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Introduction

The following pages have been written in consequence of reading
some paragraphs by Reye1, in which he obtains, from a quartic
surface, a chain of contravariant quartic envelopes and of covariant
quartic loci. This chain is, in general, unending; but Reye at once
foresaw the possibility of the quartic surface being such that the
chain would be periodic. The only example which he gave of
periodicity being realised was that in which the quartic surface was a
repeated quadric. It is reasonable to suppose that, had he been able
to do so, he would have chosen some surface which had the periodic
property without being degenerate; in the present note two such
surfaces are signalised.

In § 1 we define, for a form of any even degree in any number of
variables, the contravariant which is the generalisation of Reye's
contravariant of a quartic surface, and we allude to the question of
periodicity in § 2. The periodicity of a certain quartic surface is then
established in § 3. The periodicity of a second quartic surface is
established by a different method in § 6; this method makes use of a
new definition of Reye's contravariant, and this definition is obtained
in §5.

1. The polar forms of order p of a form F of order 2p in n
variables are linear combinations of its different pth. derivatives.

When these derivatives, ,—t—-,--~ in number, are written beneath
(n — 1)1 pi

one another in successive rows, the coefficients of the homogeneous
products of degree p in the variables xt form a square matrix /JL. The
number of polar forms of order p which are linearly independent is
equal to the rank of fi, and it is supposed that /x has its full rank, so
that its determinant, which is an invariant of F, does not vanish.

1 Journal fiir Math. 82 (1877), litti.
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74 W. L. EDGE

It is convenient to clear up two points, and thereby ensure that
/j. is symmetric.

In the first place, while the sequence in which the derivatives of
F follow one another may be chosen arbitrarily, it is supposed that
the homogeneous products of degree p follow one another in the
sequence which corresponds exactly to that chosen for the derivatives.

This matching of the two sequences, one of the derivatives.and
one of the homogeneous products, does not of itself secure the
symmetry of p; it has to be supplemented by a rule concerning the
coefficients. We suppose F to be written out with the appropriate
multinomial multipliers preceding its literal coefficients. Then, if the
^th derivatives are each multiplied by p\/(2p)\, they also will have
appropriate multinomial multipliers, appropriate, that is, to forms of
order p. To form the matrix /x we take constant multiples (1) of these
derivatives and select from them the coefficients of certain constant
multiples (2) of the homogeneous products, observing the following
rule : if

dx;n [ y\ dx[i dx£ dx;tn

and C'hi2 in x{i xl
& x^ (2)

are a polar form and its associated homogeneous product, then, for
all values of the i's such that i1 + i2 + . . . . + in = p,

ri>
^2 'n U»2 >n ~ A

P-

Then fx. is a symmetric matrix.
This being so, let /x be bordered by a row and column consisting

of the homogeneous products, of degree p, of variables ui contra-
gredient to the xt; the sequence of products is again to correspond
exactly to that of the derivatives, and the coefficients which multiply
these products of contragredient variables are to be precisely those
numbers C which appear in (1). Then the determinant of this
bordered matrix is a contravariant1 R, of class 2p, of F.

While the coefficients in (1) and (2) may be arbitrary so long as
they satisfy (3), it is convenient, and adds to the symmetry, to fix

1 The proof of the invariance of | f- \ and of the contravariance of R, which has
been given in Proc. Royal Soc. Edinburgh, A 61 (1941), 157, for the case of p — 2, can
be carried over, with the few necessary verbal changes, to furnish a proof for any value
of p.
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them so that corresponding coefficients C and C" are always equal.
This will be done in what follows, so that now

ix\iz\....in\C)^_in = V\. (4)

2. When p = 1 the derivation of the contravariant R is familiar;
F = 0 is the equation of a quadric in point coordinates while R = 0 is
the equation of the same quadric in prime coordinates. If t h e
procedure dual to that by which JB was derived from F is now applied
to R, the resulting determinant has the value \JX\F, and we return
thereby to the equation of the quadric in point coordinates. Bu t
when p > 1 this phenomenon of periodicity no longer presents itself
unless F is particularised.

We suppose henceforward that p — 2, so that F = 0 is t h e
equation of a quartic locus and R = 0 the equation of a contravariant
quartic envelope. The dual procedure, applied to R, yields a second
quartic locus Fx = 0, a covariant of, and in general distinct from,
F = 0. What is the characteristic property which F must possess in
order that the two quartic loci, F = 0 and Fj = 0, should be the
same?

For n = 3 this question becomes an enquiry concerning plane
quartic curves, and was considered by Coble1. But, for n = 4, it was
surely in the mind of Reye when, in 1876, he wrote the paper
occupying pp. 173-206 of Vol. 82 of the Journal fur Math. Reye it
was who first found the contravariant R for a quartic surface, and he
immediately foresaw the possibility that the chain of quartic loci and
envelopes so derived from F might be periodic. Moreover he actually
demonstrated that F^ = 0 is the same surface as F = 0 when this
quartic surface is a repeated quadric2. In these pages, without
attempting to give a complete answer to the question, it is shown
that this happens also for two non-degenerate quartic surfaces:

(i) the surface x* + y4 4- z4 + t* + 12xyzt = 0,

(ii) the surface generated by the tangents of a twisted cubic.

1 Trans. American Math. Soc. 4 (1903), 65-85.

- The proof which Reye gives (p. 200) of this result in space of three dimensions is.
easily extended to give the corresponding result in space of any number of dimensions.
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II

3. We obtain the Reye contravariant, in contragredient variables
u, v, w, p of the quaternary form

RF = x* + y* -i- z4 -\-1* + \2xyzt

by direct evaluation of the determinant 2?.
Let the sequence of homogeneous products of degree 2 be

x2, y2, z2, I2, yz, zx, xy, xt, yt, zt;

the sequence of second derivatives of F must correspond with this.
Any arbitrariness in the choice of coefficients is removed by (4). If
we write T2 = 2 the seventh row, for example, of \x consists of the
coefficients of

x2, y", z-, t2, ryz, TZX, -rxy, rxl, ryt, rzt

in the quadratic form

2! d2F
4! dxdy

= TZt.

Thus

D _

u-

. rvw

. TWU

1 rUV

. rup
. rvp
. rwp

u2 v2 w2 p2 rvw TWU TUV rup rvp rwp .

If we expand, by Laplace's rule, on rows 5, 6, 7, 8, 9, 10 we
obtain, in addition to

P2

U ) '

only six non-vanishing terms, each of which is equal to r2uvwp*
Hence

R = u* + vi + w* + 2>k ~\
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Thus R is precisely the same function of u, v, w, p as F is of x, y,z,l;
and the covariant Flt derived from R by the process dual to that by
which R was derived from F, is identical with F itself.

It may also be easily verified that, if

F=axi + Py* + yz" + Si4 + 12Xxyzl,

then i? = aj3y§A° (a"1 w4 + jS"1 v4 + y - 1 ^ 4 + S-1^4 -f

and F1 = (a/?ySA6)«(aa;4 + fy* + Yz* + §<4

Thus here again Fx = 0 is the same surface as F = 0.
Perhaps a word may be interpolated as to why the particular

quartic surface F = x* + yi + z4 + t* + 12xyzt = 0 was selected. The
reason was that this surface is invariant for a large group of collinea-
tions1. Its Reye contravariant envelope, and the covariant surface
F1 = 0, must therefore be invariant for the same group; and so it
seemed, to say the least, extremely likely that the quartic surfaces
F — 0 and Fx = 0 might be the same.

I l l

4. The polar quadric of any point (X, Y, Z, T) with respect to the
quartic surface F (x, y, z, t) = 0 is

If (X, Y, Z, T) is constrained to lie on a quadric Q a linear
relation is thereby imposed on the squares and products of its four
coordinates; hence, as the point varies on Q, the quadrics (A) vary
within a linear system of freedom 8, and so are all outpolar to a
unique quadric envelope. This holds for any quadric Q. In
particular Q may be a repeated plane TT, in which case let the inpolar
envelope be called S; n does not, in general, belong to 2 ; the
envelope of those planes 77 which do belong to their associated
envelopes S is a contravariant of F. This is Reye's contravariant; and
it can be seen from Reye's work how to obtain the determinantal
form of its equation from this geometrical definition.

This definition of the contravariant, emerging, as it does, from
a (1, 1) correspondence between quadric loci and quadric envelopes
set up through the agency of the quartic surface, is an attractive one;
yet for some purposes it is profitable to use another which starts

1 Burnside : The Theory of Groups (Second Edition, Cambridge, 1911), 371, Ex. 6.

https://doi.org/10.1017/S0013091500024317 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024317


78 W. L. EDGE

immediately from the plane IT and which involves only linear systems
of quadrics.

5. If two points are given, F may be polarised in succession by
means of them; the order in which the two polarisations are carried
out is immaterial, since the same quadric is obtained. This quadric
is the mixed polar of the pair of points; in particular, were the two
points to coincide at P , the quadric would be the second polar of P
with respect to F = 0.

The mixed polar of any two points Plt P 2 that are conjugate
with respect to a quadric Q belongs to the pencil determined by the
second polars of the two points in which PiP 2 meets Q, and this
pencil is equally well determined by the mixed polars of any two pairs
of conjugate points on PyP2. There are oo5 pairs of points conjugate
with respect to Q; their mixed polars determine the same linear
system of quadrics as do the second polars of all the points of Q.

Now let Q be a repeated plane n. The a>5 pairs of points that
are conjugate for this degenerate quadric are got by pairing each of
the oo2 points of 77 with each of the oo3 points of space. The mixed
polar, however, of a pair of points being the polar quadric of either
with respect to the cubic surface which is the first polar of the other,
the 005 mixed polars are those quadrics which are the first polars of
all the points of space with respect to those cubic surfaces which are
themselves the first polars, with respect to F = 0, of the points of n.
If then there exists a quadric envelope 2 inpolar to all these oo5 mixed
polars, it must be inpolar to every first polar of each of the cubic
surfaces and so, to use the common idiom, inpolar to the cubic
surfaces themselves.

The existence and uniqueness of 2 follow, of course, from the
corresponding known results when Q is non-degenerate; but they can
be established independently by elementary considerations. For let
Plt P2, P3 be any three non-collinear points of TT; C]; C2, C3 the cubic
surfaces which are their respective first polars. The first polars of all
the points of space with respect to the cubic surfaces constitute three
linear systems ax, a2, a3, of quadrics, each of freedom 3. But any two
of a-y, a2, 0-3 have one quadric in common; the quadric common to a2

and a3> for example, is the mixed polar of P2 and P3, which is both
the first polar of P.z with respect to C3 and the first polar of P 3 with
respect to C2. I t follows that ou o2, a3 are contained in a linear
system of quadrics of freedom 8, and therefore tha t all their members
are outpolar to a unique quadric envelope S. Hence the alternative
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definition of R, established in its own right and independently of the
preceding one:

The first polars of the points of a plane IT with respect to F = 0
constitute a net of cubic surfaces, and there is a unique quadric envelope
S which is inpolar to them all. In general, -n does not belong to 2 ; the
envelope of those planes TT which do belong to their associated envelopes S
is Reye's contravariant.

This definition, and the descriptive argument by which it has
been established, can be at once extended to space of any number of
dimensions.

IV

6. Suppose now that F is the surface generated by the tangents of
a twisted cubic F. The net of first polars of the points of a plane n
is linearly dependent on the first polars of the three intersections
Pit P^t Pa °f •"• w ' th F. Let Px and P2 be the first and last vertices of
the tetrahedron of reference for a system of homogeneous coordinates
(x, y, z, t); this system can be set up so that F is given parametrically
by (8Z, 82(f)\/3, 8<f>2-\/3, <j>s). I t is not strictly necessary to introduce
the \ /3 here; but it has been done because its introduction gives a
consequent parametric form for the coordinates of an osculating
plane of F which is precisely the same as that for the coordinates of
a point of F.

The equation of F is

(yz - Zxtf = 4 (y2 - zxVV (z2 -

and the first polars of P± and P2 are

2z3 = 3V3 (yzt - xt2) and 2ys = 3^3 (xyz — xH).

I t is then found that those quadric envelopes which are inpolar to
both these cubic surfaces are obtained by varying the constants
a, jS, y i° ^ n e equation

a (t>V3 + 4ww) + /S (2vw + up) + y (w>V3 + ivp) = 0;

and that the quadric S which belongs to this net and which is inpolar
also to the first polar of the third intersection of TT, whose equation
may be taken as <f>y = 6z, with F is

d2 (vV3 + 4M>U) + 26cf> (2vw + up) + <f>2 («>V3 + *vp) = 0.

https://doi.org/10.1017/S0013091500024317 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500024317


80 W. L. EDGE

The condition for -n to belong to 2 is
e2(f>2 = o .

It follows that, if Pu P2, P3 are distinct points, -n cannot belong
to S. Therefore, first, the contravariant R does not vanish identically
and, secondly, it must be the envelope of those planes which touch F.
The surface enveloped by these planes has an equation, in plane
coordinates, obtained from the equation of F simply by writing
u, v, w, p instead of x, y, z, t respectively. And so, when the process
dual to that by which the envelope was obtained from F is applied
to the envelope, the result is to return to the quartic surface F.
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