
Bull. Aust. Math. Soc. 82 (2010), 44–61
doi:10.1017/S0004972709001105

SUPERADDITIVITY OF SOME FUNCTIONALS
ASSOCIATED WITH JENSEN’S INEQUALITY FOR CONVEX

FUNCTIONS ON LINEAR SPACES WITH APPLICATIONS

S. S. DRAGOMIR

(Received 17 September 2009)

Abstract

Some new results related to Jensen’s celebrated inequality for convex functions defined on convex sets in
linear spaces are given. Applications for norm inequalities in normed linear spaces and f -divergences in
information theory are provided as well.
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1. Introduction

The Jensen inequality for convex functions plays a crucial role in the theory
of inequalities due to the fact that other inequalities such as the generalized
triangle inequality, the arithmetic–geometric mean inequality, Hölder and Minkowski
inequalities, Ky Fan’s inequality and so on can be obtained as particular cases of it.

Let C be a convex subset of the linear space X and f a convex function on C . If
I denotes a finite subset of the set N of natural numbers, xi ∈ C , pi ≥ 0 for i ∈ I and
PI :=

∑
i∈I pi > 0, then

f

(
1
PI

∑
i∈I

pi xi

)
≤

1
PI

∑
i∈I

pi f (xi ), (1.1)

is well known in the literature as Jensen’s inequality.
We introduce the following notation (see also [14]):

F(C, R) := the linear space of all real functions on C,

F+(C, R) := { f ∈ F(C, R) : f (x) > 0 for all x ∈ C},

P f (N) := {I ⊂ N : I is finite},

J (R) := {p = {pi }i∈N, pi ∈ R are such that PI 6= 0 for all I ∈ P f (N)},
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J+(R) := {p ∈ J (R) : pi ≥ 0 for all i ∈ N},
J∗(C) := {x = {xi }i∈N : xi ∈ C for all i ∈ N}

and
Conv(C, R) := the cone of all convex functions defined on C.

In [14] the authors considered the following functional associated with the Jensen
inequality:

J ( f, I, p, x) :=
∑
i∈I

pi f (xi )− PI f

(
1
PI

∑
i∈I

pi xi

)
(1.2)

where f ∈ F(C, R), I ∈ P f (N), p ∈ J+(R), x ∈ J∗(C). They established some
quasi-linearity and monotonicity properties and applied the results obtained to norm
and mean inequalities.

The following result concerning the properties of the functional J ( f, I, ·, x) as a
function of weights holds (see [14, Theorem 2.4]).

THEOREM 1.1. Let f ∈ Conv(C, R), I ∈ P f (N) and x ∈ J∗(C).

(i) If p, q ∈ J+(R) then

J ( f, I, p + q, x)≥ J ( f, I, p, x)+ J ( f, I, q, x)(≥ 0), (1.3)

that is, J ( f, I, ·, x) is superadditive on J+(R).
(ii) If p, q ∈ J+(R) with p ≥ q, meaning that pi ≥ qi for each i ∈ N, then

J ( f, I, p, x)≥ J ( f, I, q, x)(≥ 0), (1.4)

that is, J ( f, I, ·, x) is monotonic nondecreasing on J+(R).

The behavior of this functional as an index set function is incorporated in the
following result (see [14, Theorem 2.1]).

THEOREM 1.2. Let f ∈ Conv(C, R), p ∈ J+(R) and x ∈ J∗(C).

(i) If I, H ∈ P f (N) with I ∩ H =∅, then

J ( f, I ∪ H, p, x)≥ J ( f, I, p, x)+ J ( f, H, p, x)(≥ 0), (1.5)

that is, J ( f, ·, p, x) is superadditive as an index set function on P f (N).
(ii) If I, H ∈ P f (N) with H ⊂ I , then

J ( f, I, p, x)≥ J ( f, H, p, x)(≥ 0), (1.6)

that is, J ( f, ·, p, x) is monotonic nondecreasing as an index set function on
P f (N).
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As pointed out in [14], the above Theorem 1.2 is a generalization of the Vasić–
Mijalković result for convex functions of a real variable obtained in [24] and therefore
creates the possibility of obtaining vectorial inequalities as well.

For applications of the above results to logarithmic convex functions, to norm
inequalities, in relation to the arithmetic–geometric mean inequality and to other
classical results, see [6–10, 12–15, 19, 22].

Motivated by the above results, we introduce in the present paper a more general
functional, establish its main properties and use it for some particular cases that
provide inequalities of interest. Applications to norm inequalities in normed linear
spaces and f -divergences in information theory are provided as well.

2. Some superadditivity properties for the weights

We consider the more general functional

D( f, I, p, x;8) := PI8

[
1
PI

∑
i∈I

pi f (xi )− f

(
1
PI

∑
i∈I

pi xi

)]
, (2.1)

where f ∈ Conv(C, R), I ∈ P f (N), p ∈ J+(R), x ∈ J∗(C) and 8 : [0,∞)→ R is a
function whose properties will determine the behavior of the functional D as follows.
Obviously, for 8(t)= t we recapture from D the functional J considered in [14].

First of all we observe that, by Jensen’s inequality, the functional D is well defined
and positive homogeneous in the third variable, that is,

D( f, I, αp, x;8)= αD( f, I, p, x;8),

for any α > 0 and p ∈ J+(R).
The following result concerning the superadditivity and monotonicity of the

functional D as a function of weights holds.

THEOREM 2.1. Let f ∈ Conv(C, R), I ∈ P f (N) and x ∈ J∗(C). Assume that 8 :
[0,∞)→ R is monotonic nondecreasing and concave.

(i) If p, q ∈ J+(R) then

D( f, I, p + q, x;8)≥ D( f, I, p, x;8)+ D( f, I, q, x;8), (2.2)

that is, D is superadditive as a function of weights.
(ii) If p, q ∈ J+(R) with p ≥ q, meaning that pi ≥ qi for each i ∈ N and 8 :

[0,∞)→ [0,∞), then

D( f, I, p, x;8)≥ D( f, I, q, x;8)(≥ 0), (2.3)

that is, D is monotonic nondecreasing as a function of weights.
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PROOF.

(i) Let p, q ∈ J+(R). By the convexity of the function f on C ,

1
PI + Q I

∑
i∈I

(pi + qi ) f (xi )− f

(
1

PI + Q I

∑
i∈I

(pi + qi )xi

)

=
PI (

1
PI

∑
i∈I pi f (xi ))+ Q I (

1
Q I

∑
i∈I qi f (xi ))

PI + Q I

− f

( PI (
1
PI

∑
i∈I pi xi )+ Q I (

1
Q I

∑
i∈I qi xi )

PI + Q I

)

≥
PI (

1
PI

∑
i∈I pi f (xi ))+ Q I (

1
Q I

∑
i∈I qi f (xi ))

PI + Q I

−
PI f ( 1

PI

∑
i∈I pi xi )+ Q I f ( 1

Q I

∑
i∈I qi xi )

PI + Q I

=
PI [

1
PI

∑
i∈I pi f (xi )− f ( 1

PI

∑
i∈I pi xi )]

PI + Q I

+
Q I [

1
Q I

∑
i∈I qi f (xi )− f ( 1

Q I

∑
i∈I qi xi )]

PI + Q I
.

(2.4)

Since 8 is monotonic nondecreasing and concave, then by (2.4),

8

[
1

PI + Q I

∑
i∈I

(pi + qi ) f (xi )− f

(
1

PI + Q I

∑
i∈I

(pi + qi )xi

)]

≥
PI8[

1
PI

∑
i∈I pi f (xi )− f ( 1

PI

∑
i∈I pi xi )]

PI + Q I

+
Q I8[

1
Q I

∑
i∈I qi f (xi )− f ( 1

Q I

∑
i∈I qi xi )]

PI + Q I
,

which, by multiplication with PI + Q I > 0, produces the desired result (2.2).
(ii) If p ≥ q , then by (i),

D( f, I, p, x;8) = D( f, I, (p − q)+ q, x;8)

≥ D( f, I, p − q, x;8)+ D( f, I, p, x;8)

≥ D( f, I, p, x;8)

since D( f, I, p − q, x;8)≥ 0. 2
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COROLLARY 2.2. Let f ∈ Conv(C, R), I ∈ P f (N) and x ∈ J∗(C). Assume that 8 :
[0,∞)→ [0,∞) is monotonic nondecreasing and concave.

If there exist the numbers M ≥ m ≥ 0 such that Mq ≥ p ≥ mq, then

M Q I8

[
1

Q I

∑
i∈I

qi f (xi )− f

(
1

Q I

∑
i∈I

qi xi

)]

≥ PI8

[
1
PI

∑
i∈I

pi f (xi )− f

(
1
PI

∑
i∈I

pi xi

)]

≥ m Q I8

[
1

Q I

∑
i∈I

qi f (xi )− f

(
1

Q I

∑
i∈I

qi xi

)]
.

(2.5)

In particular,

M

m
8

[
1

Q I

∑
i∈I

qi f (xi )− f

(
1

Q I

∑
i∈I

qi xi

)]

≥8

[
1
PI

∑
i∈I

pi f (xi )− f

(
1
PI

∑
i∈I

pi xi

)]

≥
m

M
8

[
1

Q I

∑
i∈I

qi f (xi )− f

(
1

Q I

∑
i∈I

qi xi

)]
.

(2.6)

Now, if we write

S(1) := {p ∈ J+(R) : pi ≤ 1 for all i ∈ N},

then we can state the following result as well.

COROLLARY 2.3. Let f ∈ Conv(C, R), I ∈ P f (N) and x ∈ J∗(C). Assume that 8 :
[0,∞)→ [0,∞) is monotonic nondecreasing and concave. Then we have the bound

sup
p∈S(1)

{
PI8

[
1
PI

∑
i∈I

pi f (xi )− f

(
1
PI

∑
i∈I

pi xi

)]}

= card(I )8
[

1
card(I )

∑
i∈I

f (xi )− f

(
1

card(I )

∑
i∈I

xi

)]
,

(2.7)

where card(I ) denotes the cardinal of the finite set I .

REMARK 2.4. If we consider the concave and monotonic increasing function 8(t)=
ln t and assume that f ∈ Conv(C, R) and x ∈ J∗(C) are selected such that

1
PI

∑
i∈I

pi f (xi ) > f

(
1
PI

∑
i∈I

pi xi

)
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for any I ∈ P f (N) with card(I )≥ 2 and p ∈ J+(R) (notice that it is enough to assume
that f is strictly convex and x is not constant) then by the superadditivity of the
functional

D( f, I, p, x; ln) := PI ln
[

1
PI

∑
i∈I

pi f (xi )− f

(
1
PI

∑
i∈I

pi xi

)]
= ln K ( f, I, p, x),

where

K ( f, I, p, x) :=

[
1
PI

∑
i∈I

pi f (xi )− f

(
1
PI

∑
i∈I

pi xi

)]PI

, (2.8)

we deduce that K ( f, I, ·, x) is supermultiplicative, that is, it satisfies the property

K ( f, I, p + q, x)≥ K ( f, I, p, x)K ( f, I, q, x) (2.9)

for any p, q ∈ J+(R).
The proof is obvious by the monotonicity and the positive homogeneity of the

functional D( f, I, ·, x; ln).
Note that inequality (2.9) has been obtained in a different way by Agarwal and

Dragomir in [1].
Another important example of a concave and monotonic increasing function is

8(t)= t s with s ∈ (0, 1]. In this situation the functional

Ds( f, I, p, x) :=

[
Ps−1

I

∑
i∈I

pi f (xi )− Ps
I f

(
1
PI

∑
i∈I

pi xi

)]s

≥ 0 (2.10)

is superadditive and monotonic nondecreasing as a function of the weights p.
It might be useful for applications to observe that the superadditivity property is

translated into the following version of Jensen’s inequality:[
(PI + Q I )

s−1
∑
i∈I

(pi + qi ) f (xi )− (PI + Q I )
s f

(∑
i∈I (pi + qi )xi

PI + Q I

)]s

≥

[
Ps−1

I

∑
i∈I

pi f (xi )− Ps
I f

(
1
PI

∑
i∈I

pi xi

)]s

+

[
Qs−1

I

∑
i∈I

qi f (xi )− Qs
I f

(
1

Q I

∑
i∈I

qi xi

)]s

(≥ 0),

(2.11)

where p, q ∈ J+(R).
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The property of monotonicity provides the following double inequality for p, q ∈
J+(R) such that Mq ≥ p ≥ mq and M ≥ m ≥ 0:

M

[
Qs−1

I

∑
i∈I

qi f (xi )− Qs
I f

(
1

Q I

∑
i∈I

qi xi

)]s

≥

[
Ps−1

I

∑
i∈I

pi f (xi )− Ps
I f

(
1
PI

∑
i∈I

pi xi

)]s

≥ m

[
Qs−1

I

∑
i∈I

qi f (xi )− Qs
I f

(
1

Q I

∑
i∈I

qi xi

)]s

.

(2.12)

This inequality has the equivalent form

M1/s
[

Qs−1
I

∑
i∈I

qi f (xi )− Qs
I f

(
1

Q I

∑
i∈I

qi xi

)]
≥ Ps−1

I

∑
i∈I

pi f (xi )− Ps
I f

(
1
PI

∑
i∈I

pi xi

)
≥ m1/s

[
Qs−1

I

∑
i∈I

qi f (xi )− Qs
I f

(
1

Q I

∑
i∈I

qi xi

)]
.

(2.13)

Finally, from the Corollary 2.3 we also have the bound

sup
p∈S(1)

{
Ps−1

I

∑
i∈I

pi f (xi )− Ps
I f

(
1
PI

∑
i∈I

pi xi

)}
= [card(I )]s−1

∑
i∈I

f (xi )− [card(I )]s f

(
1

card(I )

∑
i∈I

xi

)
.

(2.14)

For a function 9 : (0,∞)→ (0,∞) we now consider the functional

D( f, I, p, x;8, 9) :=
∑
i∈I

9(pi )8

[
1∑

i∈I 9(pi )

∑
i∈I

9(pi ) f (xi )

− f

(
1∑

i∈I 9(pi )

∑
i∈I

9(pi )xi

)] (2.15)

where f ∈ Conv(C, R), I ∈ P f (N), p ∈ J+(R), x ∈ J∗(C). Now, if we denote by
9(p) the sequence {9(pi )}i∈N, then we observe that

D( f, I, p, x;8, 9)= D( f, I, 9(p), x;8).

The following result may be stated.

COROLLARY 2.5. Let f ∈ Conv(C, R), I ∈ P f (N) and x ∈ J∗(C). Assume that 8 :
[0,∞)→ [0,∞) is monotonic nondecreasing and concave. If 9 : (0,∞)→ (0,∞)
is concave, then D( f, I, ·, x;8, 9) is also concave on J+(R).
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PROOF. Utilizing the properties of monotonicity, superadditivity and positive homo-
geneity of the functional D( f, I, ·, x;8), we may successively write

D( f, I, tp + (1− t)q, x;8, 9)= D( f, I, 9(tp + (1− t)q), x;8)

≥ D( f, I, t9(p)+ (1− t)9(q), x;8)

≥ D( f, I, t9(p), x;8)+ D( f, I, (1− t)9(q), x;8)

= t D( f, I, 9(p), x;8)+ (1− t)D( f, I, 9(q), x;8)

= t D( f, I, p, x;8, 9)+ (1− t)D( f, I, p, x;8, 9)

for any p, q ∈ J+(R) and t ∈ [0, 1], which proves the statement. 2

3. Some superadditivity properties for the index

The following result concerning the superadditivity and monotonicity of the
functional D as an index set function holds.

THEOREM 3.1. Let f ∈ Conv(C, R), p ∈ J+(R) and x ∈ J∗(C). Assume that 8 :
[0,∞)→ R is monotonic nondecreasing and concave.

(i) If I, H ∈ P f (N) with I ∩ H =∅, then

D( f, I ∪ H, p, x;8)≥ D( f, I, p, x;8)+ D( f, H, p, x;8), (3.1)

that is, D( f, ·, p, x;8) is superadditive as an index set function on P f (N).
(ii) If I, H ∈ P f (N) with H ⊂ I and 8 : [0,∞)→ [0,∞), then

D( f, I, p, x;8)≥ D( f, H, p, x;8)(≥ 0), (3.2)

that is, D( f, ·, p, x;8) is monotonic nondecreasing as an index set function on
P f (N).

PROOF.

(i) Let I, H ∈ P f (N) with I ∩ H =∅. By the convexity of the function f on C we
have

1
PI∪H

∑
k∈I∪H

pk f (xk)− f

(
1

PI∪H

∑
k∈I∪H

pk xk

)

=
PI (

1
PI

∑
i∈I pi f (xi ))+ PH (

1
PH

∑
j∈H p j f (x j ))

PI + PH

− f

( PI (
1
PI

∑
i∈I pi xi )+ PH (

1
PH

∑
j∈H p j x j )

PI + PH

)
≥

PI (
1
PI

∑
i∈I pi f (xi ))+ PH (

1
PH

∑
j∈H p j f (x j ))

PI + PH
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−
PI f ( 1

PI

∑
i∈I pi xi )+ PH f ( 1

PH

∑
j∈H p j x j )

PI + PH

=
PI [

1
PI

∑
i∈I pi f (xi )− f ( 1

PI

∑
i∈I pi xi )]

PI + PH

+
PH [

1
PH

∑
j∈H p j f (x j )− f ( 1

PH

∑
j∈H p j x j )]

PI + PH
.

(3.3)

Since 8 is monotonic nondecreasing and concave, then by (3.3),

8

[
1

PI∪H

∑
k∈I∪H

pk f (xk)− f

(
1

PI∪H

∑
k∈I∪H

pk xk

)]

≥
PI8[

1
PI

∑
i∈I pi f (xi )− f ( 1

PI

∑
i∈I pi xi )]

PI + PH

+
PH8[

1
PH

∑
j∈H p j f (x j )− f ( 1

PH

∑
j∈H p j x j )]

PI + PH
,

which, by multiplication with PI + PH > 0, produces the desired result (3.2).
(ii) If I, H ∈ P f (N) with H ⊂ I , then

D( f, I, p, x;8) = D( f, (I\H) ∪ H, p, x;8)

≥ D( f, I\H, p, x;8)+ D( f, H, p, x;8)

≥ D( f, H, p, x;8)(≥ 0)

since D( f, I\H, p, x;8)≥ 0. 2

For the special case I = In := {1, . . . , n} we write Dn( f, p, x;8) instead of
D( f, In, p, x;8), that is,

Dn( f, p, x;8)= Pn8

[
1
Pn

n∑
i=1

pi f (xi )− f

(
1
Pn

n∑
i=1

pi xi

)]
(3.4)

where Pn = PIn =
∑n

i=1 pi > 0.
The following particular case is of interest.

COROLLARY 3.2. Let f ∈ Conv(C, R), p ∈ J+(R) and x ∈ J∗(C). Assume that 8 :
[0,∞)→ [0,∞) is monotonic nondecreasing and concave. Then

max
IvIn

D( f, I, p, x;8)= Dn( f, p, x;8)≥ 0, (3.5)

Dn( f, p, x;8)

≥ max
1≤i< j≤n

{
(pi + p j )8

[
pi f (xi )+ p j f (x j )

pi + p j
− f

(
pi xi + p j x j

pi + p j

)]}
≥ 0

(3.6)
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and
Dn( f, p, x;8)≥ Dn−1( f, p, x;8)≥ · · · ≥ D2( f, p, x;8)≥ 0. (3.7)

This is obvious by the monotonicity property of the functional D( f, ·, p, x;8) as
an index set function.

If we use the superadditivity property, then we can state the following result as well.

COROLLARY 3.3. Let f ∈ Conv(C, R), p ∈ J+(R) and x ∈ J∗(C). Assume that 8 :
[0,∞)→ R is monotonic nondecreasing and concave. Then

P2n8

[
1

P2n

2n∑
i=1

pi f (xi )− f

(
1

P2n

2n∑
i=1

pi xi

)]

≥

n∑
i=1

p2i8

[
1∑n

i=1 p2i

n∑
i=1

p2i f (x2i )− f

(
1∑n

i=1 p2i

n∑
i=1

p2i x2i

)]

+

n∑
i=1

p2i−18

[
1∑n

i=1 p2i−1

n∑
i=1

p2i−1 f (x2i−1)

− f

(
1∑n

i=1 p2i−1

n∑
i=1

p2i−1x2i−1

)]
(3.8)

and

P2n+18

[
1

P2n+1

2n+1∑
i=1

pi f (xi )− f

(
1

P2n+1

2n+1∑
i=1

pi xi

)]

≥

n∑
i=1

p2i8

[
1∑n

i=1 p2i

n∑
i=1

p2i f (x2i )− f

(
1∑n

i=1 p2i

n∑
i=1

p2i x2i

)]

+

n∑
i=1

p2i+18

[
1∑n

i=1 p2i+1

n∑
i=1

p2i+1 f (x2i+1)

− f

(
1∑n

i=1 p2i+1

n∑
i=1

p2i+1x2i+1

)]
.

(3.9)

REMARK 3.4. If we consider the functional defined in (2.7), namely

K ( f, I, p, x) :=

[
1
PI

∑
i∈I

pi f (xi )− f

(
1
PI

∑
i∈I

pi xi

)]PI

,

then by Theorem 3.1,

K ( f, I ∪ H, p, x)≥ K ( f, I, p, x) · K ( f, H, p, x) (3.10)

for any I, H ∈ P f (N) with I ∩ H =∅, meaning that the functional K ( f, ·, p, x) is
supermultiplicative as an index set mapping.
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This fact obviously implies the following multiplicative inequalities of interest:

[
1

P2n

2n∑
i=1

pi f (xi )− f

(
1

P2n

2n∑
i=1

pi xi

)]P2n

≥

[
1∑n

i=1 p2i

n∑
i=1

p2i f (x2i )− f

(
1∑n

i=1 p2i

n∑
i=1

p2i x2i

)]∑n
i=1 p2i

×

[
1∑n

i=1 p2i−1

n∑
i=1

p2i−1 f (x2i−1)

− f

(
1∑n

i=1 p2i−1

n∑
i=1

p2i−1x2i−1

)]∑n
i=1 p2i−1

(3.11)

where f ∈ Conv(C, R), p ∈ J+(R) and x ∈ J∗(C).
Moreover, if we consider the functional defined in (2.10) by

Ds( f, I, p, x) :=

[
Ps−1

I

∑
i∈I

pi f (xi )− Ps
I f

(
1
PI

∑
i∈I

pi xi

)]s

≥ 0

where s ∈ (0, 1] and introduce the associated functional

Fs( f, I, p, x) := Ps−1
I

∑
i∈I

pi f (xi )− Ps
I f

(
1
PI

∑
i∈I

pi xi

)
, (3.12)

then by denoting

Fs,n( f, p, x) := Fs( f, In, p, x)= Ps−1
n

n∑
i=1

pi f (xi )− Ps
n f

(
1
Pn

n∑
i=1

pi xi

)
(3.13)

where In = {1, . . . , n}, we have that the sequence {Fs,n( f, p, x)}n≥2 is nondecreasing
and the following bounds are valid:

max
IvIn

Fs( f, I, p, x)= Fs,n( f, p, x) (3.14)

and

Fs,n( f, p, x) ≥ max
1≤i< j≤n

{
pi f (xi )+ p j f (x j )

(pi + p j )1−s
− (pi + p j )

s f

(
pi xi + p j x j

pi + p j

)}
≥ 0. (3.15)
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4. Applications for norm inequalities

Let (X, ‖ · ‖) be a real or complex normed linear space. It is well known
that the function f p : X→ R, f p(x)= ‖x‖p, p ≥ 1, is convex on X . Assume that
p = (p1, . . . , pn) and q = (q1, . . . , qn) are probability distributions with all q j
nonzero. In [10] we obtained the following refinements of the generalized triangle
inequality:

max
1≤i≤n

{
pi

qi

}[ n∑
j=1

q j‖x j‖
p
−

∥∥∥∥ n∑
j=1

q j x j

∥∥∥∥p]
≥

n∑
j=1

p j‖x j‖
p
−

∥∥∥∥ n∑
j=1

p j x j

∥∥∥∥p

≥ min
1≤i≤n

{
pi

qi

}[ n∑
j=1

q j‖x j‖
p
−

∥∥∥∥ n∑
j=1

q j x j

∥∥∥∥p]
(≥ 0)

(4.1)

and

max
1≤i≤n

{pi }

[ n∑
j=1

‖x j‖
p
− n1−p

∥∥∥∥ n∑
j=1

x j

∥∥∥∥p]
≥

n∑
j=1

p j‖x j‖
p
−

∥∥∥∥ n∑
j=1

p j x j

∥∥∥∥p

≥ min
1≤i≤n

{pi }

[ n∑
j=1

‖x j‖
p
− n1−p

∥∥∥∥ n∑
j=1

x j

∥∥∥∥p]
(≥ 0)

(4.2)

for all p ≥ 1.
We remark that, for p = 1 one may obtain from the previous results the following

inequalities that are intimately related with the generalized triangle inequality in
normed spaces:

max
1≤i≤n

{
pi

qi

}[ n∑
j=1

q j‖x j‖ −

∥∥∥∥ n∑
j=1

q j x j

∥∥∥∥]≥ n∑
j=1

p j‖x j‖ −

∥∥∥∥ n∑
j=1

p j x j

∥∥∥∥
≥ min

1≤i≤n

{
pi

qi

}[ n∑
j=1

q j‖x j‖ −

∥∥∥∥ n∑
j=1

q j x j

∥∥∥∥](≥ 0),

(4.3)

max
1≤i≤n

{pi }

[ n∑
j=1

‖x j‖ −

∥∥∥∥ n∑
j=1

x j

∥∥∥∥]≥ n∑
j=1

p j‖x j‖ −

∥∥∥∥ n∑
j=1

p j x j

∥∥∥∥
≥ min

1≤i≤n
{pi }

[ n∑
j=1

‖x j‖ −

∥∥∥∥ n∑
j=1

x j

∥∥∥∥](≥ 0).

(4.4)

If in (4.4) we take

p j :=
1/‖x j‖∑n

k=1(1/‖xk‖)
, with x j 6= 0 ∀ j ∈ {1, . . . , n},
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then, by rearranging the inequality, we get the result:

max
1≤ j≤n

{‖x j‖}

[
n −

∥∥∥∥ n∑
j=1

x j

‖x j‖

∥∥∥∥]≥ n∑
j=1

‖x j‖ −

∥∥∥∥ n∑
j=1

x j

∥∥∥∥
≥ min

1≤ j≤n
{‖x j‖}

[
n −

∥∥∥∥ n∑
j=1

x j

‖x j‖

∥∥∥∥].
(4.5)

We note that inequality (4.5) has been obtained in a different way by Kato et al.
in [16] where an analysis of the equality case for strictly convex spaces has been
performed as well.

We can state the following result which provides a generalization of inequality (4.1).

PROPOSITION 4.1. Let (X, ‖·‖) be a normed linear space, x = (x1, . . . , xn) an
n-tuple of vectors in X, and p = (p1, . . . , pn) and q = (q1, . . . , qn) probability
distributions with all q j nonzero. If t ≥ 1 and 8 : [0,∞)→ [0,∞) is monotonic
nondecreasing and concave, then

max
1≤i≤n

{
pi

qi

}
8

[ n∑
i=1

qi‖xi‖
t
−

∥∥∥∥ n∑
i=1

qi xi

∥∥∥∥t]

≥8

[ n∑
i=1

pi‖xi‖
t
−

∥∥∥∥ n∑
i=1

pi xi

∥∥∥∥t]

≥ min
1≤i≤n

{
pi

qi

}
8

[ n∑
i=1

qi‖xi‖
t
−

∥∥∥∥ n∑
i=1

qi xi

∥∥∥∥t]
(4.6)

and, in particular,

n max
1≤i≤n

{pi }8

[
n−1

n∑
i=1

‖xi‖
t
− n−t

∥∥∥∥ n∑
i=1

xi

∥∥∥∥t]

≥8

[ n∑
i=1

pi‖xi‖
t
−

∥∥∥∥ n∑
i=1

qi xi

∥∥∥∥t]

≥ n min
1≤i≤n

{pi }8

[
n−1

n∑
i=1

‖xi‖
t
− n−t

∥∥∥∥ n∑
i=1

xi

∥∥∥∥t]
.

(4.7)

The proof follows from Corollary 2.2 and the details are omitted.
Now, if p = (p1, . . . , pn) are positive weights with Pn =

∑n
i=1 pi > 0 and x =

(x1, . . . , xn) is an n-tuple of vectors in X , then by defining the functional

Dn(t, ‖·‖, p, x;8)= Pn8

[
P−1

n

n∑
i=1

pi‖xi‖
t
− P−t

n

∥∥∥∥ n∑
i=1

pi xi

∥∥∥∥t]
(4.8)

we can state the following result as well.
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PROPOSITION 4.2. If t ≥ 1 and 8 : [0,∞)→ [0,∞) is monotonic nondecreasing
and concave, then

Dn(t, ‖·‖, p, x;8)

≥ max
1≤i< j≤n

{
(pi + p j )8

[
pi‖xi‖

t
+ p j‖x j‖

t

pi + p j
−

∥∥∥∥ pi xi + p j x j

pi + p j

∥∥∥∥t]}
≥ 0

(4.9)

and

Dn(t, ‖·‖, p, x;8)≥ Dn−1(t, ‖·‖, p, x;8)≥ · · · ≥ D2(t, ‖·‖, p, x;8)≥ 0.
(4.10)

The proof follows from Corollary 3.2 and the details are omitted.

5. Applications for f -divergences

Given a convex function f : [0,∞)→ R, the f -divergence functional

I f (p, q)=
n∑

i=1

qi f

(
pi

qi

)
(5.1)

was introduced by Csiszár [3] as a generalized measure of information, a ‘distance
function’ on the set of probability distributions Pn . The restriction here to discrete
distributions is only for convenience; similar results hold for general distributions. As
in Csiszár [3], we interpret undefined expressions as follows:

f (0)= lim
t→0+

f (t), 0 f

(
0
0

)
= 0,

0 f

(
a

0

)
= lim
ε→0+

ε f

(
a

ε

)
= a lim

t→∞

f (t)

t
, a > 0.

The following results were essentially given by Csiszár and Körner [4].

PROPOSITION 5.1 (Joint convexity). If f : [0,∞)→ R is convex, then I f (p, q) is
jointly convex in p and q.

PROPOSITION 5.2 (Jensen’s inequality). Let f : [0,∞)→ R be convex. Then for any
p, q ∈ [0,∞)n with Pn :=

∑n
i=1 pi > 0, Qn :=

∑n
i=1 qi > 0, we have the inequality

I f (p, q)≥ Qn f

(
Pn

Qn

)
. (5.2)

If f is strictly convex, equality holds in (5.2) if and only if

p1

q1
=

p2

q2
= · · · =

pn

qn
.
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It is natural to consider the following corollary.

COROLLARY 5.3 (Nonnegativity). Let f : [0,∞)→ R be convex and normalized,
that is,

f (1)= 0. (5.3)

Then for any p, q ∈ [0,∞)n with Pn = Qn , we have the inequality

I f (p, q)≥ 0. (5.4)

If f is strictly convex, equality holds in (5.4) if and only if

pi = qi for all i ∈ {1, . . . , n}.

In particular, if p, q are probability vectors, then Corollary 5.3 shows, for strictly
convex and normalized f : [0,∞)→ R, that

I f (p, q)≥ 0 and I f (p, q)= 0 if and only if p = q . (5.5)

We now give some examples of divergence measures in information theory which
are particular cases of f -divergences.

Kullback–Leibler distance [18]. The Kullback–Leibler distance D(·, ·) is defined by

D(p, q) :=
n∑

i=1

pi log
(

pi

qi

)
.

If we choose f (t)= t ln t , t > 0, then obviously

I f (p, q)= D(p, q).

Variational distance (l1-distance). The variational distance V (·, ·) is defined by

V (p, q) :=
n∑

i=1

|pi − qi |.

If we choose f (t)= |t − 1|, t ∈ [0,∞), then

I f (p, q)= V (p, q).

Hellinger discrimination [2]. The Hellinger discrimination is defined by
√

2h2(·, ·),
where h2(·, ·) is given by

h2(p, q) :=
1
2

n∑
i=1

(
√

pi −
√

qi )
2.

It is obvious that if f (t)= 1
2 (
√

t − 1)2, then

I f (p, q)= h2(p, q).
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Triangular discrimination [22]. We define triangular discrimination between p and
q by

1(p, q)=
n∑

i=1

|pi − qi |
2

pi + qi
.

It is obvious that if f (t)= (t − 1)2/(t + 1) , t ∈ (0,∞), then

I f (p, q)=1(p, q).

Note that
√
1(p, q) is known in the literature as the Le Cam distance.

Chi-square distance. We define the chi-square (χ2) distance by

Dχ2(p, q) :=
n∑

i=1

(pi − qi )
2

qi
.

It is clear that if f (t)= (t − 1)2, t ∈ [0,∞), then

I f (p, q)= Dχ2(p, q).

Rényi’s divergences [21]. For α ∈ R\{0, 1}, consider

ρα(p, q) :=
n∑

i=1

pαi q1−α
i .

It is obvious that if f (t)= tα(t ∈ (0,∞)), then

I f (p, q)= ρα(p, q).

Rényi’s divergences Rα(p, q) := 1/(α(α − 1))ln[ρα(p, q)] have been introduced for
all real orders α 6= 0, α 6= 1 (and continuously extended for α = 0 and α = 1) in [19],
where the reader may find many inequalities valid for these divergences, without, as
well as with, restrictions for p and q.

For other examples of divergence measures, see the paper [15] and the books [19,
23], where further references are given.

For a function f : (0,∞)→ R we denote by f # the function defined on (0,∞) by
the equation f #(x) := f (1/x). With this notation,

I f #(p, q)=
n∑

i=1

qi f #
(

pi

qi

)
=

n∑
i=1

qi f

(
qi

pi

)
. (5.6)

Using Corollary 2.2, we can state the following result for f -divergences.

PROPOSITION 5.4. Let f : [0,∞)→ R be convex and normalized and p, q two prob-
ability distributions such that R :=maxi∈{1,...,n}{pi/qi }<∞ and r :=mini∈{1,...,n}
{pi/qi }> 0. If 8 : [0,∞)→ [0,∞) is monotonic nondecreasing and concave, then

R8[I f #(p, q)− f (Dχ2(q, p)+ 1)] ≥8[I f (q, p)]

≥ r8[I f #(p, q)− f (Dχ2(q, p)+ 1)].
(5.7)
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PROOF. Utilizing the inequality (2.5),

R8

[ n∑
i=1

qi f

(
qi

pi

)
− f

( n∑
i=1

q2
i

pi

)]
≥8

[ n∑
i=1

pi f

(
qi

pi

)
− f (1)

]

≥ r8

[ n∑
i=1

qi f

(
qi

pi

)
− f

( n∑
i=1

q2
i

pi

)]
.

(5.8)

Since
n∑

i=1

q2
i

pi
= Dχ2(q, p)+ 1,

then by (5.8) we deduce the desired result (5.7). 2

Finally, by means of Corollary 3.2 we also obtain the following lower bound for the
f -divergence.

PROPOSITION 5.5. Let f : [0,∞)→ R be convex and normalized and p, q two
probability distributions. If 8 : [0,∞)→ [0,∞) is monotonic nondecreasing and
concave, then:

8[I f (q, p)] ≥ max
1≤i< j≤n

{
(pi + p j )8

[ pi f ( qi
pi
)+ p j f (

q j
p j
)

pi + p j
− f

(
qi + q j

pi + p j

)]}
≥ 0.

(5.9)

REMARK 5.6. If one chooses different examples of convex functions generating the
particular divergences mentioned at the beginning of the section, that one can obtain
various inequalities of interest. However, the details are not presented here.
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