravitational force (e.g. Breen et al. (2022), Dong, Yan & Li (2011),
Islam et al. (2014) and Zheng et al. (2017)). These studies show that the viscous fingering
is promoted by gravitational force if it acts in the direction of flow whereas, it stabilises
viscous fingering if it acts in the direction opposite to the flow direction depending
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Dynamics of liquid spreading in packed beds

on the magnitude of Bond number (ratio of gravitational to capillary force). Although
these studies provide insights into the two-phase flow regimes and their relationship with
governing forces (i.e. dimensionless numbers), they do not provide information on how
different forces influence the pore/particle-scale two-phase flow phenomena at different
temporal stages.

With the increasing affordability of computational resources, interface-resolved
methods (such as volume-of-fluid (VOF), level set (LS) and phase field (PF)) can be used to
simulate liquid spreading in structure/particle-resolved domains. The predictions of these
simulations do not rely on semi-empirical models and, thus, can be used to understand
the role of various forces governing the dynamics of liquid spreading. Recently, such
simulations have been used to understand the role of various forces on the spreading of a
single droplet over a porous medium (Frank & Perre 2012; Das et al. 2018; Fu et al. 2019;
Shi et al. 2019; Ezzatneshan & Goharimehr 2020). Subsequently, the time evolution of
droplet spreading is subdivided into inertial, capillary and viscous regimes depending on
the relative importance of different forces. However, the two flow systems, i.e. spreading
of a droplet over a porous medium and spreading of a continuous liquid stream inside
a packed bed, are substantially different. Concerning liquid spreading in packed beds,
the interface-resolved (VOF) simulations are used to investigate the influence of fluid
properties, operating conditions (e.g. Lopes & Quinta-Ferreira 2009, 2010), wettability
(e.g. Du et al. 2015, 2017) and particle shape (Kang et al. 2019; Deng et al. 2020) on the
steady-state liquid distribution. However, the effect of the aforementioned parameters on
the contribution of different forces at different temporal stages of liquid spreading and their
relationship with void-scale flow behaviour has not been explored. The understanding of
the dynamics of various forces and its relationship with the time evolution of local liquid
spreading is crucial for the improvement/development of force models for continuum
approaches.

In the present study, a three-dimensional (3-D) bed randomly packed with 440 uniformly
sized spherical particles is created by mimicking the process of particles falling inside
a box under the influence of gravity using rigid body simulations. The VOF method
implemented in the open-source flow solver OpenFOAM, is used to simulate the time
evolution of liquid spreading inside the small section of the packed bed. Further, the
role of governing forces at different temporal stages of liquid spreading influenced by
capillary, inertial and gravitational force, is quantified using dimensionless numbers such
as Ohnesorge, Weber and ABi (proposed in the present work). Moreover, the relationship
between dimensionless numbers and the void-scale interface dynamics is established.

2. Problem formulation

The dynamics of liquid spreading in the small section of the packed bed is investigated
using the VOF model implemented in the finite-volume-based open-source code
OpenFOAM v6. In order to create a particle-resolved fluid domain, initially, a large bed
(10 dp × 17 dp × 15 dp) of spherical particles is created by mimicking the process of filling
a box randomly with uniformly sized particles (diameter dp = 4 mm) under the influence
of gravity using rigid body simulation, performed using the open-source software Blender
v2.83. Due to the sharp intersection angles, the particle–particle contact regions were
difficult to mesh and, therefore, the particles were shrunk radially by 2 %. The particles
were then subtracted from the box volume to create the void-volume/fluid domain. The
near-wall regions (equivalent to 3.5 dp from the box wall) of the fluid domain were
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Velocity inlet; αw = 1

Inlet (dp/2)

8
 d
p

3 dp

Pressure inlet; αw = 0

No-slip; θw = 0, 40, and 70° 

Symmetry

No-slip; θw = 90° 

Origin (0, 0, 0) 

Pressure outlet; backflow αw = 0

10 d p

x
z

y

Figure 1. Computational domain with boundary conditions.

trimmed to exclude the wall-influenced large voids resulting in a bed with dimensions
3 dp × 10 dp × 8 dp containing approximately 440 particles as shown in figure 1.

The fluid domain (shown in figure 1) is filled with air (viscosity μa = 1.48 × 10−5 Pa s
and density ρa = 1 kg m−3). Water (viscosity μw = 1 × 10−3 Pa s and density ρw =
1000 kg m−3) is injected at a constant flow rate Qw of 3.14 × 10−6 m3 s−1 from the
small circular inlet (diameter = dp/2) located centrally on the top cut-plane (XY plane at
Z = 8 dp) in the negative Z-direction (see figure 1). Gravity g also acts in the flow direction
(negative Z-direction). Three values of gas–liquid surface tension σaw, i.e. 70, 40 and
10 mN m−1, are considered to study the effect of σaw on the dynamics of liquid spreading.
In the present study, the fluids are assumed to be Newtonian and incompressible.

2.1. Governing equations
In the VOF method (Hirt & Nichols 1981), a single set of continuity (2.1) and momentum
(2.2) equations is solved:

∇ · v̄ = 0, (2.1)

∂

∂t
(ρv̄) + ∇ · (ρv̄v̄) = −∇p + μ∇2v̄ + F̄ s + ρḡ, (2.2)

where v̄ is the velocity (m s−1), p is the pressure (Pa) and F̄ s is the surface tension force
per unit volume (N m−3). Here ρ and μ are the phase volume fraction weighted density
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(kg m−3) and viscosity (Pa s) and are computed as

ρ = αwρw + (1 − αw)ρa and μ = αwμw + (1 − αw)μa, (2.3a,b)

where αw and αa (= 1 − αw) are the volume fractions of water and air, respectively.
The motion of the air–water interface is simulated by solving the advection equation for

αw (2.4),

∂

∂t
(αwρw) + ∇ · (αwρwv̄) + ∇ · (αw(1 − αw)ūr) = 0, (2.4)

where ūr is compression velocity and the third term on the left-hand side of (2.4) is an
artificial compression term used to limit numerical diffusion (see Nekouei & Vanapalli
(2017) and articles cited therein for details). The Multidimensional Universal Limiter with
Explicit Solution (MULES) algorithm is also used to correct the αw fluxes to ensure
boundedness and conservativeness (see Greenshields (2018) for details).

Here F̄ s is computed using the continuum surface force (CSF) model, proposed by
Brackbill, Kothe & Zemach (1992), given as

F̄ s = −σawκ∇αw, (2.5)

where κ is the local curvature of the gas–liquid interface and is calculated from the local
gradients of the surface normal (n̂) of the interface as κ = ∇ · n̂, where n̂ = ∇αw/|∇αw|.

2.2. Boundary conditions
A constant velocity along with αw = 1 is specified at the liquid inlet. The remaining
portion of the top cut-plane is specified with a constant pressure of 1 atm with αw = 0 (at
time t = 0). A pressure outlet boundary condition (p = 1 atm) is specified at the bottom
cut-plane (XY plane at Z = 0, figure 1) along with backflow αw of 0. The symmetry
boundary condition is specified at the lateral cut-planes (XZ planes at Y = 0 and 10
dp). A no-slip boundary condition is specified at the particle surfaces and the front and
rear cut-planes (YZ plane at X = 0 and 3 dp, respectively) as shown in figure 1. Here,
κ (in (2.5)) in cells adjacent to particle surfaces and front/rear cut-planes was defined by
specifying n̂ as n̂ = n̂w cos θw + t̂w sin θw, where θw is the static three-phase contact angle
measured inside the liquid phase, n̂w and t̂w are the unit vectors normal and tangential to
the faces with no-slip boundary, respectively, as shown in figure 2. In the present work,
a θw of 90◦ is specified on front/rear cut-planes rendering them neutrally wet. Thus, the
lateral spreading of the continuous liquid stream inside the particle-resolved fluid domain
is simulated.

2.3. Dimensionless numbers
As mentioned in § 1, the dynamics of liquid spreading is governed by inertial, viscous,
capillary and gravitational forces. As discussed later, the inertial and capillary force
promote liquid spreading in the lateral direction, whereas the gravitational forces limits the
lateral liquid spreading by driving liquid in the vertical direction. Moreover, the viscous
force resists the motion of liquid in all directions. As the objective of the present study
is to understand the relative contribution of these forces in the dynamics of lateral liquid
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Liquid Gas

Particle surfaces

n̂w

t̂ w

n̂

θw

Figure 2. Interpretation of θw in the CSF–VOF method.

spreading, the following dimensionless numbers are considered:

Ohnesorge, Oh = μw/
√

ρwdVσaw cos θw ≡ Viscous/(
√

Inertial × Capillary), (2.6)

Newly proposed, ABi = Vi

g

√
σaw cos θw

ρwdV
3 ≡

√
Inertial × Capillary

Gravity
, (2.7)

where dV is the average void size (dp/2.61 for the present domain) determined using the
watershed algorithm (proposed by Rabbani, Jamshidi & Salehi 2014) and Vi is the velocity
scale, which provide the ratio of forces driving lateral spreading to forces resisting the
motion of liquid in the lateral direction. Further, to identify the relative dominance of the
forces driving lateral liquid spreading the Weber number (Wei) defined as

Wei = ρwdVVi
2/σaw cos θw ≡ Inertial/Capillary (2.8)

was used.
In the definition of aforementioned dimensionless numbers, dV is considered as the

characteristic length scale, as we intend to comprehend the motion of the gas–liquid
interface through the void-resolved bed. The ABi and Wei numbers are defined using two
velocity scales: superficial liquid velocity (Vs) and area-average velocity of the gas–liquid
interface (VI), where the gas–liquid interface is defined by the iso-surface of αw = 0.5 (see
figure 3). The values of ABs and Wes, which are based on Vs, can be predefined and are
specific to a certain case. The absolute domain size was scaled by a factor of 0.5 and 2
in all directions such that it represents fluid domain with dp of 2 and 8 mm, respectively,
without influencing the void topology. The values of σaw as well as θw were varied such
that they represent a range of ABs and Wes values. The case-specific values of ABs and
Wes are listed in table 1. Thus, we investigate the dynamics of liquid spreading influenced
by capillary or inertial (ABs ∼ 1), and gravitational force (moderately (ABs ∼ 10−1) and
strongly (ABs ∼ 10−2)).

Table 1 also states that the values of Oh are smaller than 10−2, indicating that the relative
magnitude of viscous force is substantially smaller than the inertial and capillary forces for
cases presented in the current work. Moreover, the values of ABs show that the magnitude
of gravitational force is either comparable to or larger than the inertial and/or capillary
forces. Therefore, we find that the contribution of viscous force is negligible as compared
with other forces in the cases considered in the present work. Further, the definition of
ABI and WeI , which considers VI as the characteristic velocity scale, vary with time as VI
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Figure 3. Liquid distribution (represented by iso-volume of αw ≥ 0.5 and indicated by blue colour) at ABs of
(a) 2.37, (b) 2.01 × 10−1 and (c) 1.85 × 10−2 at breakthrough ‘t∗’ (note: the two-phase interface (defined
by iso-surface of αw = 0.5) is coloured with the velocity magnitude. Further, the values of Wes and Oh
corresponding to the values of ABs are stated in table 1).

dp (mm) σaw (mN m−1) θw (◦) Vs (m s−1) Oh (−) ABs (−) Wes (−)

2 70 0 5.88 × 10−2 4.32 × 10−3 2.37 3.79 × 10−2

2 70 40 5.88 × 10−2 4.93 × 10−3 2.07 4.95 × 10−2

2 70 70 5.88 × 10−2 7.38 × 10−3 1.38 1.11 × 10−1

2 40 0 5.88 × 10−2 5.71 × 10−3 1.79 6.63 × 10−2

2 10 0 5.88 × 10−2 11.4 × 10−3 8.95 × 10−1 2.65 × 10−1

4 70 0 1.47 × 10−2 3.05 × 10−3 2.09 × 10−1 4.74 × 10−3

4 70 40 1.47 × 10−2 3.49 × 10−3 1.83 × 10−1 6.18 × 10−3

4 70 70 1.47 × 10−2 5.21 × 10−3 1.22 × 10−1 1.38 × 10−3

4 40 0 1.47 × 10−2 4.04 × 10−3 1.58 × 10−1 8.29 × 10−3

4 10 0 1.47 × 10−2 8.08 × 10−3 7.91 × 10−2 3.32 × 10−2

8 70 0 0.37 × 10−2 2.16 × 10−3 1.85 × 10−2 5.92 × 10−4

8 70 40 0.37 × 10−2 2.47 × 10−3 1.62 × 10−2 5.92 × 10−4

8 70 70 0.37 × 10−2 3.69 × 10−3 1.08 × 10−2 1.73 × 10−3

8 40 0 0.37 × 10−2 2.85 × 10−3 1.39 × 10−2 1.04 × 10−3

8 10 0 0.37 × 10−2 5.71 × 10−3 6.98 × 10−3 4.14 × 10−3

Table 1. Values of dimensionless numbers defined using Vs as the velocity scale.

vary temporally and their time evolution is used to understand the interplay of governing
forces at different stages of liquid spreading. Further, as the capillary force scales as a
cosine function of θw, as established by the Young–Laplace equation, the σaw is scaled
with cos θw to consider the effect of wettability in the definition of all the above-mentioned
numbers (2.6)–(2.8).

3. Results and discussion

Before performing the simulations of liquid spreading in the 3-D bed of spherical particles,
the predictions of 3-D VOF simulations of liquid spreading in pseudo-two-dimensional
(2-D) bed (consisting of cylindrical pillars of diameter 3 mm and length 1.5 mm arranged
in a square pitch of 4.5 mm) were compared with the measurements by Horgue et al.
(2013). As the VOF method reasonably predicted liquid spreading in a pseudo-2-D bed, it
is used to investigate the effect of dp and σaw on the dynamics of liquid spreading through
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3-D bed of spherical particles. Further, to investigate the effect of grid resolution on the
two-phase flow predictions, the fluid domain of the 3-D bed was meshed using tetrahedral
elements with four different resolutions, i.e. coarse (dp/10; 1.8 million elements), medium
(dp/20; 5.8 million elements), fine (dp/30; 17.8 million elements) and very fine (dp/40; 32
million elements). The medium grid resolution is found sufficient to predict liquid holdup,
pressure drop, wetted and interfacial area as with further grid refinement the deviation in
the predictions is marginal (maximum deviation in time-averaged quantities = 1.39 %).
Therefore, all subsequent simulations are performed using the medium grid resolution.
The medium grid resolution results in 2.1 × 104 elements/particle and required 280 cores
in parallel for approximately 2 weeks to compute 1 s of flow time. Thus, the grid resolution
used in the present study is considerably higher compared with other reported studies to
the best of the authors’ knowledge.

3.1. Dynamics of liquid spreading
As mentioned in § 2, the VOF simulations of liquid (water) flowing through the packed
bed were performed to investigate the dynamics of liquid spreading as a function of ABs.
It is evident from figure 3, that ABs has a significant influence on the liquid spreading and
the extent of liquid spreading decreases with a decrease in ABs. Figures 4(a–c), 4(d–f )
and 4(e–g) show the time evolution of liquid spreading for flow influenced by capillary
or inertial force (ABs ∼ 1), and for flow influenced moderately (ABs ∼ 10−1) and strongly
(ABs ∼ 10−2) by gravitational force, respectively. In the case of ABs = 2.37, initially the
liquid dominantly spreads in the vertical direction followed by increase in the lateral
extent of liquid spreading ‘XY ’ as compared with the vertical extent ‘XZ’ (see figures 4(a)
and 5(a)). However, in the case of ABs ∼ 10−1 and 10−2, an opposite liquid spreading
behaviour is observed, i.e. in the beginning XY > XZ and at later time instances XZ > XY

(figures 4(d–i) and 5(d–i)). Further, in the case of ABs ∼ 10−1, after a certain t/t∗, XY
marginally changes with space and time (figure 4d–f ), whereas in the case of ABs ∼ 10−2,
the lateral extent of liquid spreading (established in the beginning) decreases with respect
to the negative Z-direction (figure 4g–f ).

In order to understand the aforementioned flow behaviour as a function of ABs, we
analysed the time evolution of the relative magnitude of the forces governing liquid
spreading in packed beds with the aid of ABI and WeI numbers defined in § 2.3 and
shown in figure 6. The values of ABI and WeI , at crossover (i.e. instant at which either
XY overcomes XZ or vice versa), are also stated in figure 5 (that shows the time evolution
of Xi as function of ABs) for the ease of visualisation. At small t/t∗, the contribution
of inertial force as compared to the gravitational and capillary forces is considerable as
indicated by ABI and WeI values ≥1, irrespective of ABs. The relative magnitude of the
inertial force (compared with the capillary and gravitational forces) decreases with time as
the area available for flow increases (figure 6). As expected, the t/t∗ until which the inertial
force dominates over either gravitational or capillary force decreases with a decrease
in ABs.

We first discuss the dynamics of force governing liquid spreading influenced by capillary
or inertial force (ABs ∼ 1) followed by the liquid spreading moderately (ABs ∼ 10−1) and
strongly (ABs ∼ 10−2) influenced by the gravitational force. In the case of ABs = 2.37,
the value of ABI is ∼10, indicating that the dynamics of liquid spreading is governed
by either the inertial or capillary force (figure 6a). The time evolution of WeI reveals
that the magnitude of inertial force is substantially larger as compared with the capillary
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Figure 4. Time evolution of liquid spreading at ABs of (a) 2.37, (b) 1.79, (c) 8.95 × 10−1, (d) 2.09 × 10−1,
(e) 1.58 × 10−1, ( f ) 7.91 × 10−2, (g) 1.85 × 10−2, (h) 1.39 × 10−2 and (i) 6.98 × 10−3. Note: shades of blue,
green and red represent the relative dominance of inertial, capillary and gravitational force, respectively. The
darker the shade the larger the relative contribution of the respective force and the grey colour represents the
equivalence of inertial and capillary force. Further, the values of Wes and Oh corresponding to the values of
ABs are stated in table 1.

force in the beginning (figure 6b). The dominance of inertial force (over capillary and
gravitational forces) leads to spreading of liquid in both the directions. However, as the
principal direction of flow is vertically downwards, the dominance of inertial forces results
in larger XZ relative to XY (figures 4(a) and 5(a)). The rate of liquid spreading in both
lateral and vertical directions remain constant until WeI > 1 (i.e. the magnitude of inertial
force is larger than the magnitude of capillary force). The instant at which the magnitude
of the capillary force is equivalent to the inertial force (indicated by WeI values close to
1), the rate of XY begins to increase relative to the rate of XZ (figure 5a). Further decrease
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Figure 5. Time evolution of the maximum lateral ‘XY ’ and maximum vertical ‘XZ’ extent of liquid spreading at
ABs of (a) 2.37, (b) 1.79, (c) 8.95 × 10−1, (d) 2.09 × 10−1, (e) 1.58 × 10−1, ( f ) 7.91 × 10−2, (g) 1.85 × 10−2,
(h) 1.39 × 10−2 and (i) 6.98 × 10−3. Note: ABI and WeI , at crossover, are stated in the figures and are coloured
red and blue, respectively. The values of Wes and Oh corresponding to the values of ABs are stated in table 1.

in the WeI i.e. the increase in the relative magnitude of capillary force leads to crossover
(i.e. XY overcomes XZ). Thus, the inertial force contributes to lateral liquid spreading in
the beginning followed by the promotion of the lateral liquid spreading by capillary force
(figure 4a).

The decrease in ABs from 2.37 to 1.79 leads to a decrease in the magnitude of capillary
force, as the aforementioned decrease in ABs is achieved by a proportionate decrease in σaw
(table 1). The decrease in the magnitude of capillary force leads to a delay in the instant
at which WeI < 1 (i.e. the inertial force dominates over capillary force for longer t/t∗) and
the value of ABI (at t∗) reduces from ∼8.7 to 6.5 (i.e. the contribution of gravitational
force increases slightly as compared with other forces at t∗; figure 6a,d). This change
in the dynamics of governing forces leads to a delay in the crossover (instant at which
XY overcomes XZ) resulting in a decrease in the lateral spreading (figure 5a,b). Further
reduction in ABs to 0.895, results in WeI � 1 (figure 6d) and ABI ∼ 4 (at t∗; figure 6a), i.e.
dynamics of liquid spreading is primarily governed by the inertial force from the beginning
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Figure 6. Time evolution of ABI for liquid spreading influenced by (a) capillary or inertial force (ABs ∼ 1),
and that influenced (b) moderately (ABs ∼ 0.1) and (c) strongly (ABs ∼ 0.01) by gravitational force and WeI
for liquid spreading influenced by (d) capillary or inertial force (ABs ∼ 1), and that influenced (e) moderately
(ABs ∼ 0.1) and ( f ) strongly (ABs ∼ 0.01) by gravitational force.

of the liquid spreading and the gravitational force contributes marginally at large t/t∗
(i.e. t/t∗ close to 1) and results in non-existence of crossover point (i.e. the XY never
overcomes XZ ; figure 5c).

For liquid spreading moderately influenced by gravitational force (ABs ∼ 10−1), the
inertial forces are considerable for a very small t/t∗ indicated by overlapping XY and XZ
curves (figures 4(d) and 5(b)) and the gravitational force is comparable to the capillary
force indicated by ABI ∼ 1 (figure 6b,e). Initially, the relative magnitude of capillary force
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is larger than the gravitational force (characterised by ABI > 1) leading to an increase
in the XY relative to the XZ . Further, the rate of XZ relative to the rate of XY increases
as the magnitude of gravitational force attains values equivalent to capillary force, i.e. at
ABI ∼ 1. When the ABI attains values ∼0.1 (i.e. the magnitude of gravitational force is
substantially larger than the capillary force), the vertical extent of spreading increases
as compared with the lateral extent (also see figure 4d–f ). The decrease in ABs from
2.01 × 10−1 to 1.58 × 10−1, achieved by either reducing σaw or by increasing θw, leads to
a decrease in the t/t∗ for which the relative magnitude of capillary force is larger than other
governing forces (figure 6b,e). This decrease in the t/t∗ for which the liquid spreading is
primarily influenced capillary force leads to an increased contribution of inertial force
in the beginning and a marginal increase in the contribution of gravitational force at
the later stage (figure 6b,e). The aforementioned force dynamics results in the marginal
advancement of the crossover (XZ overcomes XY ) instant leading to a marginal decrease in
the lateral liquid spreading with the decrease in ABs (figures 4(d,e) and 5(d,e)). Therefore,
in the case of ABs ∼ 10−1, the initial dominance of capillary force promotes lateral
liquid spreading and decides the maximum extent of lateral spreading (XY ). Once the
maximum extent of lateral spreading is attained, it is limited by the large contribution of
gravitational force as compared with other governing forces post-crossover. With a further
decrease in ABs (i.e. from 1.58 × 10−1 to 7.91 × 10−2), the contribution of capillary force
to the dynamics liquid spreading becomes negligible (figure 6b,e). This leads to liquid
spreading primarily governed by inertial force at initial stages and gravitational forces for
the remaining large portion of t/t∗, leading to a further decrease in the XY (figures 4( f )
and 5( f )).

In the case of ABs = 1.85 × 10−2 (liquid spreading strongly influenced by gravitational
force), for initial small t/t∗, the inertial and capillary forces are comparable to the
gravitational force indicated by ABI ∼ 1 and WeI ∼ 1 (figure 6c, f ). This results in
XY > XZ (figures 4(g) and 5(g)). As time progresses, the contribution of gravitational
force increases as compared to the inertial and capillary force (ABI < 1). When the ABI
attains a value ∼0.1, i.e. the magnitude of gravitational force is larger than the inertial
and capillary forces, the XZ overcomes XY (figures 5(g) and 6(c)). With further increase
in t/t∗, ABI attains a value ∼10−2, this substantial increase in the relative magnitude of
gravitational force as compared to other governing forces leads to an elongated liquid
spreading (figure 4g). The decrease in ABs from 1.85 × 10−2 to 6.98 × 10−3 (due to
decrease in σaw or increase in θw) leads to the large contribution of gravitational force,
as compared with other governing forces, from the very beginning of liquid injection
(figure 6c) and results in the smallest value of XY presented in the current work (figures 4(i)
and 5(i)).

From the above results and discussion, we find that the liquid spreading at ABs ∼ 1
is governed by the inertial force at the beginning and by capillary force at the later
time instances, leading to substantial liquid spreading in the lateral direction. As ABs
decrease from ∼1 to 0.1, the relative contribution of inertial force decreases, and the
liquid spreading in the lateral direction is mostly caused by the capillary force. However,
unlike that at ABs ∼ 1, the gravitational force contributes to the latter stages of liquid
spreading for ABs ∼ 0.1, restricting the spread in the lateral direction (figure 4a–f ).
Further, decrease in ABs from ∼0.1 to 10−2 results in the liquid spreading primarily
governed by gravitational force for majority of t/t∗ resulting in small XY . Thus, the
three corners of figure 4 (i.e. figure 4a,c,i) represent the flow phenomenon prominently
influenced by one of the three governing forces, i.e. capillary, inertial, and gravitational
force at t∗. Figure 4(a) shows spreading influenced by capillary force resulting in the
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largest lateral liquid spreading. Figure 4(c) represents the flow primarily influenced by
inertial force leading to intermediate lateral liquid spreading. Whereas figure 4(i) denotes
liquid spreading governed by gravitational force leading to the least lateral spreading.

3.2. Void-scale flow behaviour
As well as understanding how different forces contribute to the dynamics of particle-scale
liquid spreading, understanding the influence of these governing forces on the dynamics
of void-scale flow behaviour is equally important. In view of this, the void-scale flow
behaviour as a function of various governing forces is discussed in this section.

3.2.1. Bubbly flow
As mentioned in § 3.1, the liquid spreading at ABs ∼ 1 is substantially governed by the
inertial force (figure 6a,d). The dominance of inertial force leads to carry-over of gas phase
with the injected liquid phase in regions of high liquid velocity, particularly near the liquid
inlet. It should also be noted that the liquid spreading close to the inlet region is always
governed by the inertial force, irrespective of the flow time (t/t∗). The dynamics of gas
phase being carried over with the liquid phase is shown in figure 7. At large t/t∗, the gas
carry-over results in the formation of small bubbles inside the liquid phase by breaking
the existing gas–liquid interface (figure 7b,c). Further, these small bubbles move along
with liquid until they merge to form large bubbles which remain trapped in large void
bodies surrounded by smaller void throats, or they merge with existing bubbles trapped
due to capillary action as shown in figures 7(c) and 7(d) (such trapping is described at a
later stage in this section). As these bubbles enter the liquid phase due to inertial force
and remain trapped in the medium, we refer to this event as the inertia-induced bubble
entrapment.

As the ABs changes from 2.37 to 0.895 (due to increase in θw or decrease in σaw),
the magnitude of capillary force decreases as described in § 3.1. The decrease in the
magnitude of capillary force leads to an increase in the relative contribution of inertial
force as compared with other governing forces as shown in (figure 6(a,d). The increase
in the contribution of inertial force with aforementioned decrease in ABs results in an
increase in the occurrence of inertia-induced bubble entrapment (see figure 8a–c). Further,
as the ABs value is decreased such that the liquid spreading is moderately and strongly
influenced by gravitational force, the relative magnitude of the inertial force as compared
with the capillary and/or gravitational force decreases (figure 6a–f ). Such a change in the
force balance leads to the absence of the inertia-induced bubble entrapment events (see
figure 8d–i).

For ABs = 2.37, at large t/t∗, the contribution of capillary force over other forces is
large at large t/t∗ (figure 6a,d). In this case, the liquid phase predominantly flows through
the region provided by small void bodies and void throats (as shown in the marked region
of figure 9a) due to the large capillary suction force provided by these regions. In regions,
where a large void body is surrounded by small voids and void throats (see figure 9b),
the aforementioned capillary suction results in the liquid phase bypassing the large void
body (figure 9c,d). Such a bypassing of the large void body by the liquid phase results
in the trapping of bubbles (figure 9a,e). As the relative contribution of the capillary
force decreases and that of gravitational force increases with a decrease in ABs, the
occurrence of capillary-induced bubble entrapment events decrease (figure 8). Further,
the particle-scale lateral liquid spreading is found to be promoted by the capillary-induced
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(c)

(b)

(e)

(a)
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Figure 7. Liquid distribution on the YZ plane at X = 1.5 dp at (a) breakthrough and enlarged view of the liquid
distribution on the cut portion (marked by purple dashed lines) at t/t∗ of (b) 0.567, (c) 0.574, (d) 0.581 and
(e) 0.588 displaying the dynamics of inertia-induced bubble entrapment. Note: liquid and gas are coloured blue
and red, respectively; ABs = 2.37, Wes = 3.79 × 10−2.

bubble entrapments (figures 4 and 8). Thus, when the ABs ∼ 1, bubbles are formed due
to both inertia- and capillary-induced bubble entrapment events and, thus, the void-scale
flow behaviour is called bubbly flow.

3.2.2. Unified void filling event
When the ABI values are close to unity and WeI < 1 (i.e. the gravitational and capillary
force compete for dominance), similar to the case of ABs = 1.83 × 10−1 (figure 6b,e),
the capillary force attempts to spread the liquid in the lateral direction, whereas the
gravitational force attempts to promote vertical liquid spreading. Such a force balance
leads to unified void filling events as described here. Such an event starts with the injected
liquid spreading over a particle surface as soon as the gas–liquid interface contacts a
particle surface (see figure 10b–d). This spreading is promoted by small void throats
due to their large capillary suction force. Once the multiple void throats surrounding a
void body are completely occupied by the liquid phase, the gas–liquid fronts in the void
throats move along the flow direction until they merge to form a stable interface in the
corresponding void-body (figure 10c–e). This newly formed stable gas–liquid interface
then moves along the flow direction primarily due to gravitational force and completely
occupies the respective void body (figure 10a). As multiple interfaces merge to form a
stable interface which then aids the occupancy of connected void body by the liquid
phase, we call the aforementioned mechanism as unified void filling. The extent of lateral
liquid spreading due to unified void filling mechanism decreases with an increasing
relative contribution of gravitational force, i.e. with the decrease in ABs (see figures 4
and 8).
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Figure 8. Void-scale liquid distribution at breakthrough at ABs of (a) 2.37, (b) 2.07, (c) 1.38, (d) 2.09 × 10−1,
(e) 1.83 × 10−1, ( f ) 1.22 × 10−1, (g) 1.85 × 10−2, (h) 1.62 × 10−2 and (i) 1.08 × 10−2 on the YZ plane at
X = 1.5 dp. Note: liquid and gas are coloured blue and red, respectively. For ABs = 1.08 × 10−2 the YZ plane
at X = 0.875 dp is displayed as the liquid does not follow the YZ plane at X = 1.5 dp. Further, the values of
Wes and Oh corresponding to the values of ABs are stated in table 1.

3.2.3. Trickle flow
For ABs ∼ 10−2, at the void scale, the void throats provide the capillary suction force
which makes the liquid flow over particle surfaces following the path provided by small
void throats as shown in figure 11. Further, the liquid is unable to spread in the lateral
direction due to the dominance of gravitational force resulting in small lateral liquid
spreading (see figures 4(g) and 6(c, f )). Such a flow behaviour is referred to as the trickling
flow in the literature. As ABs decreases from 1.85 × 10−2 to 1.39 × 10−2 (achieved by
increasing θw or decreasing σaw), the magnitude of capillary force provided by the void
throats decrease, whereas the relative contribution of the gravitational force increases
(figure 6c, f ) leading to partial wetting of particles in contact with the liquid phase. This
results in a further decrease in the lateral liquid spreading (see figures 4(g,h) and 8(g,h)).
Further reduction in ABs to 1.08 × 10−2, leads to a further reduction in the void-scale
capillary force and a proportionate increase in the relative dominance of the gravitational
force. The aforementioned change in the force balance leads to the breaking of the injected
liquid stream into droplets, which flows in the direction of gravity (see figures 8(i) and 12).
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(c)
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Figure 9. Liquid distribution on the YZ plane at X = 1.5 dp at (a) breakthrough and enlarged view of the
liquid distribution on the cut portion (marked by purple dashed lines) at t/t∗ of (b) 0.67, (c) 0.73, (d) 0.79 and
(e) 0.85 displaying the dynamics of capillary-induced bubble entrapment. Note: liquid and gas are coloured
blue and red, respectively; ABs = 2.37, Wes = 3.79 × 10−2.

Such a droplet formation event leads to a further decrease in the lateral liquid spreading
(see figure 4i).

3.3. Regime map
Based on the findings of the present work, in particular, the dynamics of forces governing
local liquid spreading, explained using ABI and WeI , we propose a regime map as a
function of ABs and Wes quantifying the relationship between relative dominance of
governing forces with the extent of lateral spreading and void-scale events. Such a regime
map is shown in figure 13. The regime map shows that the substantial contribution of
gravitational force relative to other governing forces (ABs ≤ 1.08 × 10−2) leads to trickle
flow along with droplet formation leading to substantially small lateral liquid spreading
(figure 4i). A small decrease in the relative magnitude of gravitational force as compared
to inertial and/or capillary force (from ABs = 1.08 × 10−2 to 1.39 × 10−2) leads to trickle
flow and is characterised by a small increment in the extent of lateral liquid spreading
(figure 4g,h).

Further, when ABs ∼ 10−1 (ABI ∼ 1, WeI < 1), i.e. the gravitational and capillary
forces are equivalent, the void-scale flow is characterised by unified void filling and
results in intermediate lateral liquid spreading (figure 4d–f ). When ABs ∼ 1, bubbly flow
behaviour is observed either due to the large relative contribution of inertial force (WeI >

1) or due to the substantial relative contribution of capillary force (WeI < 1). In the present
work, the cases for which ABs ∼ 1, correspond to WeI ∼ 1 and result in the co-existence of
both capillary- and inertia-induced bubble entrapments. The substantially smaller relative
contribution of gravitational force (ABs ∼ 1) also results in a substantial increase in the
lateral liquid spreading driven by inertial and/or capillary force (figure 4a–c). The large
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(c)
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(e)

(a)

(d )

Figure 10. Liquid distribution on the YZ plane at X = 1.5 dp at (a) breakthrough and enlarged view of the
liquid distribution on the cut portion (marked by purple dashed lines) at t/t∗ of (b) 0.53, (c) 0.59, (d) 0.65 and
(e) 0.71 displaying the time evolution unified void filling event. Note: liquid and gas are coloured blue and red,
respectively; ABs = 1.83 × 10−1, Wes = 6.18 × 10−3.

(a)

(b)

(c)

(d )

Figure 11. Time evolution of the liquid distribution on the YZ plane (X = 1.5 dp) at t/t∗ of (a) 0.22, (b) 0.45,
(c) 0.68 and (d) 0.91 displaying the trickle flow. Note: liquid and gas are coloured blue and red, respectively;
ABs = 1.85 × 10−2, Wes = 5.92 × 10−4.
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(a)

(b)

(c)

(d )

Figure 12. Dynamics of trickle flow with drop formation displayed using the liquid distribution at t/t∗ of
(a) 0.88, (b) 0.92, (c) 0.96, and (d) 1. Note: liquid is represented by iso-volume of αw ≥ 0.5 and is coloured
blue, gas is transparent and particle surfaces are coloured grey; ABs = 1.08 × 10−2, Wes = 1.73 × 10−3.

relative contribution of capillary force is shown to substantially increase the lateral extent
of spreading due to capillary-induced bubble entrapment events (figure 4a). Additional
work is required to identify the complete stretch of void-scale flow behaviours and to
define accurate boundaries between the various void-scale flow behaviours discussed in
the present work.

4. Summary and conclusions

In the present work, the VOF simulations of liquid spreading in particle-resolved fluid
domain at different values of ABs (and the corresponding values of Wes and Oh) were
performed using the open-source CFD solver OpenFOAM. The values of ABs were chosen
such that the liquid spreading influenced by inertial or capillary force (ABs ∼ 1), and that
influenced moderately (ABs ∼ 10−1), and strongly (ABs ∼ 10−2) by gravitational force be
investigated. The time evolution of particle-scale liquid spreading and the void-scale flow
behaviour as a function of ABs were analysed with the aid of dimensionless numbers,
namely ABI and WeI . With the help of the time evolution of ABI and WeI , we showed that
the liquid spreading at ABs ∼ 1 is governed by the inertial force in the beginning (ABI > 1,
WeI > 1) followed by the capillary force at large t/t∗ (ABI > 1, WeI < 1). The large
relative contribution of inertial force results in the inertia-induced bubble entrapment,
whereas the large relative contribution of capillary force results in the capillary-induced
bubble entrapment. The capillary-induced bubble entrapment is shown to promote lateral
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100

10–1

10–2
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Capillary

dominated

Inertia

dominated

Unified void filling

Trickle flow

Bubbly flow

Trickle flow with droplet formation

Gravity dominated

Wes, –

AB
s,

 –

Figure 13. Regime map displaying the void-scale flow behaviour as a function of governing forces. Note: the
darker the shade the larger the contribution of the respective force. The boundaries of the regions of specific
force dominance are specified based on the ABI and WeI values at t/t∗ = 1. Further work is required to specify
accurate force dominance boundaries as a function of ABs and Wes. Moreover, lines between various void-scale
behaviours are provided only as a visual guide and do not represent the actual boundaries.

liquid spreading. We also show that the decrease in ABs from 2.37 to 0.895 resulted in an
increase in the WeI , which led to an increase in the occurrence of inertia-induced bubble
entrapment and a decrease in the capillary-induced bubble entrapment. Such a change in
void-scale flow behaviour resulted in a decrease in the lateral liquid spreading.

Further, we showed that liquid spreading moderately influenced by the gravitational
force (ABs ∼ 10−1), wherein the ABI values are close to unity, the void-scale flow
behaviour is characterised by unified void filling events due to the equivalence of capillary
and gravitational forces. Such a flow behaviour results in negligible bubble entrapment.
As the ABs value decreases from 2.09 × 10−1 to 7.91 × 10−2, the relative contribution
of gravitational force as compared with the capillary force increases resulting in the
decrease in the lateral extent of unified void filling. In the case of liquid spreading
strongly influenced by the gravitational force, the dynamics of liquid spreading is shown
to be governed by the inertial force for small initial t/t∗ followed by the large relative
contribution of gravitational force. Such a force balance is shown to result in the trickle
flow at the void scale and resulted in the decrease in the lateral spreading as compared
with flows governed by unified void filling or bubbly flow events. Further, the change in
ABs from 1.39 × 10−2 to 1.08 × 10−2 leads to the substantial increase in the magnitude
of gravitational force as compared with other governing forces (ABI 
 1) from the very
beginning of water injection and results in the trickle flow along with the formation of
liquid droplets. The aforementioned void-scale flow behaviour results in a further decrease
in the lateral extent of liquid spreading.

Finally, the findings of the present work are used to establish the relationship between
ABs, Wes, and the void-scale flow behaviour along with the lateral extent of liquid
spreading and is displayed in terms of the regime map. Further work is required to identify
exact boundaries between the regions of various void-scale flow behaviours discussed in
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the present work. The findings presented in this work help to improve the understanding of
the dynamics of particle-scale liquid spreading as well as the void-scale flow behaviour as
a function of the relative contribution of governing forces and can provide a way forward
in improving/developing force models required for the continuum models.
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