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MULTIPLIERS ON SPACES OF FUNCTIONS ON COMPACT GROUPS
WITH P-SUMMABLE FOURIER TRANSFORMS

SANJIV KUMAR GUPTA, SHOBHA MADAN AND U.B. TEWARI

Let G be a compact abelian group with dual group F. For 1 ̂  p < oo, denote
by AP(G) the space of integrable functions on G whose Fourier transforms belong
to l p (r) . We investigate several problems related to multipliers from AP(G) to
Aq(G). In particular, we prove that (Ap, Ap) £ f") (Aq, Aq). For the circle

group, we characterise permutation invariant multipliers from Ap to Ar for 1

1. INTRODUCTION

Let G be a locally compact abelian group with dual F. For 1 ̂  p < oo, the space

Ap(G) is defined as:

= {f\fEL1{G),feV(T)}

with the norm \\f\\A = ||/|li,x + \\f\\ • Then Ap(G) is a commutative semi-simple
° II IITJP

Banach algebra with maximal ideal space F.

A function <j> on F is said to be a multiplier from Ap to Ar if <f>f € Ar for every

f & Ap. The set of multipliers from Ap to AT is denoted by (.Ap, AT). It is well-known

that a continuous linear operator T: Ap —* Ar commutes with translations in G if and

only if there exists a function ^ o n T such that (T/ ) A = <j>f V/ G Ap. We shall denote

by \\<f>\\ the operator norm of T. For a discussion of (Ap, Ar) multipliers, we refer to

the paper by Bloom and Bloom [1].

If G is non-compact, then (Ap, Ap) = M(G) [4]. For a compact group G, if

1 ^ p < 2, then (Ap, Ap) = £„>, since in this case Ap = lp(T). Further if r ̂  p, then

it is easy to see that (Ap, Ap) = (Ap, AT). Thus the cases of interest are when p > 2

and 1 ̂  r < p.

In [10] Tewari and Gupta proved that for 1 < r < p and 2 < p < oo
(a) (Ap, Ap) n C70(F) £ (Ar, Ar) n C0(F),
(b) \J(Ap,Ap)$(Ar,Ar).

r<p
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The following was stated as an open problem in [8].
If 2 < p < oo, is (Ap, Ap) £ f| (Ar, Ar)l

r<p

In this paper, we provide an afRrmative answer to this problem (Theorem 2.1).
In general, the multiplier spaces (Ap, Ar) are not known for all values of p and r,

p > 2. However it is easy to see that certain sequences spaces are contained in them
(see [1]).

If l ^ r ^ 2 , r < p , then clearly (̂rj>)/(p-r) Q (-̂ p> AT). However, for p > 2 it is
not known whether this contaiment is proper. In [10] it was shown that

(i) if a >(rp)/(p-r), then I, <£ (Ap, Ar), I ^ r ^ 2 < p < oo,
(ii) if s > (2p)/(p- 2), then I, <£ (Ap, Ar), 2 < r < p < oo.

Using the idea of the proof of Theorem 2.1, we improve this result in Theorem 2.3.
In the last section we study the space of permutation invariant multipliers H(Ap, AT)

for the circle group T. (A multiplier <f> £ {Ap, Ar) is said to be permutation invariant
if <j> o n G {Ap, Ar) for all permutations n of F). We show that i f l ^ r ^ 2 < p < o o
then £(rp)/(p-r) ifi precisely the set of permutation invariant multipliers from Ap to Ar.

We shall need some results on pointwise multipliers from tp(T) to £r(r) , were F
is discrete. The space M(£p, £r) of pointwise multipliers consists of functions <f> on F
such that <f>f G lr V/ G lp. Using the reverse Holder's inequality it is easy to see that

(i) M(ip, tT) = too it p^T,
(ii) M{tp, tr) = V) / (p- r ) »f P > r.

(see [1]).

2. PROPER INCLUSION IN (AP, -4,.)-SPACES

THEOREM 2 . 1 . Let G be a compact afaeifan group and p > 2. Tien

(Ap, AP) £ f| (Aq, Ap).
q<p

The proof of Theorem 2.1 depends on an interesting lemma about sequences spaces,
which may be of independent interest and is suggested by the equality

) , lr)=lp, 1 < r < P < 00.

We also use this lemma to improve certain results about (Ap, Ar) multipliers due
to Tewari and Gupta [10].

LEMMA 2 . 2 . Let I be an infinite set. Let 1 ^ r < p < oo and <f> G lp(I) be
such that 4> $ £q{I) for every q < p. Then there exists i/> G f] lt{I) such that

( ) / ( )
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PROOF: Clearly, we may assume \<f>\ ^ 1 on I. Fix a positive integer a > p/r.
Let qj = p — 1/j and choose mo G N such that qj > r for j ^ mo. Now define,
otj — (rqj)/(qj — r), j ^ mo. Then qj increases to p and a, decreases to {rp)/(p — r).
Let (an)^Lj be the support of (j>. Let no = 0 and choose ni > 1 such that

n = l

By induction, construct an increasing sequence (nj-)Jlj of integers such that

Define
<*n)| ' if o = an, T»J_I < n

o n / \ { a n } ~ = 1 .

Then if k ^ mo , we have

f= <

j—kn=nj + l

|^(an)|p < oo,

since a* is decreasing and \<j>\ ^ 1.
Therefore

n
*>(rp)/(p-r)

Next, to see that </nj) <£ £ r ( / ) , consider

f; î on)!- î (an)r = f; E
n=l j=l n=ny_

i=l n=ny_j

since a > p/r, and so r + pr/ctj < qj, Vj ^ 1.

This completes the proof of the lemma. U
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PROOF OF THEOREM 2.1: Since {) Aq £ Ap [9], there exists f £ Ap such that

/ ^ lq for every q < p. Let <j> — f. Then 4> satisfies the conditions of Lemma 2.2

with r = 2. Hence there exists ij> £ f| £t such that 4np $ £2. For 2 < q < p ,

we have (2g)/(? - 2) > (2p)/(p - 2), so that f| *t = fl ^(2,)/(«-a) • Hence
*>(2p)/(p-2) P>9>2

Since ^/» ̂  ^2) there exists a function e on F whose range is contained in {±1}

such that £<fnj> £ (-^1)A [2, Theorem 1.1]. Then ei/> belongs to f|

P| (Aq, Aq), and c0 ̂  (-^pi ^«)- This completes the proof of the theorem. D
p>?>2

We now use Lemma 2.2 to improve some results of [10] mentioned in the introduc-

tion.

THEOREM 2 . 3 . Let G be an infinite compact abeiian group. Then

(a) f| * » £ U P > J 4 r ) , K r < 2 < p < o o .
»>(T)/(P-'-)

(b) fl * « £ U P , A r ) , 2 < r < p < oo.
(

PROOF: (a) Since (J Aq ̂  J4 P ) there exists / £ J4P such that f £ £q for every
9<9

q < p. Hence by Lemma 2.2 we get rj> £ f] I, such that rf>f ^ i r . Thus
l>i(Ap,Ar). .Xn-)/(P-r)

(b) Using (a) for r = 2 we get <j> E. P| ^j such that <f> ^ (^4.p, -4.2). Hence

there exists / € Ap such that ^ / ^ 4 • Now there exists a function e defined on

F with range in {±1} such that e<j>f ^ {L1) • Hence e<j> £ (Ap, Ar) and e<f> €

n t.. D

It was mentioned in the introduction that i f l ^ r ^ 2 < p < o o then the proper

containment of ̂ (Pp)/(p_r) in (Ap, Ar) is not known. In Theorem 2.4 below, we give a

sufficient condition on a multiplier <j> 6 (AP(T), Ar(T)) so that <f> 6 £(rj,)/(p_r)(Z).

It is easy to see that for r < 2, <j> G (i4p, ^4,.) if and only if \<f>\ € (Ap, Ar). Further

<f> e (Ap, Ar) if and only if ̂ (7) = 4>(l) + <£(~7) € (^4P, A r ) . Therefore it is sufficient

to characterise non-negative, even multipliers from J4P to A r . D

THEOREM 2 . 4 . Let l ^ r ^ 2 < p < o o and let <f> be a non-negative, even

sequence on Z such that <f>(n + 1) ^ <f>(n), n > 0. Then <j> E (AP(T), Ar(T)) if and

only if <f> G ^ ( p r ) / ( p _ r ) (Z) .

PROOF: If <f> G ^(rp)/(p-r)i clearly ^ G (Ap, ^4P). For the converse, let tf> £
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(AP{T), AT(T)). We may assume that <f>(0) = 0. Let

r/(p-r)

* . ( » ) = ( 0

on [—m, m\

otherwise.

Then

(2-5) \\Wm\\iT

Now by [3, 7.3.3]

(2.6) lhM|Ll4C
n=l

\n=l /

Also,

m tr ~ v hi n )

\n=l

Hence, combining (2.5)-(2.7) we get

/' f / m

( £ (0(j

It follows that

where the constant C7' is independent of m. Hence ^ G £p r /(p_r)(Z). This completes

the proof of the theorem. D
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3. PERMUTATION INVARIANT MULTIPLIERS FROM AP TO AT

In this section we study permutation invariant multipliers from Ap to AT on the
circle group. In general, as we have already seen, if p ^ 2, then (Ap, Ar) = 1,^/^-^
if r < p and (Ap, Ar) — 1^ if r ^ p. Therefore we assume that p > 2. The following
theorem completely characterises H(Ap(T), AT(T)), l ^ r ^ 2 < p < o o .

THEOREM 3 . 1 . Let 1 ^ r ^ 2 < p < oo, tAen

£pr/(p_r)(Z) = U(AP(T), Ar(T)).

The proof of the above theorem depends on the following lemma:

LEMMA 3 . 2 . Let 2 < p < oo and (a(n)) G ip{Z) be such that a(n) > 0 and
a(n) = a(—n) Vn S N. Then there exists a permutation n of Z sucA tiat a o 7r(n) G

PROOF: Let T bea permutation of N such that aon is decreasing on N. Extend tr
to Z by defining 7r(-n) - -ir(n) Vn G N and TT(O) = 0. We show that OOTT G (X1(T))A.
Clearly, a o ?r(n) ^ 0, o o 7r(n) = a o 7r(-ra) Vn 6 N and a o n(n) decreases to zero on
N. Also,

< oo.
n. \ ^—' * • " / \ ^ - ^ ' ;

71=1

Therefore by [3, 7.3.3] a o TT G (

This completes the proof of the lemma. u

PROOF OF THEOREM 3.1: It is clear that £pr/(p_P)(Z) C U(Ap(T), Ar(T)). Con-
versely, suppose (a(n)) (£ €pr/(p_r)(Z) = M(tp(Z), £r(Z)), then there exists a sequence
(6(n)) G ^p(Z) such that (o(n)6(n)) does not belong to 4 (Z) .

Define

c{n) = max (± + \b{n)\, ± + |6(-n)|).

Then (c(n)) G ^P(Z), and (a(n)c(n)) g ^r(Z). Also (c(n)) satisfies the condi-

tions of Lemma 3.2, hence there exists a permutation n of Z such that (c o 7r(n)) G

(X1(T))A. Therefore (c o 7r(n)) G 1P(T). It follows that a o TT g ( ^ ( T ) , Ar(T)) as

(a o 7r(n) c o 7r(n)) ^ £r(Z).

This completes the proof of the theorem. D

In the case 2 < r < p < o o w e are not able to characterise H(Ap(T), Ar(T)).

Observe that if p > 2, then ^p/^p-i) £ n(-4j>> Ap) since the constant function 1 on
F belongs to n(j4p, Ap). We prove the following theorem, characterising a subclass of
U(Ap(T),Ar(T)).
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THEOREM 3 . 3 . Let 2 < r ^ p < oo. If (a(n)) is a sequence on Z such that
{a{n)e(n)) £ U(AP(T), Ar(T)) for every sequence (e(n))neZ, e(n) = ± 1 , then {a(n)) £

PROOF: If on the contrary (a(n)) £ £2p/(P-2)(Z) = M(lp(Z), £2(Z)), then there
exists a sequence (d(n)) £ £P(Z) such that d(n) ^ 0, d(n) = d(-n) , d(n) ^ 0 Vn £ N
and (a(n)d(n)) $ ^(N). By Lemma 3.2, there exists a permutation 7r of Z such
that (tfo7r(n)) £ Ap(T). Since (a o 7r(n) d o 7r(n)) ^ ^ (Z) , therefore there exists a
sequence (e(rc))n€Z'e(n) = ±1 , such that (e(n)a o 7r(n)<£ o ir(n)) ^ (LX(T)) . Hence
(a(n)e(n)) g H(>lp(r), Ar(r)) , a contradiction.

This completes the proof of the theorem. U

REMARK 3.4. Lemma 3.2 can be viewed as an intermediate result between the follow-
ing:

(i) (Helgason [5]): Let G be a compact abelian group and <f> a function on F.
Then <f> £ £2 if and only if tf> o ir £ L1 for every permutation ir of V.

(ii) (Kahane [7]): There exists a sequence <j> £ C0(Z) such that <j> o n <£ (i1(T))A

for any permutation n of Z.
The proof of Helgason's result gives the following result about {Ap, A,,)-multipliers:

THEOREM 3 . 5 . (a.) Let p > 2 and <£ £ E(Ap, Ap) n Co. Then there exists a
permutation TT 0/ F such that <f> o 7r £ (A.p, .A2).

(bj n ( £ 1
) L 1 ) n C o = £ 2 .

PROOF: (a) Let E = {7 £ F | ^(7) ^ 0}. Since <j> € Co, E is countable. If £ is
finite then (̂  o 7r £ (Ap, A2) for every permutation 7r of F. So we assume that E is
infinite. Let E\ be an infinite subset of E such that

(3.7) £ \<K-r)\2p/{p-2) < 00.

Let E2 = E \ E\. If 2?2 is finite then for every permutation ir of F <}> o ir £ ^2p/(j>-2) ^
(i4p, J42). So we assume that E2 is infinite. Choose a countably infinite A2 subset F\
of F [6] and define F2 = F\.Fi. Let 7r be a permutation of F mapping F\ onto E2 • We
claim that <j> o ?r £ (Ap, i42). Let / £ Ap. Since ^ o TT £ (Ap, i4p), 'g = (^ o TT)/ £ Ap.
Using Holder's inequality and (3.7), we get

<oo,

since for 7 £ .F2 <£(7r(7)) 7̂  0 only if ^(7) £ E\. Hence there exists an h £ L2 such
that

• T ( 7 ) / ( 7 ) ,

0, otherwise.-i
https://doi.org/10.1017/S0004972700015264 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700015264


442 S.K. Gupta, S. Madan and U.B. Tewari [8]

Now g - he Ll
Fl . Since Ft is a A2 set, we have g - h € L2 [6]. Therefore, g £ L2.

(b) In this case we choose the set E\ C E such that

Then proceeding as above we see that <j>oir £ (L1, L2) = £2 [6]. Hence <j> & I2. Q
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