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1. Introduction. In the course of a study of commutator subgroups I. D. Macdonald
[1] presented the free nilpotent group G4 of class 2 on 4 generators as an example of a nilpotent
group whose commutator subgroup has elements that are not commutators. To demonstrate
this he proceeded as follows: let G4 = <a{, a2, a3, a4> and put cl7 = [ah aj\ for 1 ^ i < j' £ 4.
Then the relations in G4 are [c0-, ak~] = 1 for 1 ̂  i < j g 4 and 1 1 fc ̂  4, and their conse-
quences. Macdonald observed that an arbitrary commutator may be written as

[aVa?a?al\ aPM'a'M*-],
which simplifies to

n <#.
where 5tJ = afij — afi^ The indices 5tJ satisfy the relation

^12^34 —^13^24 + ^14^23 = 0- (1)

It follows that the element c13c2A in G4 (for which 8i2 = 5i4. = 523 = <534 = 0 and 513 = 52 4

= 1) is not a commutator.
This note was prompted by the discovery that relation (1) is not only necessary but also

sufficient for the element ITcfj-' to be a commutator in the group G4. We shall prove a general-
ization to finitely generated nilpotent groups of class 2. As an application we prove that if the
commutator subgroup G' of a group G is central in G and can be generated by one or two
elements, then every element of G' is a commutator. The case of cyclic commutator subgroups
was considered by Macdonald [2] by a different method. (He proved that G' is generated by a
commutator, but it is an immediate consequence that G' consists entirely of commutators.)

2. The main theorem. Throughout this section let G denote a nilpotent group of class 2
that is generated by elements alt..., an, which need not be independent. Put c(j- = [a,, aj\
for 1 ̂  i < jr g n. Then cn = c[jl. An element c of the commutator subgroup G' is ex-
pressible in the form

c = n ^ (2)
It is convenient to set dit = —8,j (and in particular 5n = 0) for all 1 ̂  /, j ^ n. We associate
with the expression (2) for the element c the n x n skew-symmetric matrix A = (<5,v). Put

A,™ = Sqrdst - 5qs5rt + dq,5rs (3)

whenever 1 ̂  q, r, s,t ^ n. The following rules are easily verified:

(a) If T is a transposition interchanging two of the symbols q, r, s, t, then

^qzrtsttt L*qr$f
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(b) If two of q, r, s, t are equal then Aqrs, = 0.
We have the following result.

THEOREM 1. The element c of G' as given by (2) is a commutator if the associated matrix A
satisfies

A,PS( = 0 for all l£q,r,s,t£n. (4)

REMARK. In view of properties (a) and (b), conditions (4) are equivalent to the conditions
\rst = 0 whenever l?^q<r<s<tS «• These conditions hold trivially when n £ 3, so a
special case of Theorem 1 is that C consists entirely of commutators whenever G can be
generated by not more than three elements.

Before proving Theorem 1 we shall establish the following lemma concerning the effect
that certain changes of generating set of G have on the representation of c as a product of
commutators. This will allow us to prove the existence of a presentation relative to which c is
clearly displayed as a commutator.

LEMMA 1. Consider the following types of "elementary" changes of generating sets ofG:

Type I (Transposition): a* = aixfor all i, where x is a transposition (kl), 1 ̂  k, I ^ n.
Type II (Inversion): a* = a^,af = ajor all i =£ k.
Type HI (Combination): a* = aka? (k / /, a an integer), a* = axfor all i ^ k.

Put cfj = [af, a*]. Let the element c of G' be expressible as

relative to the generating set {c^, 1 ̂  i < j :§ n} of G'. Then there exists an expression for c of
the form

c= n tf*.
where the entries of the corresponding skew-symmetric matrices A = (8^) and A* = (($,*•) are
related as follows:

Type I: 5% = 5iljt; in particular 8*, = 8,k = -8kl.
A* = A
L-1qrst l-lqxrTSZtV

Type II: 8*k = —5ik for all i; <!>*• = 5^ otherwise.

{1 if ke{q,r,s,t]

0 ifk${q,r,s,t}.

Type III: Sf, = 5n-(x5jk for all i, 5* = du when i,j # /.

A*rs, = A,rsf i/

https://doi.org/10.1017/S0017089500002688 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002688


A TEST FOR COMMUTATORS 33

In particular, if Aqrst = 0 always, then A*rst = 0 always.

Proof. Routine calculations, using well known relations such as [uv, w] = [u, w] [v, w]
that hold in nilpotent groups of class 2.

Let us say that the matrix A is equivalent to A if A is related to A through a finite sequence
of transformations of Types I, II and III. These transformations are clearly invertible, so we
are indeed dealing with an equivalence relation.

Proof of Theorem 1. The proof is by induction on n, the number of generators in the
generating set au ..., an of G. The theorem is trivially true when n = 1 or 2. So take G onn
generators, n ^ 3, and assume the validity of Theorem 1 for all nilpotent groups of class 2
defined on fewer than n generators. Let c be an element of G' as given by (2) and such that
\nt — 0 for a " 1 ̂  Q> r> s, t ^ n. We shall prove that c is a commutator. In view of the
induction hypothesis we may assume that c has the form

c= n - c t n <$}>,
where some 5kn is non-zero. Letrfbe the highest common factor of 5ln, 52n,..., <5n_ln) and put
8kn = dak for all 1 ̂  k g n — 1. Then there is a generating set au a2 an of Gn where in
particular

ax = a°'a°2
2 ... a"n"^ and an = an,

and this set is obtainable from au a2,..., an by a sequence of elementary changes of Types I,
II and III. Hence there exists a matrix A = (<5(J-) equivalent to A and a corresponding expression
for c of the form

c= n 3,",
where Sln = d and Skn = 0 for all 2 g k ^ n — 1. So

For the case n = 3 this gives c = Ci3cf'2
2 = [ a^ a2l2^3]» proving that c is a commutator.

Suppose then that n ^ 4. By Lemma 1, A,fS( = 0 for all 1 ̂ q,r,s,t ^n. In particular, let us
choose q, r, s and t such that q=l<r<s<n = t. Since <?*„ = 0 for 1 < k < n, we obtain
^in Ks = 0, and hence Srs = 0. Therefore

n - l

r — r
c ~ c

c
ln [[ j

which is clearly a commutator of the form [aux]. This completes the proof of Theorem 1.

3. Applications. We shall apply our test for commutators to prove the following result.

THEOREM 2. Suppose the commutator subgroup G' of a group G is central in G and gener-
ated by not more than two generators. Then every element ofG' is a commutator.
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Proof. The case G' a cyclic group. It is sufficient to consider G' of infinite order, for it is
easy to see that if G' is finite and cyclic then G is a homomorphic image of a nilpotent group of
class 2 with an infinite cyclic commutator subgroup. An alternative short proof is given by
Macdonald [2].

Suppose then that G' = <c>, an infinite cycle. On the assumption that G' does not consist
entirely of commutators, there exists a minimal positive integer y > 1 such that cT is a com-
mutator. Macdonald [2] showed that G' is then a two-generator group, G' = <cy, c*>, where
<5 > y> (<5. y) = 1 and there exist elements aua2,a3,aA in G such that

cy = [au a2] = c12, c* = [o3, a4] = c34. (5)

Put Cy = [aj( aj] for 1 ̂  i,; ^ 4. Since G' is cyclic there exist relations

cy = c™, i/ = 13,14,23 and 24. (6)

Moreover, from the minimality of y it follows that y divides y y in each case. To see this,
suppose for example that y13 = gy + r, where 0 < r < y. Then cr = [flj, a j * a 3 ] , which, being
a commutator, gives a contradiction. So we may write the relations (6) in the form

C13 = C12» C14 = C12> C23 = C12> C24 = C12- v)

We now regard G' as the commutator subgroup of the subgroup H = <fl1( a2, a3) a4> of G.
Consider the change of generators of H given by

Putting c,* = [a,*, a*], we have

, 12 — C 1 2 — c » C 1 3 — C 1 4 — i> C 2 3 — C 2 3 — C 1 2 ,

C24 — C24 — C12 > C34 ~ C

(8)

where 8* = 5+iy(a2<X3 — a ^ ) . Since (5,v) = 1 it follows that (<5*,y) = 1. Let /i and k be
integers such that hy+k5* = 1. Therefore

c = c^+w< = cScJiCcJartcJ^-y, (9)
and, by virtue of relations (8), the expression (9) for c is true for all integers A and fi. To com-
plete the proof we shall demonstrate the existence of integers X and fi that make the right-hand
side of (9) a commutator. We note that the matrix A* associated with the expression (9) for c
is such that

This can be made zero by choosing p = 1, X = (h—<x4)Ar. Indeed, we observe that

c C C C24C12 ~ L a l a 4 >a2a3J-

The case G" = <c, rf>. We shall first prove that G' is generated by two commutators. Put
D = <</>. Then GjD has cyclic commutator subgroup <cZ)> consisting of commutators, as has
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just been proved. So there exists an integer y such that cdy is a commutator in G. Now put
N = <a/y>. Then G/N has cyclic commutator subgroup <cW> and so there exists an integer p.
such that d{cdyy is a commutator in G. The commutators cd, d{cdyy generate G'.

Let us simplify the notation and take c and d to be commutators generating G'. We put

c = [a 1 ) a 2 ] = c l 2 , d = \_a3, a4] = c34,

and proceed to show that every element of G' is a commutator in the subgroup H of G generated
by a1>a2,a3,aA. As usual, put c,7 = [a,,a,]. There exist relations

C13 — C12C34> C14 — C12C34> C23 ~ C12C34> C24 ~ <"12C34- \lvJ

Suppose that not all f}( are zero. Suppose also that of all presentations of H by 4 generators
subject to relations of type (10) our presentation involves the numerically smallest possible non-
zero index of c34. By a relabelling of generators, if necessary, we can ensure that this index is pi.

We claim that fi1 divides p2. For if not, there exist q and r such that p2 = <7/?i+r>
0 < r < | /?! | . The Type III transformation a* = aA.a3

q, a* = ah i= 1,2,3, yields relations of
type (10) and including cj"4 = cf2

a'2c*4, and this contradicts the minimality of pt. By performing
a Type III transformation just described we may arrange that p2 — 0. Similar considerations
apply to j?3, which may be set to zero without affecting the values of fit or fi2.

Thus the relations (10) may be taken to be of the form

Ci3 = cftc5i. cl4 = c?2, c23 = c'l2, c24 = elicit. (11)

This form also applies (with /Jt = /?4 = 0) to the case that in (10) all /?; are zero.
Now let c be an arbitrary element of G'. Then there exist integers 5, e such that, for all

integers X and fi,

. (12)

Let A be the 4 x 4 matrix associated with the expression (12) for c. Then

A1234 = (S-(x2X-a3fi)e + Xn = n(X- a3e) - E(O.2X- 5),

and this can be made zero by choosing

Therefore the element c of G' is a commutator. (Using the above values it will be found that

an expression which would hardly have been discovered without an algorithmic approach.)
This completes the proof of Theorem 2.

Concerning generalizations of Theorem 2, we do not know whether the result extends to
rank 3 central commutator subgroups. In this direction Rodney [3] has shown that a. finite
commutator subgroup that is central and is generated by not more than 3 generators contains
commutators only. Finally, Theorem 2 does not extend to rank 4 commutator subgroups.
Consider the quotient group

GJR, where R = <c13,c14>.
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The commutator subgroup (GJR)' is torsion free and of rank 4. The element c12c3AR is not
a commutator, for no element c^c^c^c^ of G'A is a commutator. This follows from
Macdonald's argument.

I should like to acknowledge with thanks some stimulating discussions on the subject of
this note with David Rodney, at a time when he was my research student. He is presently at
the University of Ibadan.
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