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CORNER BEHAVIOR OF SOLUTIONS OF
SEMILINEAR DIRICHLET PROBLEMS

NEIL M. WIGLEY

1. Introduction. In recent years there has been considerable attention
paid to the behavior of solutions of elliptic boundary value problems in
domains with piecewise smooth boundary. In two dimensions the study
concerns the behavior of a solution near a corner, and in three (or more)
dimensions two cases have been given considerable attention: a conical
vertex on the boundary, or an edge.

The solution of such a problem may be singular at the nonsmooth
boundary points. The standard example in two dimensions is a solution
in polar coordinates of the Dirichlet problem near a corner of interior
angle ma;u = r'® sin 8/« is a function which is harmonic in the sector
0 < # < 7a, has zero boundary values near the corner, and yet at the
origin has unbounded derivatives of order > 1/a unless 1/a is an
integer.

In this paper we are interested in the asymptotic behavior, near a corner
of a plane domain, of solutions of a certain class of semilinear boundary
value problems. The solution is assumed to exist and be continuous in the
closed domain, and is also assumed to have homogeneous Dirichlet
boundary values near the corner.

A thorough survey paper on the subject of elliptic, parabolic and
hyperbolic boundary value problems in nonsmooth domains in two or
higher dimensions is that of Kondrat’ev and Oleinik [9]. The bibliography
contains 275 references, and the authors review what seems to be all of the
Russian literature on the subject as well as much of the rest.

A very general approach to the asymptotic behavior of solutions of
second or higher order elliptic boundary value problems in two or more
dimensions is given in [9] (see also [8] ). One considers a linear elliptic
boundary value problem in an angular (n = 2) or conical (n = 3) region.
One then changes to polar (spherical) coordinates with distance r to the
vertex, set 7 = log 1/r and finally one takes the Fourier transform with
respect to 7. This approach is very general and yields asymptotic
expansions for the solution in terms of r, log r and the angular
coordinates.

Another approach which is less general but yields stronger results, is
that of Lewy [14], and later Lehman [10, 11, 12]. In this method complex
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variables are used, so that one is limited to two dimensions. The solution is
expressed as an integral in terms of an appropriate Green’s Function. The
integral on the right hand side is then studied using two lemmas on
singular integrals which are originally due to Lewy, and asymptotic
expansions similar to those of Kondrat’ev are shown to exist.

The advantage of the Lewy-Lehman method is that the expansions are
differentiable, and thus can be inserted into the differential equation and
boundary conditions. This will yield the coefficients of the expansion in
most, but not all, cases. Another advantage is that the worst term (lowest
order) of an expansion, typically of the form o', gives an immediate
answer to questions concerning the belonging of the solution to various
Sobolev spaces.

The asymptotic behavior is also of use to the numerical analyst in
proving the order of convergence of a particular numerical scheme to the
actual solution (see, e.g., [16] ). And recently the author has come across a
method of calculating the coefficients of the asymptotic expansions in
certain special cases; the asymptotic estimates are then used to gain
improved numerical approximation to the solution. Results are, however,
still preliminary.

For another kind of application, to the design of ship propellers, see [5].
For surface waves see [10, 13}, and for plane gravity flows see [2, 3].

In this paper we shall extend the Lewy-Lehman technique to solutions
of the semilinear equation

Au = a(x, “)“x,“xj + a;(x, “)“x,. + a(x, u).

Our results are based on a theorem of Dziuk [4] which proves that, given
a certain semilinear elliptic inequality with homogeneous Dirichlet data, a
continuous solution is in fact Holder continuous (or better). This yields
the initial hypothesis for our inductive step which, in turn, yields the
asymptotic expansions.

For more nonlinear cases see [7, 15].

2. Notation. Let D be a domain in the z = x + iy plane part of whose
boundary consists of two open arcs I'; and I, which meet at the origin and
form there an interior angle 7a > 0. We assume that I'} (resp. I) is

tangent to the ray arg z = 0 (resp. = wa). We consider a solution
u e CD), u e COD U I U I, U {0}) of the semilinear elliptic
equation

2.1) Au = a;,(z, u)ui + a(z, wuu, + ay(z, u)ui
+ a1z, wu, + ay(z, u)uy + a(z, u)
for z € D, together with the Dirichlet boundary condition
u=20
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for z € I’} U I,. Our use of z for the ordered pair (x, y) is for convenience
and is not meant to imply analyticity of any functions (except the
conformal maps in Section 4).

It is assumed that T, € CV*M where N is a positive integer = 2 and
0 < A, < 1. In addition we shall require some regularity assumptions on
the coefficients a; ;» a; and a, which will be given in Section 3 and which are
(for @ < 1) somewhat weaker than belonging to CY~ 2*X in their
arguments. First, however, we shall define some norms, seminorms, and
error terms.

Let D, be the truncated domain D N {|z| < A} where 4 > 0. Let
P, Q € Dy U I UT,and let dp, dy denote their distances from the

corner, and set
dp o = min(dp, dy).

Let p € R and let k£ be a nonnegative integer. For 0 < A < 1 we set
[Flio” = [FI" = sup dy *|DFF(P) |

where the supremum is taken over all P € D, U I'| U I, and all
derivatives of order k. Next we set

sup s IDER) — DFQ)|
P — o
where the supremum is taken over all P, Q € D, U I} U I, such that

[F]( (D

Finally we define
k
FIi ™ = 2 [FI,
j=0

lF|( B IFI(_”) + [F](ﬁ").

The space of functions F for which |F l( M is finite shall be denoted
ChA = CK*A\p, U T U Ty

and we shall sometimes write
F(z) = 0k+)\(lﬂ)

asz— 0,z € D, U I} U I, This notation is in agreement with the usual
meaning of an error in the sense that

IDIF ) |/|z+~

is bounded as z = 0, z € D, U I U T, for any derivative D/F(z) of
order j, 0 = j = k. In addition we have a bound on the Holder constant
for D F (2).
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We write
z=ré? 2V = %% and logz = logr + if

where § = arg z, r = |z|. We shall say a function F(z) defined for z € D,
U I, U T, has an asymptotic expansion if there exists a polynomial

P(z, 7, 2V 7V, log z, log 7)
such that

F(z) = P(z,Z, 2% 2V% log z, log Z) + Oy, \(z")
for some u = 0, k = 0,0 < A < 1. This is, of course, equivalent to saying
that

F—Pe D, uT, ULy
It should be noted that if F is real-valued then the polynomial can be
rewritten as a polynomial in x, y, r'/® sin 8/a, r'/* cos 8/a, log r and 6, and
we may assume that each monomial tends to zero slower than |z|" as
z — 0 (other terms can be absorbed into the error term). It follows from
standard results on asymptotic series that P will be real-valued if F is.

Two kinds of polynomials shall be encountered. The first is the kind

studied in [11, 12, 13, 14, 17, 18, 19]. We say that F has an asymptotic
expansion of type I if

(1) for irrational a, no logarithmic terms appear in the polynomial P, so
that for some polynomial P,

F(z) = Py(z, 7, 2%, 2% + O, 1 \(2"):

(i) if « = p/q, a reduced fraction, then the logarithmic terms are
damped in the sense that there exists a polynomial P, such that

F(z) = P|(z, Z, Ve Fle 24 jog z, 79 log Z) + O, \(2").

The other type of expansion, which we shall call an expansion of type II,
only occurs when the quadratic terms in (2.1) actually appear, i.e.,
a; # 0. We say F(z) has an expansion of type II when there exists a
polynomial P, such that

F(z) = Py(z, 7, 2%, 2% V% log 2z, 7% log 2) + O, 1 \(2").

We have the following properties, proved in [19]:
1. The expansions can be differentiated formally, i.e., if

F(z) = P + Oy ("
then
D/F(z) = D'P + Op_; (2" 7))

for any partial derivative D/ with 0 = j = k.
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. . A . .
2. The expansions are unique modulo Cﬁ“‘, ie., if

F =P+ 044"

for i = 1, 2, then P, — P, € é‘ﬁ”‘. This means the coefficient of
monomials of P, — P, which vanish slower than |z|* as z — 0 must equal
zero.

3.1f F(z) = Oy 4\(2") and G(z) = O, (") then

F(2)G(z) = O; \(z"™).

In particular this means that products of expansions are also expan-
sions.

4. Let D) be a domain satisfying the same hypotheses as D, and let
G(z):Dy — Dj. Let

G(z) € CK*ND, UT, UT) and

F(z) € C"™NDp, U T U Iy).
If p > 0 and if 36 > 0 such that

IG(z)| = 8|z|* forz € D, UT, UT,
then

H(z) = F(G(z)) € E5N, u T, U Ty,

Thus sums, products and compositions of expansions also have expan-
sions. .

We shall frequently make use of the fact that the spaces Cﬁ”‘ are
decreasing as p, k or A increases.

3. Principal results. We shall now state the hypotheses on the co-
efficients and give the principal theorems.

First, assume that (2.1) is linear in u, and u, i.e., that a; = 0
for i, j = 1, 2. Then for some integers / = 0 and N = 2 and some A,
o< A< A% < 1, there shall exist type I polynomials P, P,, Q, and

. AN+A
R, (i=1,2,0 = k = [)such that for anyv € C, ""(D, U I} U I})),

where y = min (1, 1/a),

/
@@ @) = 2 Pp@)f + Oy 1@

] !
B.1) a(v(i)) =" 2 Pl + 27 X Q)
k=0 k=0

i
+ 2 Ry + Oy @V,
k=0
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For a <1 these requirements are met if a;(z, v) and a(z, v) belong to
CV2ND, X [—€ €]) for some € > 0.

If « = 1 then more regularity of a,(z, v) and a(z, v) in the variable v may
be required. The terms z'/*"! and '/*"! in the second equation are
included to accommodate a proof of the existence of expansions for
solutions of (2.1) with nonhomogeneous boundary conditions.

In the general quadratic case we require the existence of type 1 poly-
nomials PJ, P, Q;, R;(( P, Q. Riand S, (1, = 1,2,0 = k =)

such that for v € CY (y = min (1, 1/a)),
/

ayz,v(z)) = go Phv)* + Oy @ 72Y

I !

a(z,v(z)) = 277 X Pl + 27471 X obve)
k=0 k=0

(3.2)

/
+ 2 Rp@F + Oy (@Y
k=0
and

! /
a(Z, V(Z)) — 22/41‘2 kzo ka(z)k + zl/d‘lEl/a—] kEO ka(z)/\

! !
+ z¥a? kEO Ryv(z)* + kEO S(z) + Oy_ G 2.

Again, these hypotheses will be satisfied if

AN —
a, a;, a; € cy 2+>‘(DA X [—¢, €]) for some ¢ > 0.

We now state the main results. Throughout the paper the Holder
coefficient A will have (finitely many) restrictions put on it; to avoid the
use of subscripts we shall use the same symbol A to denote any one of the
various values.

THEOREM. 4 solution u € CX(D,) N C(D, U T, U T)) of ) in D,
satisfying homogeneous boundary values u = 0 on I and T, has an
asymptotic expansion

N+
)

B

u(z) = P(z,z, 2%, 2% log z, log Z) + On, (2

where P is a polynomial of type 11. If in addition (2.1) is linear in u, and u,
then P is of type I. '
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It should be noted that in a specific example where the coefficients are
specially given there may be much more information on the polynomial P;
see Section 9 for some examples.

4. Some lemmas. We now state some lemmas which will be needed
later.

LEMMA 4.1. Let { = G(z) be a conformal map of D onto the sector
0 < [§l < oo, 0 < arg { < ma such that G(0) = 0, arg G(z) = 0
if z € T\, and arg G(z) = ma if z € T,. Then G(z) has an asymptotic
expansion

G(z) = zN + Oy ("™

where N is a polynomial in z and z"* if « is irrational and in z, z''* and
z9log z if @« = p/q, a reduced fraction. In either case the constant term of
N is nonzero. A similar expansion (only the coefficients are different) holds
for z = G~ \(§) which is defined on the sector.

Proof. This lemma is the main theorem of [19], although the conclusion
was stated there in a weaker form. However, the hypothesis T; € CcVtN
implies the existence of an error term of the form ONH(zN *A) for
A< ()\’)2 and the proof follows from the arguments used in [19].

1/a

LEMMA 4.2. Let F(z) have an asymptotic expansion
F(z) = N + Opip("

where N is a polynomial of type 1 or type 11 with nonvanishing constant term.
If v is a real number then F(z)' and log F(z) also have asymptotic
expansions of the form P + O, ,\(z") where P is of the same type (i.e., type
or II) as N.

Proof. This follows directly from the Taylor series for A({) = (1 + {)Y
and A(§) = log(1 + ).

LEMMA 4.3. Let F(z) have an asymptotic expansion
F(z) = P + Oy 42"
of type 1 or type 11. Then f(§) = F(GA'(K)) also has an expansion
f@&) = P+ 0, \($H
where P, is a polynomial of the same type as P. The converse is also true, i.e.,
if f has an expansion so does F(z) = f(G(z)).
S. Some preliminary growth estimates at the corner. In [4] Dziuk has
shown that a function u € C2(DA) N C(D,) satisfying

|Au| = alVu? + b in D,
u=0 onI}, UT,

https://doi.org/10.4153/CJM-1985-055-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1985-055-x

1032 NEIL M. WIGLEY

where a and b are constants, satisfies
u€ C"™D,)forany u € (0, 1),if 0 < a = 1/2,
5.1 ue cMV YD) if 1/2 < a < 1, and
ue COVYDHifl =a =2
In addition, if 1/2 < a = 2, then
(52) Vu@z)| = ol

aSZ——)O,Z S DA U FI U 1‘2.
We wish to conclude that, for any A with 0 < A < 1,

u(z) = O145\(2)if 0 < a < 1, and

u(z) = 0, \("if 1 = a = 2.

For 1 < a = 2 the coefficients are unbounded. However, the
transformation { = z'/% maps D, onto a domain with angle « = 1, and
transforms (2.1) to an equation with bounded coefficients and we get, with

UQ) = u(z),

U € % and VU = 0(1).
It follows directly that for 0 < A < 1
(5.4)  u(z) = Oy(z"™

forl < a = 2.

The estimate (5.3) follows directly from (5.1) if 0 < a = 1/2. For
1/2 < a = 2 we use (5.1) and (5.4) coupled with Lemma 5 of [4] and its
corollary together with Dziuk’s argument (although Dziuk used his
Lemma 5 only for 0 < a < 1).

At this point we could improve the estimates (5.3) to

ue CYND, U T, U Ty

(5.3)

(where y = min(l, 1/a)) by straightening out the boundary using its
parameterizations and then applying the boundary estimates of [1]. We
shall, however, use a conformal map for the straightening. This makes the
calculations somewhat simpler and does not cause any loss of generaliza-
tion as the methods of Section 8 do not generalize to higher dimensions.

6. Transformation to a sector. Let { = G(z) be the conformal map
discussed in Section 4. We define

UR) = U(G(2)) = u(z)

and observe that U({) = 0 for arg { = 0, 7a and 0 < |{| < B where B is a
small positive constant. Moreover, on 0 < arg { < 7a, 0 < [{| < B,

AUE) = A1 Ui + ApUU, + ApUs + A Up + A,Un + A,
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and we shall show that the coefficients satisfy the same hypotheses as
those of (2.1).
First we have, with { = § + in = M(z) + iN(z) = G(2),
A, UK)) = 16() |7 ayz, UM
+ ap(z, UMM, + ay(z, UYM;).
By property 4 of Section 2, and the results of Section 5,
UR) = 0, \¢", ¥ = min(l, 1/a).

By the lemmas of Section 4 it follows that 4,,({, U({)) satisfies, as a
function of ¢, the same hypotheses as were imposed in Section 3 on
ay(z, u(z) ). Similarly 4,, and A4,, satisfy the same hypotheses as do a,,
and a,,.

Next, we have

A& UK)) = 1G(2) | Hayz, UM, + ay(z, UM, }.
Since
2 =G &) = (N + 0y (@YY

where N is a type I polynomial with nonvanishing constant term, the
lemmas of Section 4 show that 4,({, U({) ) satisfies the same hypotheses as
does a(z, u(z) ). A similar argument holds for 4,($, U(S) ).

Finally,

AG UER)) = 1G(2) | %a(z, u(z))

and thus 4({, U({) ) satisfies the same hypotheses as does a(z, u(z) ).

Thus the problem for U({) in the sector 0 < arg { < 7wa, 0 < [{| < B, is
the same as the original problem for u(z) in D,. Moreover, by Lemma 4.3,
if the theorem is true for U({) then it will also be true for u(z). Thus for
the remainder of this paper we shall assume that I'; and I’, are segments of
straight lines.

7. More estimates at the corner. With y = min(1, 1/«), we have, from
Section 5,

u(z) = 0, ,4\2".
We wish to improve this to get
u(z) = Oy @M.

For this purpose we shall use a boundary estimate of Agmon, Douglis and
Nirenberg [1]. Let 2, be the semidisc

x—x)* +y*=RY, y=zo.

Let f be defined on =4. Let / be an integer = 2 and p an integer = —/. We
define
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[f),4 = sup d3"ID)f(P) |

where dp denotes the dlstance from P to the spherical part of the boundary
of Zp, namely (x — xO) +y? = R?%, y > 0. The supremum is taken over
all P € 2, and all /-th order derivatives. We define

s = 2 [f),.;

and
P) — Df(Q)]
P — o}

where the supremum is taken over P, Q € 25, 0 < 4|P — Q| < dp, dQ
and all /-th order derivatives. Finally, we set

U pron = 1y + Ul
LEMMA 7.1. Let u € C2+)‘(ER) and F € C[_ZH‘(ZR), and suppose
Bu(z) = F(z). z € S,

lrin = sup BN IDf(

and
u(x,0) =0, xg —R<x<xy; + R

Thenu € C' ”‘(2 r) and there exists a constant C depending only on [ and
such that

lulojon = CUIFly—gin + SUP [u(P)|).

We shall apply this estimate to the semidiscs Zgz:(x —x0)2 +y* = R,
y = 0, where R = x5 tan 6, 0 < x; < A — R, and § is a small fixed
positive number; these semidiscs cover the sector 0 < arg z << 8 for small
|z]. We set

(7.1) F(z) = a“u + apuu, + azzu + ayu, + ayu, + a.

We apply the inequality of Lemma 7.1 by considering the suprema of
the left hand side of the inequality only for P, Q € Zj,,. For such P and
Q we have

R/Zé dP,dQé R =than8.

Thus the quantities x;, R, and dp, dy are all proportional to one
another.
For / = 2 we have, from (7.1),

F(z) = O,(Z" 7.

Thus, from Lemma 7.1 we have
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u(z) = 0,,,3(2"
for 0 = arg z < §, where R/2 = x tan §,. It follows from (7.1) that
F(z) = 0,,\(77?)

for 0 = arg z < §,, and again by the lemma with R/2 replacing R, that
(provided N = 3)

u(z) = 05,,(2")

for 0 = arg z < §, where R/4 = Xx, tan §,. Continuing, we obtain
finally

u(z) = Oy, (2"

for 0 = arg z < 8y _,.
A similar argument yields

u(z) = Oy (2"

for ma — 8y_, < arg z = ma. To obtain the estimate on the interior
16,\,_2 =S argz = 7a — lSN,z
2 2

we apply the following interior estimate (e.g. Theorem 4.6 of [6]):

LEMMA 7.2. Let Q be a domain in R* and let u € CX(Q), F € CA(Q)
satisfy Au = F in Q. Then u € C>*NSQ) and for any two concentric discs

B, = {l|z — 2zl < R}and B, = {|z — z,| < 2R}

which lie at a positive distance from 3Q we have

|ID%u(P) — D'u(Q)
P - o

> |F(P) — F(Q)I)
P - of

where C depends only on \, the suprema on the left are taken over all second
derivatives of u and P, Q € B,, P # Q, and the suprema on the right are
taken over all P, Q € B,, P # Q.

We apply this lemma to u, Du, ..., D' %u, and f, Df, . . ., D'"*f and use
methods similar to those used above on the semidiscs, and finally conclude
that

2
20 R’ sup [D*u(P)| + R** sup
2

= C(sup |UP)| + sup |[F(P)| + 4R su

u(z) = Oy a(2")

for 0 = arg z = ma.
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8. An integral representation; obtaining the expansions. We apply
Green’s theorem to u(z) and the Green’s function (see [18] )
1 -
G(Z, {) _ __{1Og |zl/a _ {l/al _ log |zl/a _ g«l/al}
27
in the domain 8§ < arg { < ma, 0 < |8] < A to obtain

u(z) = /;m f: G(z, HAu($)pdpdp + ' (uaG - &)ds

E on
G au)
- —/l;|=8 (ua_n - G(T)_n_ ds

where ¢ = pe'®. The integral over |¢| = A is a difference p(z'/*) — p(z
of power series where p(z” %) converges for |z| < A. The integral over
|¢] = O tends to zero as § — 0, since for fixed z and |{| = 6.

1/a l/a)

Gz, O | = 08", lai G Y | = 06"
n

and u(z) = 0, ,5(z"), y = min(l, 1/a). Thus

T

4 1/ 1/
B.1) u@z) = _/0 /0 G(z, OF(pdpde + P(z"*) — p(z")

where F({) is the right hand side of (2.1) with z replaced by ¢.
To obtain the expansions we introduce the following notation. Let h(z)
be continuous on D U Iy U I}, and satisfy the estimate

h(z) = O(z")
asz—0,z € DU I U T, where p > —2. We define

Ta A
ann = [)° [} 6 onowdoas
The following lemmas are originally due to Lewy [14].

LEMMA 8.1. Let B and y be real numbers > —1 and let m and n be
nonnegative integers. Let

h(z) = zBEY(log z)"(log 2)".
Then
A(h, z) = PTYT2P(log z) + ZPTYT2P,(log 7)
+ AT polog z, log Z) + py(2V%) + pyEY)

for 0 = arg z = mwa, where P, and P, are polynomials of degree = m + n
if (B + v + 2)a is not an integer and of degree = m + n + 1 if
(B + v + 2)a is an integer; Py is a polynomial of degree = m in log z and of
degree = n in log z; and p, and p, are power series in their arguments which
converge for |z| < A.
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Proof. This is essentially Lemma 8.1 of [18].
LEMMA 8.2. Let p be a real number > —?2 which is not an integer and let |

be a nonnegative integer. Suppose
h(z) = O, \(2").
Then
Ah,z) = g + @) + 04 1A )

for 0 = arg z = ma, where q, and g, are polynomials in their arguments.

Proof. See Lemma 8.2 of [18], which is essentially Lewy’s original
lemma, and Lemma 5 of [19], which allows for the extra derivative in the

error term of A(h, z).
Proof of the main theorem. We set
®.1) F(z) = ay(z, u)ui + ay(z, wuu, + ay(z, u)uﬁ

+ ay(z, wu, + ay(z, uu, + a(z, u).

We insert the estimates
-1
u(z) = Oy (2", Vu = Oyn_ 15227

into the right hand side of (8.1). It follows that

(82) F(z) = Oy_ A7)
From Lemma 8.2 we get (assuming y # 1, 1/2)
u(z) = pye"?) + pyEY) + Oy in@™)

where p, and p, are polynomials. If 2y is an integer then the exponent
2y — 2 of (8.2) can be replaced by 2y — 2 — € and (8.3) then has
exponent 2y — e.

We break the rest of the proof into three cases.
Case 1. Let a; = 0 for i,j = 1, 2 and suppose a is irrational. Then the

expansions are supposed to contain only terms in z, Z, z ’® and 7'/*. For
k = 2 assume that we have, for some polynomial P,

u(z) = P(z, 7, 2%, 2% + Oy \(2F779).

Then

u, = 2P+ 2P+ Py Oy (@Y

where P; and P, are polynomials in z, Z, z'/* and 7V®. A similar expansion
holds for u,. Inserting these estimates into (8.1) and using (3.1) we see

that
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Au = F(z) = 2V/*7'p, + V/*71p, + P,
+ ONwl+>\(Zky+l/a—2*() + 0N—I+>\(ZN_2+ )\—y+l/a—£)
ky—1
+ Oy (@7

Recalling that y = min(1, 1/a) and that, in any error term, the exponent
can be replaced by any smaller exponent, we have

Au = 7Py + 207 Py + P+ Oy (KT
+ Oy @Y.
The monomials on the right are of the form
CZj—l+//azm+n/a, czj+//a2m*|+n/a

where j, [, m, n = 0. Using (8.1) and Lemma 8.1 we see that we must check
toseeif (j + 1 + //a + m + n/a)a is an integer. Since a is irrational this
is impossible, and thus no logarithmic terms are introduced. It follows
that

(83) u(z) = Pyz, 2, 2%, 270 + Oy @ VY + 0y (@YY

(if N — 2 + A is an integer we cannot apply Lemma 8.2 directly; but we
can replace A with A — € and (8.3) is valid for this smaller value of A).
If

k+ 1)y —e>N+ A

then the theorem is proved; otherwise we repeat the inductive step.
Case I1. Let a; = 0 and « = p/q, a reduced fraction. Assume that for
some k and e > 0

u(z) = P(z,z, 2% 7%, 29 log z, 77 log Z) + Oy (27 79).
Then
u, =z P+ 7Py + Pyt Oy (@Y

where Py, . .., P, have the same arguments as P. A similar expansion holds
for u,. Inserting these expansions into (8.1) and using (3.1) we get

Auz) = 27 'P + TP 4+ P+ Oy 1 n(E7179
+ ON_]+}\(ZN—2+)\+I/a—y)
or
Au(z)y =z ', + 2P + Oy (@179
+ ON_I+}\(ZN‘2+)\+I/L¥—Y).

The monomials on the right are of the form
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Czj—|+//lx(log Z)mzn+r/a(log Z)S
(or similar terms with z and Z interchanged) where /, m, r, s = 0 and
JZmg,n Zsq. If (j + 1 + n)ais an integer then we must show that
jtn+1=Zgm+s+1).

We have j + n = (m + s)q and we know that ¢ divides j + n + 1
since (p,q) = 1. Thusj + n + 1 = g(m + s + 1). Thus any new, higher
powers of the logarithms get multiplied by an appropriate power of z7 (or
z4). Finally, if either of the exponents ky — 1 —eorN —2 + A + 1/a —
v of the error terms is an integer, we can increase € or decrease A a small
amount. If

ky —1—e¢=N—2+ A,

the theorem is proved; otherwise we get the inductive hypothesis with k&
increased to k + 1.

Case I11. In this case we make no assumptions about the a;; (other than
(3.2) ) or the arithmetic nature of a. Assume for some k = 2 and ¢ > 0
that

u(z) = P(z, 7, 2% 2% 2V log 2, 7% log 7) + Op 4 A(Z779).
Then
u(z) = 2P+ VTP 4+ Py Oy (@Y

and similarly for u,. Inserting these estimates into (8.1) and using (3.2) we
obtain

(8.4) Au(z) = 2¥/*72p, + MelzVeTlp 4 F¥e"2p 4 Vet lp
+ TP 4 Oy YTV
+ Oy AV,
Monomials on the right are of the form (up to conjugates)
¥ *%(log 2)"z" " %(log Z)'.

From Lemma 8.2, new logarithmic terms can occur if k = —2 and n = 0;
k=n= —1;,0ork =2 0,n = —2. In these cases, however, we see from
(84)that/ = m + lorr = s + 1, so the new powers will be multiplied by
the appropriate powers of 2% or 7/ The induction step on the error
terms follows exactly as before.

9. Some examples.

Example 1. Let « = 1/2 and consider Au = 1/4é#* on 0 < 6 < 7/2,
u=0o0n6 = 0, 7/2, where B is a real constant. We write the differential
equation as
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(Bu)?

2!

+ ...

uz=eM =1+ Bu +

From u(z) = o(1) we get
uz =1+ o(l)
and from Lemmas 8.1 and 8.2
(9.1)  u(z) = a;z> + ayzz + a7 + bz’ log z + by log 7 + o(2%).
The differential equation yields
ay = P + o(1),ay = 1 + o(1),
so a, = 1. The boundary condition for § = 0 implies
0= (a; + ay + apr* + (b, + b)r* log r + o(r?),

soa, + a3 = —1,by, = —b,. On § = 7/2 we obtain

— (b + by log r + o(?)

and thus by = —2i/m, by = 2i/7.
Next, we have, from (9.1)

uz =P =1+ Blajz? + ayz + ...) + o(z?)
and from Lemmas 8.1 and 8.2 it follows that
u(z) = a]z2 + a2z + a322 + b,z2 log z + bzfz log z + c|z4
+ 27 + ¢32°22 + 270 + Tt + dy2* log 2
+ dyz’7 log z
+ dyz’7 log z + dyz°Z log 7 + dsz2 log Z
+ d674 logz + k]z4 log2 z + k224 log2 7 + o(z%).
From the differential equation and (9.1) we obtain
ay + 3¢, + 4c3zE2 + 3¢,2 + dy2*(3logz + 1)
+ 2dyzz(2 log z + 1) + 2dzz(2 log Z + 1) + dsz* (3 log Z
+ 1)
=1+ ,Balz2 + Bayzz + ,811372 + Bb,z2 log z
+ Bb,Z log Z + o(2%)

from which we get
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3¢, + dy = Bay, 4cy + 2dy + 2d, = Ba,, 3¢4 + ds = Bas,
3d, = Bb,, 4d; = 4d, = 0, and 3ds = Bb,.
Thus
dy = dy = 0, ¢c; = Bay/4 = /4,
dy = Bby/3 = —2Bi/3m, ds = 2Bi/3m,

and hence
1 1 . 1 .
= E(Bal —d,) = E,Ba1 + 2Bi/9m, ¢y = 5303 — 2Bi/9m,
together with
1 1
o T e= 3.3(01 ta) = —5/3-
From u = 0 on § = 0 we obtain
cp+t ety toytes=0,
d+dy,+dy+d, +ds+dg =0,
ki + k=0
and thus
ky= —ky, d +dy=—(d, +d5) =0
sody, = —d,, and
ey tes=—c3 —(cy+c¢)=—B/4+ B/3 = p/12.
From 6§ = 7 we get
ki +k,=0
d—dy +dy+dy —ds + dg + imlky — ky) =0
c,—cz+c3——c4+cs+%7(dl—d2+d3—d4+d5—d6)

2
- %(k, + k) = 0.

Thus
1
k] - k2 = ;((dz + d5) - (dl + d6)) = 0,

so k; = k, = 0. Moreover
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C2+C4:Cl +C3 +C5 +£§(2d| _2d2)

Thus
1 20i
d —dy = —(c + ¢4 — B/3) = 2
7 37
Thus
2
d—d —ay+ P,
37
Hence
2 _ o 2, D=
u(z) = ayz” + 2z + a3z7 — —(z"log z — z” log z)
T
2 1 2Bi
+ ot + et + ( Ba, + ﬁ) (—,303 - —'8—1)223
9 3 97
+ (B/4)°7 — 23—3’(z37 log z — 27 log ) + o(z%)
T
where a; + a; = —1,¢; + ¢5 = B/12. If in addition we assume that u(z)
is real, then a, and a; are conjugates as are ¢, and c¢5. Writing
1 ) 1 )
a = —< tai, ay= —7 — ai,
2 2

= B/24 + ¢i and c¢; = B/24 — ci

we see that the expansion with error term 0(24) has two unknown real
parameters a and c:

u(z) = —é(z2 + ) +ai( — )+ 2z
- —(z log z — 7 logz) + (B/24)(z +z ) + cz(z - _4)
- 2(232 + zE3) - (? B)z(z zZ — zZ7 ) + (/3/4)22?2

2Bi
- %(233 log z — 77 log z) + 0(z4).
T
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Any information on a and ¢ would have to come from global
considerations of the original boundary value problem.

Example 2. Let a be arbitrary and let
Au = |Vuf? = ui + “,3

on0 < 8 < ma,u = 0for § =0, ma. We rewrite the differential equation
as

Uz = Ul
We start with the expansion

u(z) = a2V + azfl/“ + o(z).

Fromu = 0 on § = 0 we have a, = —a,, and
U, = (a|/0‘)21/m‘I + o(z"*7h

©-2) _ _1/a—1 Va—1
u; = —(ay/ )z + o(z )

and thus
" — _ala2zl/a—l El/a—l + 0(22/01—2).

2z
a2

From the lemmas,
u(z) — al(zl/a _ El/a) + bIZZ/a + bzzl/a Zl/a + b322/a
+ ¢,z log z + ¢,7/* log T + o(z*).

From (9.2) and the differential equation we have

by 1a—1-1/a—1 a% 1/a—1z1/a—1 2/a—2
-5z z = ——=z z + o(z )
a a

and thus b, = —a?. From 6 = 0 we see

0 = (by + by + byy?™* + (c; + cr'®logr + o(*®),
whence ¢; = —c¢y, b + by = a%, and from § = 7a we obtain
0 = (b + by + by + imac, — ) *'*
+ (¢; + ) “log r + o(F¥™,
soc; + ¢ =0,¢, — ¢y =0, and thus
u(z) = a("* — 7% + b2V — alsV/egie
+ b7 + o(2¥Y).

Let us carry out one more step in the expansion. We have
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o= (/)27 + 2by/a) !

(a%/a)zl/d_lzl/a_l + 0(22/(1_1)’

S
I

(9.3) 3 B
u, = —(a;/a)2""* "' + 2by )7}
_ (a%/a)zl/azl/a—*l 4 0(22/01—1)’
and thus
_ _ 2a,b /g
Uy = —(a,/a)zz”" Izl/a=1 _ al2 1,2/a—151/a1

3
a e 2a,b e
+ ;Zl/a 122/01 1 + 12 321/01 122/01 1

a [44

3

a 1 /a— _
_ _;Z2/a Izl/a 1 + 0(23/01 2).

[4

By the lemmas
u(z) = al(zl/a — Flley 4 b,zz/"‘ _ a%zl/azl/a
+ b7 + o
(9.4) + szZ/aEl/a + 6321/07 2a
+ e + diz¥* log 2
+ &7 log Z + o(¥9).
The boundary conditions yield
ot teoteg=04d+d =0
—cp — ¢ — 3 — ¢y —ima(dy — dy) = 0,

and thus d; = d, = 0. Using (9.3), (9.4) and the differential equation we

have
2
a /e 2c 1 e 2c 19—
__;zl/a lzl/a 1 + _2222/01 lzl/a 1 4 _2321/01 lZZ/a 1
a a a
2 3
a IRy 1 e 2a,b a
_ __ézl/a IFl/a=1 4 2/a-1-l/a 1(_ 121 . _;)
44 44 44
1a—1=2/a—1( 2a;b; a? 3/a—2
+ 2z z — +t 5] + oz )
44 44
and
2¢, = —aya? + 2b)), 2¢; = ay(a® + 2b
2 = 1(ay 1) 2¢3 = ay(a) 3)-
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Finally, setting
ay = A, b, = A%/2 + B, by = 4%*/2 — B,
¢, =AB — C, ¢y = AB + C,

we obtain

2
u(z) — A(Zl/a —_ EI/(X) + (i + B)ZZ/(X — AZZI/aEl/a
2

A2
+ (— + B)zz/“
2
+ (4B — C)z3/a _ (A3 + AB)Z2/a2-|/a

+ (4 — AB):'°F* + (4B + CO)2'* + 0.

It may be observed that one can show inductively that logarithmic terms
will not appear in the expansion for any error term; in particular this
shows that u is infinitely differentiable at the origin if 1/a is an integer.
The last result could of course also be obtained by extending u to Rz\{O}
by reflection and then removing the singularity.
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