Generalized Descent Algebras

Christophe Hohlweg

Abstract. If A is a subset of the set of reflections of a finite Coxeter group W, we define a sub-ZZ-module $\mathcal{D}_{A}(W)$ of the group algebra $\mathbb{Z} W$. We discuss cases where this submodule is a subalgebra. This family of subalgebras includes strictly the Solomon descent algebra, the group algebra and, if W is of type B, the Mantaci-Reutenauer algebra.

Introduction

Let (W, S) be a finite Coxeter system whose length function is denoted by $\ell: W \rightarrow$ $\mathbb{N}=\{0,1,2, \ldots\}$. In 1976, Solomon introduced a remarkable subalgebra ΣW of the group algebra $\mathbb{Z} W$, called the Solomon descent algebra [11]. Let us recall its definition. If $I \subset S$, let W_{I} denote the standard parabolic subgroup generated by I. Then

$$
X_{I}=\{w \in W \mid \forall s \in I, \ell(w s)>\ell(w)\}
$$

is a set of minimal length coset representatives of W / W_{I}. Let $x_{I}=\sum_{w \in X_{I}} w \in \mathbb{Z} W$. Then ΣW is defined as the sub-ZZ-module of $\mathbb{Z} W$ spanned by $\left(x_{I}\right)_{I \subset S}$. The study of this algebra is strongly related to the study of many problems in symmetric groups and Coxeter groups, see for instance $[2,5,10,12]$.

In [3], the authors constructed a subalgebra $\Sigma^{\prime}\left(W_{n}\right)$ of the group algebra $\mathbb{Z} W_{n}$ of the Coxeter group W_{n} of type B_{n} : it turns out that this subalgebra is defined from "generalized descent sets" relative to a larger set of reflections than S and that it contains ΣW_{n}. In fact $\Sigma^{\prime}\left(W_{n}\right)$ is the Mantaci-Reutenauer algebra [8].

It is natural to ask whether this kind of construction can be generalized to other groups. Let us explain now what kind of subalgebras we are looking for.

Let $T=\left\{w s w^{-1} \mid w \in W\right.$ and $\left.s \in S\right\}$ be the set of reflections in W. Let A be a fixed subset of T. If $w \in W$, let $D_{A}(w)=\{s \in A \mid \ell(w s)<\ell(w)\} \subset A$ be the A-descent set of w. A subset I of A is said to be A-admissible if there exists $w \in W$ such that $D_{A}(w)=I$. Let $\mathcal{P}_{\text {ad }}(A)$ denote the set of A-admissible subsets of A. If $I \in \mathcal{P}_{\mathrm{ad}}(A)$, we set $D_{I}^{A}=\left\{w \in W \mid D_{A}(w)=I\right\}$ and $d_{I}^{A}=\sum_{w \in D_{I}^{A}} w \in \mathbb{Z} W$. Now, let

$$
\mathcal{D}_{A}(W)=\bigoplus_{I \in \mathcal{P}_{\mathrm{ad}}(A)} \mathbb{Z} d_{I}^{A} .
$$

As an example, $\mathcal{D}_{S}(W)=\Sigma_{S}(W)=\Sigma W$. In fact, they are precisely the ΣW-modules defined in [9] (see Remark 1.12). The main theorem of this paper is the following (here, $C(w)$ denotes the conjugacy class of w in W).

[^0]Theorem A If there exist two subsets S_{1} and S_{2} of S such that $A=S_{1} \cup\left(\bigcup_{s \in S_{2}} C(s)\right)$, then $\mathcal{D}_{A}(W)$ is a subalgebra of $\mathbb{Z} W$.

This theorem is a generalization of Atkinson's proof [1] of Solomon's result (take $A=S$). It provides a generalization of Atkinson's proof to the case of the MantaciReutenauer algebra (take $A=\left\{s_{1}, \ldots, s_{n-1}\right\} \cup C(t)$, where $S=\left\{t, s_{1}, \ldots, s_{n-1}\right\}$ satisfies $\left.C(t) \cap\left\{s_{1}, \ldots, s_{n-1}\right\}=\varnothing\right)$. But for instance the theorem also gives another algebra in type $B_{n}\left(\right.$ take $\left.A=\{t\} \cup C\left(s_{1}\right)\right)$ and a new algebra in type F_{4} of \mathbb{Z}-rank 300 (take $A=\left\{s_{1}, s_{2}\right\} \cup C\left(s_{3}\right)$, where $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ satisfies $\left\{s_{1}, s_{2}\right\} \cap C\left(s_{3}\right)=\varnothing$). Moreover, if $A=T$, we get that $\mathcal{D}_{A}(W)=\mathbb{Z} W$ (see Example 1.7). In the case of dihedral groups, we get another family of algebras.

Theorem B If W is a dihedral group of order $4 m(m \geq 1), S=\{s, t\}$ and $A=$ $\{s, t, s t s\}$ or $A=\{t, s t s\}$, then $\mathcal{D}_{A}(W)$ is a subalgebra of $\mathbb{Z} W$.

It must be noted that the algebras constructed in Theorems A and B are not necessarily unitary. More precisely, $1 \in \mathcal{D}_{A}(W)$ if and only if $S \subset A$. Moreover, if $S \subset A$, then $\Sigma W \subset \mathcal{D}_{A}(W)$. Some computations with GAP suggest that the following question has a positive answer. If $\mathcal{D}_{A}(W)$ is a unitary subalgebra of $\mathbb{Z} W$, is it true that A is one of the subsets mentioned in Theorems A and B?

This paper is organized as follows. Section 1 is essentially devoted to the proofs of Theorems A and B. In Section 2, we discuss more precisely the case of dihedral groups.

1 Descent Sets

Let (W, S) be a finitely generated Coxeter system (not necessary finite). If $s, s^{\prime} \in S$, we denote by $m\left(s, s^{\prime}\right)$ the order of $s s^{\prime} \in W$. If W is finite, we denote by w_{0} its longest element.

1.1 Root System

Let V be an \mathbb{R}-vector space endowed with a basis indexed by S denoted by $\Delta=$ $\left\{\alpha_{s} \mid s \in S\right\}$. Let $B: V \times V \rightarrow \mathbb{R}$ be the symmetric bilinear form such that

$$
B\left(\alpha_{s}, \alpha_{s^{\prime}}\right)=-\cos \left(\frac{\pi}{m\left(s, s^{\prime}\right)}\right)
$$

for all $s, s^{\prime} \in S$. If $s \in S$ and $v \in V$, we set $s(v)=v-2 B\left(\alpha_{s}, v\right) \alpha_{s}$. Thus s acts as the reflection in the hyperplane orthogonal to α_{s} (for the bilinear form B). This extends to an action of W on V as a group generated by reflections. It stabilizes B.

We recall some basic terminology on root systems (see for instance [4, 6]). The root system of (W, S) is the set $\Phi=\left\{w\left(\alpha_{s}\right) \mid w \in W, s \in S\right\}$ and the elements of Δ are the simple roots. The roots contained in

$$
\Phi^{+}=\left(\sum_{\alpha \in \Delta} \mathbb{R}^{+} \alpha\right) \cap \Phi
$$

are said to be positive, while those contained in $\Phi^{-}=-\Phi^{+}$are said to be negative. Moreover, Φ is the disjoint union of Φ^{+}and Φ^{-}. If $w \in W, \ell(w)=|N(w)|$, where

$$
N(w)=\left\{\alpha \in \Phi^{+} \mid w(\alpha) \in \Phi^{-}\right\}
$$

Let $\alpha=w\left(\alpha_{s}\right) \in \Phi$; then $s_{\alpha}=w s w^{-1}$ acts as the reflection in the hyperplane orthogonal to α and $s_{\alpha}=s_{-\alpha}$. Therefore, the set of reflections of W

$$
T=\bigcup_{w \in W} w S w^{-1}
$$

is in bijection with Φ^{+}(and thus Φ^{-}).
Let us recall the following well-known result.

Lemma 1.1 Let $w \in W$.
(i) If $\alpha \in \Phi^{+}$, then $\ell\left(w s_{\alpha}\right)>\ell(w)$ if and only if $w(\alpha) \in \Phi^{+}$.
(ii) If $s \in S$, then

$$
N(s w)= \begin{cases}N(w) \coprod\left\{w^{-1}\left(\alpha_{s}\right)\right\} & \text { if } \ell(s w)>\ell(w), \\ N(w) \backslash\left\{-w^{-1}\left(\alpha_{s}\right)\right\} & \text { otherwise } .\end{cases}
$$

Henceforth, we fix a subset A of T. We start with easy observations. As a consequence of Lemma 1.1(i), we get that

$$
D_{A}(w)=\left\{s_{\alpha} \in A \mid \alpha \in \Phi^{+} \text {and } w(\alpha) \in \Phi^{-}\right\}
$$

We also set

$$
N_{A}(w)=\left\{\alpha \in \Phi^{+} \mid s_{\alpha} \in A \text { and } w(\alpha) \in \Phi^{-}\right\}
$$

The map $N_{A}(w) \rightarrow D_{A}(w), \alpha \mapsto s_{\alpha}$ is then a bijection.

1.2 Properties of the Map D_{A}

First, using Lemma 1.1(ii), we get the following.
Corollary 1.2 If $s \in S$ and if $w \in W$ is such that $w^{-1} s w=s_{w^{-1}\left(\alpha_{s}\right)} \notin A$, then $N_{A}(w)=N_{A}(s w)\left(\right.$ and $\left.D_{A}(w)=D_{A}(s w)\right)$.

Remark 1.3 If $A_{1} \subset A_{2} \subset T$, then $D_{A_{1}}(w)=D_{A_{2}}(w) \cap A_{1}$ for all $w \in W$. Therefore if W is finite, $\mathcal{D}_{A_{1}}(W) \subset \mathcal{D}_{A_{2}}(W)$.

Proposition 1.4 We have
(i) \varnothing is A-admissible;
(ii) $D_{\varnothing}^{A}=\{1\}$ if and only if $S \subset A$.

Proof We have $D_{A}(1)=\varnothing$ so (i) follows. If $s \in S \backslash A$, then $D_{A}(s)=\varnothing$. This shows (ii).

The notion of A-descent set is obviously compatible with direct products:

Proposition 1.5 Assume that $W=W_{1} \times W_{2}$ where W_{1} and W_{2} are standard parabolic subgroups of W. Then for all $I \in \mathcal{P}_{\mathrm{ad}}(A)$, we have

$$
D_{I}^{A}=D_{I \cap W_{1}}^{A \cap W_{1}} \times D_{I \cap W_{2}}^{A \cap W_{2}}
$$

Corollary 1.6 Assume that W is finite and that $W=W_{1} \times W_{2}$ where W_{1} and W_{2} are standard parabolic subgroups of W. Then $\mathcal{D}_{A}(W)=\mathcal{D}_{A \cap W_{1}}\left(W_{1}\right) \otimes_{\mathbb{Z}} \mathcal{D}_{A \cap W_{2}}\left(W_{2}\right)$.

Example 1.7 Consider the case where $A=T$ (then $\left.N_{A}(w)=N(w)\right)$. It is well known [4, Chapter VI, Exercise 16] that the map $w \mapsto N(w)$ from W onto the set of subsets of Φ^{+}is injective (observe that if $\alpha \in N\left(w_{1} w_{2}^{-1}\right)$, then $\pm w_{2}^{-1}(\alpha)$ lives in the union, but not in the intersection, of $N\left(w_{1}\right)$ and $\left.N\left(w_{2}\right)\right)$. Therefore, the map $W \rightarrow$ $\mathcal{P}_{\text {ad }}(T), w \mapsto D_{T}(w)$ is injective. In particular, if W is finite, then $\mathcal{D}_{T}(W)=\mathbb{Z} W$.

In the case of finite Coxeter groups, the multiplication on the left by the longest element has the following easy property.

Proposition 1.8 If W is finite and if $w \in W$, then $D_{A}\left(w_{0} w\right)=A \backslash D_{A}(w)$.
Corollary 1.9 If W is finite, then
(i) A is A-admissible;
(ii) $I \in \mathcal{P}_{\mathrm{ad}}(A)$ if and only if $A \backslash I \in \mathcal{P}_{\mathrm{ad}}(A)$;
(iii) $D_{A}^{A}=\left\{w_{0}\right\}$ if and only if $S \subset A$.

Proof $D_{A}\left(w_{0}\right)=A$, so (i) follows. (ii) follows from Proposition 1.8. (iii) follows from Proposition 1.8 and Proposition 1.4(ii).

1.3 Left-Connectedness

Atkinson gave a new proof of Solomon's result by using an equivalence relation to describe descent sets [1]. We extend his result to A-descent sets. It shows in particular that the subsets D_{I}^{A} are left-connected (recall that a subset E of W is said to be leftconnected if, for all $w, w^{\prime} \in E$, there exists a sequence $w=w_{1}, w_{2}, \ldots, w_{r}=w^{\prime}$ of elements of E such that $w_{i+1} w_{i}^{-1} \in S$ for every $\left.i \in\{1,2, \ldots, r-1\}\right)$.

Let w and w^{\prime} be two elements of W. We say that w is an A-descent neighborhood of w^{\prime}, and write $w \smile_{A} w^{\prime}$, if $w^{\prime} w^{-1} \in S$ and $w^{-1} w^{\prime} \notin A$. It is easily seen that \smile_{A} is a symmetric relation. The reflexive and transitive closure of the A-descent neighborhood relation is called the A-descent equivalence, and is denoted by \sim_{A}. The next proposition characterizes this equivalence relation in terms of A-descent sets.

Proposition 1.10 Let $w, w^{\prime} \in W$. Then

$$
w \sim_{A} w^{\prime} \Leftrightarrow D_{A}(w)=D_{A}\left(w^{\prime}\right) \Leftrightarrow N_{A}(w)=N_{A}\left(w^{\prime}\right) .
$$

Proof The second equivalence is clear. If $w \smile_{A} w^{\prime}$, then it follows from Corollary 1.2 that $N_{A}(w)=N_{A}\left(w^{\prime}\right)$. It remains to show that if $N_{A}(w)=N_{A}\left(w^{\prime}\right)$, then $w \sim_{A} w^{\prime}$.

So, assume that $N_{A}(w)=N_{A}\left(w^{\prime}\right)$. Write $x=w^{\prime} w^{-1}$ and let $m=\ell(x)$. If $\ell(x)=0$, then $w=w^{\prime}$ and we are done. Assume that $m \geq 1$, and write $x=s_{1} s_{2} \cdots s_{m}$ with $s_{i} \in S$. We now want to prove by induction on m that

$$
(*) \quad w \smile_{A} s_{m} w \smile_{A} s_{m-1} s_{m} w \smile_{A} \cdots \smile_{A} s_{2} \cdots s_{m} w \smile_{A} s_{1} s_{2} \cdots s_{m} w=w^{\prime}
$$

First, assume that $w \mathcal{R}_{A} s_{m} w$. In other words, $w^{-1} s_{m} w \in A$. For simplification, let $\alpha_{i}=\alpha_{s_{i}}$. By Lemma 1.1(ii), we have

$$
N_{A}\left(s_{m} w\right)=N_{A}(w) \coprod\left\{w^{-1}\left(\alpha_{m}\right)\right\} \quad \text { or } \quad N_{A}\left(s_{m} w\right)=N_{A}(w) \backslash\left\{-w^{-1}\left(\alpha_{m}\right)\right\}
$$

In the first case, as $N_{A}(w)=N_{A}\left(w^{\prime}\right)$, and by applying Lemma 1.1(ii) again, there exists a step $i \in\{1,2, \ldots, m-1\}$ between $N_{A}(w)$ to $N_{A}\left(w^{\prime}\right)$ where $w^{-1}\left(\alpha_{m}\right)$ is removed from $N_{A}\left(s_{i} \cdots s_{m} w\right)$, that is, $\left(s_{i+1} \cdots s_{m} w\right)^{-1}\left(\alpha_{i}\right)=-w^{-1}\left(\alpha_{m}\right)$. In the same way, we get the same result in the second case. In other words, we have proved that there exists $i \in\{1,2, \ldots, m-1\}$ such that $s_{m} \cdots s_{i+1}\left(\alpha_{i}\right)=-\alpha_{m}$, so, by Lemma 1.1(i), we have $\ell\left(s_{m} \cdots s_{i+1} s_{i}\right)<\ell\left(s_{m} \cdots s_{i+1}\right)$. This contradicts the fact that $m=$ $\ell(x)$. So $w \smile_{A} s_{m} w$, and then $N_{A}(w)=N_{A}\left(s_{m} w\right)$. Hence $N_{A}\left(s_{m} w\right)=N_{A}\left(w^{\prime}\right)$ and $w^{\prime}\left(s_{m} w\right)^{-1}=s_{1} s_{2} \cdots s_{m-1}$. We then get by induction that

$$
s_{m} w \smile_{A} s_{m-1} s_{m} w \smile_{A} \cdots \smile_{A} s_{1} s_{2} \cdots s_{m} w=w^{\prime}
$$

which shows $(*)$.

Corollary 1.11 If $I \in \mathcal{P}_{\mathrm{ad}}(A)$, then D_{I}^{A} is left-connected.
Remark 1.12 The above corollary was first stated by Tits [13, Theorem 2.19] as follows: Let $s \in T$; we denote by X_{s} the set of $w \in W$ such that $\ell(w s)>\ell(w)$. Then for all $J \subset A \subset T$, the set $Y_{J}^{A}=\bigcap_{s \in J} X_{s} \cap \bigcap_{s \in A \backslash J}\left(W \backslash X_{s}\right)$ is left-connected. An easy computation shows that $Y_{J}^{A}=D_{A \backslash J}^{A}$ (possibly empty). Proposition 1.10 provides a new (shorter) proof of Tits' theorem.

We mention that, using this result and the terminology of Tits, Moszkowski [9] has shown that for all $A \subset T, \mathcal{D}_{A}(W)$ is a ΣW-module for the left multiplication.

1.4 Nice Subsets of T

We say that A is nice if for every $s \in A$ and $w \in W$ such that $w^{-1} s w \notin A$, we have $D_{A}(s w)=D_{A}(w)$. Notice that every subset of S is nice, by Corollary 1.2.

If $w \in W$ and $I, J \in \mathcal{P}_{\text {ad }}(A)$, we set

$$
D_{A}(I, J, w)=\left\{(u, v) \in D_{I}^{A} \times D_{J}^{A} \mid u v=w\right\} .
$$

The next lemma gives a characterization of the fact that $\mathcal{D}_{A}(W)$ is an algebra in terms of these sets.

Lemma 1.13 Assume that W is finite. Then the following are equivalent.
(i) $\mathcal{D}_{A}(W)$ is a subalgebra of $\mathbb{Z} W$.
(ii) For all $I, J \in \mathcal{P}_{\mathrm{ad}}(A)$ and for all $w, w^{\prime} \in W$ such that $D_{A}(w)=D_{A}\left(w^{\prime}\right)$, we have $\left|D_{A}(I, J, w)\right|=\left|D_{A}\left(I, J, w^{\prime}\right)\right|$.
If these conditions are fulfilled, we choose for any $I \in \mathcal{P}_{\mathrm{ad}}(A)$ an element z_{I} in D_{I}^{A}. Then

$$
d_{I}^{A} d_{J}^{A}=\sum_{K \in \mathcal{P}_{\mathrm{ad}}(A)}\left|D_{A}\left(I, J, z_{K}\right)\right| d_{K}^{A}
$$

Proof That (ii) implies (i) is obvious. If (i) is true, then, on the one hand,

$$
d_{I}^{A} d_{J}^{A}=\sum_{K \in \mathcal{P}_{\mathrm{ad}}(A)} c_{K} d_{K}^{A}
$$

for some $c_{K} \in \mathbb{Z}$. On the other hand,

$$
d_{I}^{A} d_{J}^{A}=\sum_{D_{A}(u)=I} \sum_{D_{A}(v)=J} u v=\sum_{K \in \mathcal{P}_{\text {ad }}(A)} \sum_{D_{A}(w)=K}\left|D_{A}(I, J, w)\right| w .
$$

(ii) follows by identification.

Let us now fix $s \in S$ and let $(u, v) \in W \times W$. If $u \smile_{A} s u$, we set $\psi_{s}^{A}(u, v)=(s u, v)$. If $u \nsim_{A} s u$, then we set $\psi_{s}^{A}(u, v)=\left(u, u^{-1} s u v\right)$. Note that in the last case, $u^{-1} s u \in A$. We have $\left(\psi_{s}^{A}\right)^{2}=\mathrm{Id}_{W \times W}$. In particular, ψ_{s}^{A} is a bijection. Using ψ_{s}^{A}, one can relate the notion of nice subsets to the property (ii) stated in Lemma 1.13.

Proposition 1.14 Assume that A is nice. Let $I, J \in \mathcal{P}_{\mathrm{ad}}(W)$, let $w \in W$, and let $s \in S$ be such that $w \smile_{A} s w$. Then $\psi_{s}^{A}\left(D_{A}(I, J, w)\right)=D_{A}(I, J, s w)$.

Proof Let (u, v) be an element of $D_{A}(I, J, w)$. By symmetry, we only need to prove that $\psi_{s}^{A}(u, v) \in D_{A}(I, J, s w)$. If $u \smile_{A} s u$, then $D_{A}(s u)=D_{A}(u)=I$ by Proposition 1.10, so $\psi_{s}^{A}(u, v)=(s u, v) \in D_{A}(I, J, s w)$. So, we may assume that $u \psi_{A} s u$. Let $s^{\prime}=u^{-1} s u \in A$. Note that $w^{-1} s w=v^{-1} s^{\prime} v \notin A$. Then $\psi_{s}^{A}(u, v)=\left(u, s^{\prime} v\right)$ and $u s^{\prime} v=s w$. So we only need to prove that $D_{A}\left(s^{\prime} v\right)=D_{A}(v)$. But this just follows from the definition of nice subset of T.

Corollary 1.15 If W is finite and if A is nice, then $\mathcal{D}_{A}(W)$ is a subalgebra of $\mathbb{Z} W$. It is unitary if and only if $S \subset A$.

Proof This follows from Lemma 1.13 and from Propositions 1.10 and 1.14.

1.5 Proof of Theorems A and B

Using Corollary 1.15, we see that Theorems A and B are direct consequences of the following theorem (which holds also for infinite Coxeter groups).

Theorem 1.16 Assume that one of the following holds.
(i) There exist two subsets S_{1} and S_{2} of S such that $A=S_{1} \cup\left(\bigcup_{s \in S_{2}} C(s)\right)$.
(ii) $S=\{s, t\}, m(s, t)$ is even or ∞, and $A=\{s, t, s t s\}$ or $A=\{t, s t s\}$.

Then A is nice.

Proof Assume that (i) or (ii) holds. Let $r \in A$ and let $w \in W$ be such that $w^{-1} r w \notin A$. We want to prove that $D_{A}(r w)=D_{A}(w)$. By symmetry, we only need to show that $D_{A}(r w) \subset D_{A}(w)$. If $r \in S$, then this follows from Corollary 1.2. So we may assume that $r \notin S$.

Assume that (i) holds. Write $A^{\prime}=\bigcup_{s \in S_{2}} C(s)$ and $S^{\prime}=A \backslash A^{\prime}$. Then $S^{\prime} \subset S$, $A=A^{\prime} \coprod S^{\prime}$ and A^{\prime} is stable under conjugacy. Then $r \in A^{\prime}$ and $w^{-1} r w \in A^{\prime} \subset A$, which contradicts our hypothesis.

Assume that (ii) holds. If $m(s, t)=2$, then A is contained in S and therefore is nice by Corollary 1.2. So we may assume that $m(s, t) \geq 4$. Since $r \notin S$, we have $r=s t s$. Assume that $D_{A}(r w) \not \subset D_{A}(w)$. Let

$$
\Phi_{A}=\left\{\alpha \in \Phi^{+} \mid s_{\alpha} \in A\right\} \subset\left\{\alpha_{s}, \alpha_{t}, s\left(\alpha_{t}\right)\right\} .
$$

There exists $\alpha \in \Phi_{A}$ such that $r w(\alpha) \in \Phi^{-}$and $w(\alpha) \in \Phi^{+}$. So $w(\alpha) \in N(r)=$ $\left\{\alpha_{s}, s\left(\alpha_{t}\right)\right.$, st $\left.\left(\alpha_{s}\right)\right\}$. Since $w^{-1} r w \notin A$, we have that $w s_{\alpha} w^{-1} \neq r$, so $w(\alpha) \neq s\left(\alpha_{t}\right)$. So $w(\alpha)=\alpha_{s}$ or $s t\left(\alpha_{s}\right)$. But the roots α_{s} and α_{t} lie in different W-orbits, so $\alpha=\alpha_{s}$ and $w\left(\alpha_{s}\right) \in\left\{\alpha_{s}, s t\left(\alpha_{s}\right)\right\}$. If W is infinite, this gives that $w \in\{1, s t\}$, which contradicts the fact that $w^{-1} r w \notin A$. If W is finite, this gives that $w \in\left\{1, s t, w_{0} s, s t s w_{0}\right\}$. But again, this contradicts the fact that $w^{-1} r w \notin A$.

1.6 A Remark Concerning the Solomon Homomorphism

Let $\mathbb{Z} \operatorname{Irr} W$ denote the characters algebra of $W, \Sigma W$ is endowed with a \mathbb{Z}-linear map $\theta: \Sigma W \rightarrow \mathbb{Z} \operatorname{Irr} W$ satisfying $\theta\left(x_{I}\right)=\operatorname{Ind}_{W_{I}}^{W} 1_{W_{I}}$. This is an algebra homomorphism [11].

If W is the symmetric group \Im_{n}, then θ becomes an epimorphism and the pair $\left(\Sigma \Im_{n}, \theta\right)$ provides a nice construction [7] of $\operatorname{Irr}\left(\Im_{n}\right)$, which is the first ingredient of several recent works, see for instance [12]. However, the morphism θ is surjective if and only if W is a product of symmetric groups.

In [3], the authors have shown that the Mantaci-Reutenauer algebra is also endowed with an algebra homomorphism $\theta^{\prime}: \Sigma^{\prime}\left(W_{n}\right) \rightarrow \mathbb{Z} \operatorname{Irr} W_{n}$ extending θ. Moreover, θ^{\prime} is surjective and $\mathbb{O} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta^{\prime}$ is the radical of $\left(\mathbb{O} \otimes_{\mathbb{Z}} \Sigma^{\prime}\left(W_{n}\right)\right.$. This leads to a construction of the irreducible characters of W_{n} following Jőllenbeck's strategy.

However, the situation seems to be much more complicated in the other types. Let us define another sub-ZZ-module of $\mathbb{Z} W$. If $I \subset A$, we still denote by W_{I} the subgroup
of W generated by I and we still set

$$
X_{I}=\left\{w \in W \mid \forall x \in W_{I}, \ell(w x) \geq \ell(w)\right\}
$$

Then X_{I} is again a set of representatives for W / W_{I}. Now, let $x_{I}=\sum_{w \in X_{I}} w \in \mathbb{Z} W$. Then $\Sigma_{A}(W)=\sum_{I \subset A} \mathbb{Z} x_{I}$ is a sub-ZZ-module of $\mathbb{Z} W$. However, it is not in general a subalgebra of $\mathbb{Z} W$.

The bad point in the above construction is that in many cases one has $\Sigma_{A}(W) \neq$ $\mathcal{D}_{A}(W)$. Also, we are not able to construct in general a morphism of algebras $\theta_{A}: \mathcal{D}_{A}(W) \rightarrow \mathbb{Z} \operatorname{Irr} W$ extending θ if $S \subset A$ (see Remark 2.2 and Proposition 2.3 below).

Example 1.17 Assume here that W is of type F_{4}, that $S=\left\{s_{1}, s_{2}, s_{3}, s_{4}\right\}$ and that $A=C\left(s_{1}\right) \cup S$. Then, using GAP, one can see that $\operatorname{rank}_{\mathbb{Z}} \mathcal{D}_{A}(W)=300$ and $\operatorname{rank}_{\mathbb{Z}} \Sigma_{A}(W)=149$. Moreover, $\Sigma_{A}(W)$ is not a subalgebra of $\mathcal{D}_{A}(W)$.

2 Example: The Dihedral Groups

The aim of this section is to study the unitary subalgebras $\mathcal{D}_{A}(W)$ constructed in Theorems A and B whenever W is finite and dihedral. Henceforth, we assume that $S=\{s, t\}$ with $s \neq t$ and that $m(s, t)=2 m$, with $2 \leq m<\infty$.

Note that $w_{0}=(s t)^{m}$ is central. In what follows, we will need some facts on the character table of W. Let us recall here the construction of $\operatorname{Irr} W$. First, let H be the subgroup of W generated by st. It is normal in W, of order $2 m$ (in other words, of index 2). We choose the primitive (2 m)-th root of unity $\zeta \in \mathbb{C}$ of argument π / m. If $i \in \mathbb{Z}$, we denote by $\xi_{i}: H \rightarrow \mathbb{C}^{\times}$the unique linear character such that $\xi_{i}(s t)=\zeta^{i}$. Then $\operatorname{Irr} H=\left\{\xi_{i} \mid 0 \leq i \leq 2 m-1\right\}$. Now let $\chi_{i}=\operatorname{Ind}_{H}^{W} \xi_{i}$. Then $\chi_{i}=\chi_{2 m-i}$ and, if $1 \leq i \leq m-1, \chi_{i} \in \operatorname{Irr} W$. Also, χ_{i} has values in \mathbb{R}. More precisely, for $1 \leq i \leq m-1$ and $j \in \mathbb{Z}$

$$
\chi_{i}\left((t s)^{j}\right)=\zeta^{j}+\zeta^{-j}=2 \cos \left(\frac{i j \pi}{m}\right) \quad \text { and } \quad \chi_{i}\left(s(t s)^{j}\right)=0 .
$$

Let 1 denote the trivial character of W, let ε denote the sign character and let $\gamma: W \rightarrow$ $\{1,-1\}$ be the unique linear character such that $\gamma(s)=-\gamma(t)=1$. Then

$$
\begin{equation*}
\operatorname{Irr} W=\{1, \varepsilon, \gamma, \varepsilon \gamma\} \cup\left\{\chi_{i} \mid 1 \leq i \leq m-1\right\} \tag{1}
\end{equation*}
$$

In particular, $|\operatorname{Irr} W|=m+3$.
2.1 The Subset $A=\{s, t, s t s\}$

From now on, we assume that $A=\{s, t, s t s\}$. We set $\bar{s}=A \backslash\{s\}=\{t, s t s\}$ and $\bar{t}=A \backslash\{t\}=\{s, s t s\}$. It is easy to see that $\mathcal{P}_{\mathrm{ad}}(A)=\{\varnothing,\{s\},\{t\}, \bar{s}, \bar{t}, A\}$. For simplification, we will denote by d_{I} the element d_{I}^{A} of $\mathbb{Z} W$ (for $I \in \mathcal{P}_{\text {ad }}(W)$) and we
set $d_{s}=d_{\{s\}}$ and $d_{t}=d_{\{t\}}$. We have

$$
\begin{gathered}
d_{\varnothing}=1, \quad d_{\bar{s}}=w_{0} s, \quad d_{s}=s, \quad d_{A}=w_{0}, \\
d_{t}=\sum_{i=1}^{m-1}\left((s t)^{i}+(t s)^{i-1} t\right), \quad d_{\bar{t}}=\sum_{i=1}^{m-1}\left((s t)^{i} s+(t s)^{i}\right) .
\end{gathered}
$$

The multiplication table of $\mathcal{D}_{A}(W)$ is given by

	1	d_{s}	$d_{\bar{s}}$	d_{A}	d_{t}	$d_{\bar{t}}$
1	1	d_{s}	$d_{\bar{s}}$	d_{A}	d_{t}	$d_{\bar{t}}$
d_{s}	d_{s}	1	d_{A}	$d_{\bar{s}}$	d_{t}	$d_{\bar{t}}$
$d_{\bar{s}}$	$d_{\bar{s}}$	d_{A}	1	d_{s}	$d_{\bar{t}}$	d_{t}
d_{A}	d_{A}	$d_{\bar{s}}$	d_{s}	1	$d_{\bar{t}}$	d_{t}
d_{t}	d_{t}	$d_{\bar{t}}$	d_{t}	$d_{\bar{t}}$	z_{A}	z_{A}
$d_{\bar{t}}$	$d_{\bar{t}}$	d_{t}	$d_{\bar{t}}$	d_{t}	z_{A}	z_{A}

where $z_{A}=(m-1)\left(1+d_{A}+d_{s}+d_{\bar{s}}\right)+(m-2)\left(d_{t}+d_{\bar{t}}\right)$. We now study the sub-ZZmodule $\Sigma_{A}(W)$; we will show that it coincides with $\mathcal{D}_{A}(W)$. First, it is easily seen that $\mathcal{P}_{0}(A)=\{\varnothing,\{s\},\{t\},\{s t s\}, \bar{s}, A\}$ is the set of subsets I of A such that $W_{I} \cap A=I$ and that

$$
\begin{aligned}
& x_{A}=1 \\
& x_{\bar{s}}=1+d_{s} \\
& x_{s t s}=1+d_{s}+d_{t} \\
& x_{t}=1+d_{s}+d_{\bar{t}} \\
& x_{s}=1+d_{t}+d_{\bar{s}} \\
& x_{\varnothing}=1+d_{s}+d_{t}+d_{\bar{t}}+d_{\bar{s}}+d_{A}
\end{aligned}
$$

Therefore, $\Sigma_{A}(W)=\mathcal{D}_{A}(W)=\bigoplus_{I \in \mathcal{P}_{0}(A)} \mathbb{Z} x_{I}$. So we can define a map

$$
\theta_{A}: \Sigma_{A}(W) \rightarrow \mathbb{Z} \operatorname{Irr} W
$$

by $\theta_{A}\left(x_{I}\right)=\operatorname{Ind}_{W_{I}}^{W} 1_{W_{I}}$.
Proposition 2.1 Assume that $S=\{s, t\}$ with $s \neq t$, that $m(s, t)=2 m$ with $m \geq 2$ and that $A=\{s, t, s t s\}$. Then
(i) $\quad \Sigma_{A}(W)=\mathcal{D}_{A}(W)$ is a subalgebra of $\mathbb{Z} W$ of \mathbb{Z}-rank 6.
(ii) θ_{A} is a morphism of algebras.
(iii) $\operatorname{Ker} \theta_{A}=\mathbb{Z}\left(x_{t}-x_{\text {sts }}\right)$.
(iv) $(\mathbb{O}) \otimes_{\mathbb{Z}} \operatorname{Ker} \theta_{A}$ is the radical of $\left(\mathbb{O} \otimes_{\mathbb{Z}} \Sigma_{A}(W)\right.$.
(v) θ_{A} is surjective if and only if $m=2$ that is, if and only if W is of type B_{2}.

Proof (i) has already been proven. For proving the other assertions, we need to
compute explicitly the map θ_{A}. It is given by the following table:

d_{I}	1	d_{s}	$d_{\bar{s}}$	d_{A}	d_{t}	$d_{\bar{t}}$
$\theta_{A}\left(d_{I}\right)$	1	$\varepsilon \gamma$	γ	ε	$\sum_{i=1}^{m-1} \chi_{i}$	$\sum_{i=1}^{m-1} \chi_{i}$

(iii) This shows that $\operatorname{Ker} \theta_{A}=\mathbb{Z}\left(d_{\bar{t}}-d_{t}\right)=\mathbb{Z}\left(x_{t}-x_{s t s}\right)$, so (iii) holds.
(ii) To prove that θ_{A} is a morphism of algebras, the only difficult point is to prove that $\theta_{A}\left(d_{t}^{2}\right)=\theta_{A}\left(d_{t}\right)^{2}$. Let ρ denote the regular character of W. Then

$$
\theta_{A}\left(d_{t}\right)=\frac{1}{2}(\rho-1-\gamma-\varepsilon \gamma-\varepsilon)
$$

Therefore, $\theta_{A}\left(d_{t}\right)^{2}=(m-2) \rho+1+\gamma+\varepsilon \gamma+\varepsilon$. But, $d_{t}^{2}=z_{A}=(m-2) x_{\varnothing}+1+d_{s}+d_{\bar{s}}+d_{A}$. This shows that $\theta_{A}\left(d_{t}^{2}\right)=\theta_{A}\left(d_{t}\right)^{2}$.
(iv) Let R denote the radical of $(\mathbb{O}) \otimes_{\mathbb{Z}} \Sigma_{A}(W)$. We only need to prove that $\mathbb{C} \otimes_{\mathbb{Z}} R=\mathbb{C} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta_{A}$. Since $\mathbb{C} \operatorname{Irr} W$ is a split semisimple commutative algebra, every subalgebra of $\mathbb{C} \operatorname{Irr} W$ is semisimple. So $\left(\mathbb{C} \otimes_{\mathbb{Z}} \Sigma_{A}(W)\right) /\left(\mathbb{C} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta_{A}\right)$ is a semisimple algebra. This shows that R is contained in $\mathbb{C} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta_{A}$. Moreover, since $\left(x_{t}-s_{s t s}\right)^{2}=\left(d_{t}-d_{\bar{t}}\right)^{2}=0, \operatorname{Ker} \theta_{A}$ is a nilpotent two-sided ideal of $\Sigma_{A}(W)$. So $\mathbb{C} \otimes_{\mathbb{Z}} \operatorname{Ker} \theta_{A}$ is contained in $\mathbb{C} \otimes_{\mathbb{Z}} R$. This shows (iv).
(v) If $m=2$, then $\operatorname{Irr} W=\left\{1, \gamma, \varepsilon \gamma, \varepsilon, \chi_{1}\right\}=\theta_{A}\left(\left\{1, d_{s}, d_{\bar{s}}, d_{A}, d_{t}\right\}\right)$ so θ_{A} is surjective. Conversely, if θ_{A} is surjective, then $|\operatorname{Irr} W|=5$ (by (i) and (iii)). Since $|\operatorname{Irr} W|=m+3$, this gives $m=2$.

We close this subsection by giving a complete set of orthogonal primitive idempotents for $\Sigma_{A}(W)$, extending to our case those given in [2]:

$$
\begin{gathered}
E_{\varnothing}=\frac{1}{4 m} x_{\varnothing}, \quad E_{s}=\frac{1}{2}\left(x_{s}-\frac{1}{2} x_{\varnothing}\right), \quad E_{t}=\frac{1}{2}\left(x_{t}-\frac{1}{2} x_{\varnothing}\right), \\
E_{\bar{s}}=\frac{1}{2}\left(x_{\bar{s}}-\frac{1}{2} x_{t}-\frac{1}{2} x_{s t s}+\frac{m-1}{2 m} x_{\varnothing}\right), \\
E_{A}=1-\frac{1}{2} x_{s}-\frac{1}{4} x_{t}+\frac{1}{4} x_{s t s}-\frac{1}{2} x_{\bar{s}}+\frac{1}{4} x_{\varnothing} .
\end{gathered}
$$

2.2 The Subset $B=\{s\} \cup C(t)$

Let $B=\{s\} \cup C(t)$ (so that $|B|=m+1$). It is easy to see that $\mathcal{P}_{\text {ad }}(B)$ consists of the sets

$$
\begin{gathered}
\varnothing=D_{B}(1), \quad B=D_{B}\left(w_{0}\right), \quad\{s\}=D_{B}(s), \quad C(t)=D_{B}\left(w_{0} s\right) \\
D_{B}\left((t s)^{i}\right)=D_{B}\left(s(t s)^{i}\right), \quad 1 \leq i \leq m-1 \\
D_{B}\left((s t)^{j}\right)=D_{B}\left((t s)^{j-1} t\right), \quad 1 \leq j \leq m-1 .
\end{gathered}
$$

Therefore $\mathcal{D}_{B}(W)$ is a subalgebra of $\mathbb{Z} W$ of \mathbb{Z}-rank $(2 m+2)$.
Using GAP, we can see that, in general, $\Sigma_{B}(W) \neq \mathcal{D}_{B}(W)$. First examples are given in the following table

m	2	3	4	5	6	7	8	9	10	11
ZZ-rank of $\mathcal{D}_{B}(W)$	6	8	10	12	14	16	18	20	22	24
Z-rank of $\Sigma_{B}(W)$	6	8	10	10	14	12	18	18	22	16

Remark 2.2 The linear map $\theta_{B}: \Sigma_{B}(W) \rightarrow \mathbb{Z} \operatorname{Irr} W, x_{I} \mapsto \operatorname{Ind}_{W_{I}}^{W} 1_{W_{I}}$, is welldefined and surjective if and only if $m \in\{2,3\}$ (recall that $m \geq 2$). Indeed, the image of θ_{B} cannot contain a non-rational character. But all characters of W are rational if and only if W is a Weyl group, that is, if and only if $2 m \in\{2,3,4,6\}$.

Moreover, if $m=2$, then $A=B$ and $\theta_{B}=\theta_{A}$ is surjective by Proposition 2.1. If $m=3$, then this follows from Proposition 2.3 below.

2.3 The Algebra $\mathcal{D}_{B}\left(G_{2}\right)$

From now on $m=3$, that is, W is of type $I_{2}(6)=G_{2}$. For convenience, we keep the same notation as in $\S 2.1$. We have

$$
\begin{array}{ll}
d_{\varnothing}=1, & d_{1}=d_{\{t\}}^{B}=t+s t, \\
d_{s}=s, & d_{2}=d_{\{s, s t s\}}^{B}=t s+s t s, \\
d_{\bar{s}}=d_{C(t)}^{B}=w_{0} s, & d_{3}=d_{\{s, s t, t s t s t\}}^{B}=t s t s+s t s t s, \\
d_{A}=d_{B}^{B}=w_{0}, & d_{4}=d_{\{t, t s t s\}}^{B}=t s t+s t s t .
\end{array}
$$

Let us now show that $\Sigma_{B}(W)=\mathcal{D}_{B}(W)$. First, it is easily seen that

$$
\mathcal{P}_{0}(B)=\{\varnothing,\{s\},\{t\},\{s t s\}, \bar{s},\{t s t s t\},\{s, t s t s t\}, B\}
$$

is the set of subsets I of B such that $W_{I} \cap B=I$ and that

$$
\begin{aligned}
x_{A}=x_{B} & =1 \\
x_{\overline{\bar{s}}} & =1+d_{s} \\
x_{\{s, t s t s t\}} & =1+d_{1} \\
x_{t s t s t} & =1+d_{s}+d_{1}+d_{2} \\
x_{t} & =1+d_{s}+d_{2}+d_{3} \\
x_{s t s} & =1+d_{s}+d_{1} \\
x_{s} & =1+d_{4} \\
x_{\varnothing} & =1+d_{s}+d_{1}+d_{2}+d_{3}+d_{4}+d_{\bar{s}}+d_{A}
\end{aligned}
$$

Therefore, $\Sigma_{B}(W)=\mathcal{D}_{B}(W)=\bigoplus_{I \in \mathcal{P}_{0}(B)} \mathbb{Z} x_{I}$. So we can define a map

$$
\theta_{B}: \Sigma_{B}(W) \rightarrow \mathbb{Z} \operatorname{Irr} W
$$

by $\theta_{B}\left(x_{I}\right)=\operatorname{Ind}_{W_{I}}^{W} 1_{W_{I}}$.

Proposition 2.3 Assume that $S=\{s, t\}$ with $s \neq t$, that $m(s, t)=6$ and that $B=\{s, t, s t s, t s t s t\}$. Then
(i) $\Sigma_{B}(W)=\mathcal{D}_{B}(W)$ is a subalgebra of $\mathbb{Z} W$ of \mathbb{Z}-rank 8.
(ii) θ_{B} is a surjective linear map (and not a morphism of algebras).
(iii) $\operatorname{Ker} \theta_{B}=\mathbb{Z}\left(x_{\text {tstst }}-x_{t}\right) \oplus \mathbb{Z}\left(x_{\text {tstst }}-x_{\text {sts }}\right)$.
(iv) $\operatorname{Irr} W=\theta_{B}\left(\left\{1, d_{s}, d_{\tilde{F}}, d_{A}, d_{1}, d_{2}\right\}\right)$.

Proof With computations similar to $\S 2.1$, we obtain the following table for the $\operatorname{map} \theta_{B}$.

d_{I}^{B}	1	d_{s}	$d_{\bar{s}}$	d_{A}	d_{1}	d_{2}	d_{3}	d_{4}
$\theta_{B}\left(d_{I}^{B}\right)$	1	$\varepsilon \gamma$	γ	ε	χ_{2}	χ_{1}	χ_{2}	χ_{1}

This shows (ii) and (iv). As $d_{1}-d_{3}=x_{\{t s t s t\}}-x_{t}$ and $d_{2}-d_{4}=x_{t s t s t}-x_{s t s}$, (iii) is proved. Finally, the fact that θ_{B} is not a morphism of algebras follows from $\theta_{B}\left(d_{1}^{2}\right)\left(w_{0}\right)=\left(1+\varepsilon \gamma+\chi_{1}\right)\left(w_{0}\right)=-2 \neq \theta_{B}\left(d_{1}\right)^{2}\left(w_{0}\right)=\chi_{2}\left(w_{0}\right)^{2}=4$.

Acknowledgment The author wishes to thank Cédric Bonnafé for fruitful and enriching conversations.

References

[1] M. D. Atkinson, A new proof of a theorem of Solomon, Bull. London Math. Soc. 18(1986), no. 4, 351-354.
[2] F. Bergeron, N. Bergeron, R. B. Howlett, and D. E. Taylor, A decomposition of the descent algebra of a finite Coxeter group, J. Algebraic Combin. 1(1992), no. 1, 23-44.
[3] C. Bonnafé and C. Hohlweg, Generalized descent algebra and construction of irreducible characters of hyperoctahedral groups, Ann. Inst. Fourier (Grenoble) 56(2006), no. 1, 131-181.
[4] N. Bourbaki, Éléments de mathématique, Chap. 4-6, Actualités Scientifiques et Industrielles 1337, Hermann, Paris, 1968.
[5] M. Geck and G. Pfeiffer, Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. London Mathematical Society Monographs 21, Oxford University Press, New York, 2000.
[6] J. E. Humphreys, Reflection Groups and Coxeter Groups. Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990.
[7] A. Jőllenbeck, Nichtkommutative Charaktertheorie der symmetrischen Gruppen. Bayreuth. Math. Schr. 56(1999), 1-41.
[8] R. Mantaci and C. Reutenauer, A generalization of Solomon's algebra for hyperoctahedral groups and other wreath products. Comm. Algebra 23(1995), no. 1, 27-56.
[9] P. Moszkowski, Généralisation d'une formule de Solomon relative à l'anneau de groupe d'un groupe de Coxeter. C. R. Acad. Sci. Paris Sér I Math. 309(1989), no. 8, 539-541.
[10] C. Reutenauer, Free Lie algebras, London Mathematical Society Monographs New Series 7 (1993).
[11] L. Solomon, A Mackey formula in the group ring of a Coxeter group. J. Algebra 41(1976), 255-264.
[12] J.-Y. Thibon, Lectures on noncommutative symmetric functions. In: Interaction of Combinatorics and Representation Theory. MSJ Mem. 11, Mathematical Society of Japan, Tokyo, 2001, pp. 39-94.
[13] J. Tits, Buildings of Spherical Type and Finite Bn-Pairs, Lecture Notes in Mathematics 386, Springer-Verlag, Berlin, 1974.

The Fields Institute
222 College Street
Toronto, ON
M5T 3J1
e-mail: chohlweg@fields.utoronto.ca

[^0]: Received by the editors September 1, 2005; revised February 9, 2006
 The author was partially supported by a Canada Research Chair.
 AMS subject classification: Primary: 20F55; secondary: 05E15.
 Keywords: Coxeter group, Solomon descent algebra, descent set.
 (C)Canadian Mathematical Society 2007.

