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The objective of the present study is to provide a numerical database of thermal boundary
layers and to contribute to the understanding of the dynamics of passive scalars at
different Prandtl numbers. In this regard, a direct numerical simulation (DNS) of an
incompressible zero-pressure-gradient turbulent boundary layer is performed with the
Reynolds number based on momentum thickness Reθ ranging up to 1080. Four passive
scalars, characterized by the Prandtl numbers Pr = 1, 2, 4, 6 are simulated using the
pseudo-spectral code SIMSON (Chevalier et al., SIMSON : a pseudo-spectral solver for
incompressible boundary layer flows. Tech. Rep. TRITA-MEK 2007:07. KTH Mechanics,
Stockholm, Sweden, 2007). To the best of our knowledge, the present DNS provides
the thermal boundary layer with the highest Prandtl number available in the literature.
It corresponds to that of water at ∼24 ◦C, when the fluid temperature is considered as
a passive scalar. Turbulence statistics for the flow and thermal fields are computed and
compared with available numerical simulations at similar Reynolds numbers. The mean
flow and scalar profiles, root-mean-squared velocity and scalar fluctuations, turbulent heat
flux, turbulent Prandtl number and higher-order statistics agree well with the numerical
data reported in the literature. Furthermore, the pre-multiplied two-dimensional spectra of
the velocity and of the passive scalars are computed, providing a quantitative description of
the energy distribution at the different length scales for various wall-normal locations. The
energy distribution of the heat-flux fields at the wall is concentrated on longer temporal
structures with increasing Prandtl number. This is due to the thinner thermal boundary
layer as thermal diffusivity decreases and, thereby, the longer temporal structures exhibit
a different footprint at the wall.
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1. Introduction

Wall-bounded turbulence is a phenomenon of huge technological importance in many
industrial and environmental applications. Understanding and predicting the behaviour
of turbulent flows are critical in various fields, such as energy production, environmental
modelling and fluid-dynamics research. However, investigating turbulent flow in complex
geometries poses considerable challenges from both numerical and experimental
perspectives. For this reason, simpler geometries are chosen when the fundamental physics
of the flow is studied. One canonical flow case widely used in the literature is the boundary
layer developing on a flat surface (Spalart 1988; Schlatter et al. 2009). The spatially
evolving fully turbulent boundary layer has been studied using different experimental
techniques (Österlund 1999; Rahgozar, Maciel & Schlatter 2013; Shehzad et al. 2021)
with researchers constantly improving the measurement techniques (Örlü & Alfredsson
2010; Bailey et al. 2013; Vinuesa & Nagib 2016) to obtain reliable measurements at high
Reynolds numbers (Samie et al. 2018). At the same time, direct numerical investigations of
turbulent boundary layers have been performed in several studies (Spalart 1988; Ferrante
& Elghobashi 2005; Wu & Moin 2009; Simens et al. 2009; Schlatter et al. 2010)
implementing different solution methods for an increasing range of Reynolds numbers.
Given the resolution limitations of experimental techniques in capturing the near-wall
region of boundary-layer flow, direct numerical simulations (DNSs) have emerged as a
valuable tool for investigating the transport phenomena in turbulence (Araya & Castillo
2012). However, the applicability of DNS is currently constrained to low-Reynolds-number
flows due to its significant computational costs. Despite this limitation, DNS has proven
instrumental in the study of turbulent boundary layers. Further, not limited to canonical
flows, DNSs have been extended to more complex geometries such as airfoils (Vinuesa
et al. 2017). These simulations have not only led to detailed insights into velocity profiles,
turbulence statistics and the near-wall dynamics to name a few, but have also served as a
validation to experiments and thereby they have contributed to refining turbulence models,
establishing scaling laws and exploring turbulent coherent structures.

In practical engineering applications, the consideration of heat and mass transfer,
turbulent mixing, combustion and other related phenomena is crucial for understanding
and optimizing various systems (Kozuka, Seki & Kawamura 2009). In these scenarios,
scalar quantities such as temperature play a significant role and need to be accurately
simulated. Additionally, understanding and predicting the dynamics of passive scalars like
air and water pollutants play an important role in local and global environmental problems
(Kasagi & Iida 1999; Lazpita et al. 2022), as well as in the design of transport and energy
systems (Straub et al. 2019).

Several experimental studies (Kays 1972; Perry & Hoffmann 1976; Simonich &
Bradshaw 1978; Subramanian & Antonia 1981; Krishnamoorthy & Antonia 1987) have
analysed different aspects of heat transfer of passive scalars in turbulent boundary layers.
The investigation by Kays (1972) presented the variation of skin-friction coefficient and
Stanton number (which characterizes the ratio of the heat transfer into the fluid to the
thermal capacity of the fluid) in the boundary layer over a transpiring wall, with different
blowing and suction conditions for a constant free-stream velocity condition. They have
also discussed and proposed theoretical models to enable the prediction of heat transfer
in a turbulent boundary layer. A zero-pressure-gradient turbulent boundary layer with
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DNS of a ZPG TBL with passive scalars up to Pr = 6

constant wall-temperature conditions was set up by Perry & Hoffmann (1976), which
enabled them to test similarity relations between instantaneous heat and momentum fluxes.
Simonich & Bradshaw (1978) investigated the effects of free stream on heat transfer in
a turbulent boundary layer and reported an increase in Stanton number with respect to
free-stream turbulence. Subramanian & Antonia (1981) studied the effects of Reynolds
number in a turbulent boundary layer and reported the Kármán and additive constants in
the logarithmic law for velocity and temperature to be independent of Reynolds number.
Further, Krishnamoorthy & Antonia (1987) were able to measure the three components
of average temperature dissipation very close to the wall in a turbulent boundary layer,
in the effort to model turbulence for the computation of temperature fields. Thereby,
the heat-transfer behaviour has been a subject of continuous investigation from both
engineering and numerical-modelling perspectives.

In numerical investigations, the fluid temperature can be considered as a passive scalar,
provided that the buoyancy effects and the temperature dependence of fluid properties
are considered as negligible (Chandrasekhar 1961; Monin & Yaglom 1971). Note that the
passive scalar as simulated in the DNS is a diffusive contaminant in the fluid flow. Due to
its low concentration, it does not have an influence on the fluid but is influenced by the fluid
motion. Although the discussion of passive scalars is in the context of a thermal boundary
layer, it could very well be considered as a pollutant concentration, in which case the
Schmidt number would be the mass transfer analogous to the Prandtl number. Considering
the passive scalar to represent temperature, many DNS studies of turbulent scalar transport
have been performed to analyse the convective heat transfer between the fluid and solid
walls in spatially developing flows. Bell & Ferziger (1993) first performed the DNS
for a turbulent thermal boundary layer. Later, Kong, Choi & Lee (2000) performed a
DNS at a Prandtl number of Pr = 0.71 with different boundary conditions including
isothermal (Dirichlet) and isoflux (Neumann) conditions, for Reθ ranging between 300
and 420 (note that Reθ is the Reynolds number based on momentum thickness where
the momentum thickness quantifies the loss in momentum due to the presence of a
boundary layer). The Reynolds-number range was extended in the studies by Hattori,
Houra & Nagano (2007), who simulated Reθ from 1000 to 1200, at Pr = 0.71. At the
same time, the numerical investigations for Prandtl numbers up to Pr = 2 were performed
by Tohdoh, Iwamoto & Kawamura (2008) for a relatively lower Reynolds-number range,
up to Reθ = 420. The effect of different boundary conditions at Pr = 0.2, 0.71 and 2.0
in the Reynolds-number range of Reθ ∈ [350, 830] was reported by Li et al. (2009). The
thermal channel-flow simulations have been conducted at higher Prandtl numbers of 49
and low Re by Schwertfirm & Manhart (2007) and at a Pr of 10 and high Reynolds number
by Alcántara-Ávila & Hoyas (2021). However, the thermal turbulent boundary layers
have been only partially explored at a medium Prandtl number of 2 by Li et al. (2009)
owing to the significant computational cost associated with higher Pr. In this study, we
consider higher Prandtl numbers in a turbulent thermal boundary layer, reporting analyses
that are currently not available in the literature, according to the authors’ knowledge.
Thereby, the passive scalars at Pr = 1, 2, 4 and 6 are simulated for Reθ up to 1080
in a zero-pressure-gradient turbulent boundary layer using an isothermal wall boundary
condition.

The details of the simulation set-up are provided in § 2. The statistics obtained from
the simulation at different Prandtl numbers are compared with the data available in the
literature for the fully developed thermal turbulent boundary layer in § 3. Since the thermal
channel flow and thermal boundary layer exhibit similar behaviours in the near-wall
region, the statistical quantities of the channel flow reported in the literature are also
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compared with the thermal boundary layer quantities at similar Reynolds number. In § 4
we analyse the distribution of energy in different scales for the wall-heat-flux field and
wall-parallel fields at y+ = 15, 30 and 50 (where the superscript ‘+’ denotes scaling in
terms of friction velocity uτ , see § 2.4). The premultiplied two-dimensional power-spectral
density provides additional insight into the scalar transport at different Prandtl numbers.
Finally, a short summary of the observations discussed in this work is reported in § 5.

2. Methodology

2.1. Governing equations
A DNS of the zero-pressure-gradient (ZPG) turbulent boundary layer (TBL) is performed
using the pseudo-spectral code SIMSON (Chevalier et al. 2007). The code solves
the governing equations in non-dimensional form (here, written in index notation), in
particular the flow and scalar variables are non-dimensionalized as

x̃j = xj

δ∗
0
, Ũj = Uj

U∞
, t̃ = tU∞

δ∗
0

, P̃ = P
ρU2∞

, Θ̃i = Θi − Θi,w

Θi,∞ − Θi,w
, (2.1a–e)

where (x1, x2, x3) = (x, y, z) are the Cartesian coordinates in the streamwise, wall-normal
and spanwise directions, respectively, and t denotes the time. The length scale used for
the non-dimensionalization is the displacement thickness at x = 0 and t = 0, denoted by
δ∗

0 . The corresponding instantaneous velocity components are denoted by (U1, U2, U3) =
(U, V, W) with the mean quantities identified by (〈U〉 , 〈V〉 , 〈W〉) and the fluctuations
by (u, v, w). Here U∞ is the undisturbed laminar free-stream velocity at x = 0 and time
t = 0. The total pressure is denoted by P and the density and kinematic viscosity of
the fluid are represented by ρ and ν, respectively. In this study, four different passive
scalars (Θ1, Θ2, Θ3, Θ4) are simulated at different Prandtl numbers (Pr = 1, 2, 4, 6),
respectively. Here, Θi,∞, Θi,w correspond to the ith scalar concentration in the free
stream and at the wall, respectively, with the mean quantities indicated by 〈Θi〉 and the
corresponding fluctuations by θi, i ∈ [1, 2, 3, 4]. The superscript ·̃ introduced in (2.1a–e)
identifies a non-dimensional variable and it shall be dropped in the non-dimensional
quantities for the rest of the sections for simplicity.

The non-dimensional form of the incompressible Navier–Stokes equation and the
transport equation for passive scalars are given by

∂Uj

∂xj
= 0, (2.2)

∂Uj

∂t
+ Uk

∂Uj

∂xk
= − ∂P

∂xj
+ 1

Reδ∗
0

∂2Uj

∂xk∂xk
+ Fj, (2.3)

∂Θi

∂t
+ Uk

∂Θi

∂xk
= 1

Reδ∗
0
Pr

∂2Θi

∂xk∂xk
+ FΘi, (2.4)

where Reδ∗
0

identifies the Reynolds number based on the free-stream velocity (U∞) and
the displacement thickness at the inlet (δ∗

0). The product of the Reynolds number based on
free-stream velocity and the Prandtl number results in another non-dimensional number,
called the Péclet number (Pe = Reδ∗

0
Pr), which measures the ratio between the scalar

convective transport and the scalar molecular diffusion. Here, Fj and FΘi correspond to the
volume force terms for the velocity and passive scalars, respectively. The velocity–vorticity
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formulation of the incompressible Navier–Stokes equation is implemented in the solver as
the divergence-free condition is implicitly satisfied by the formulation.

2.2. Boundary conditions
Having defined the governing equations, the problem definition is completed by providing
appropriate boundary conditions. At the wall, the velocity of the fluid is the same as that
of the solid surface and is given by the following no-slip and no-penetration boundary
conditions:

U|y=0 = 0, V|y=0 = 0, W|y=0 = 0. (2.5a–c)

From the continuity equation, we also obtain

∂V
∂y

∣∣∣∣
y=0

= 0. (2.6)

The flow is assumed to extend to an infinite distance perpendicular to the plate, but
discretizing an infinite domain is not feasible. Hence, a finite domain has to be considered,
for which artificial boundary conditions have to be applied. A simple Dirichlet condition
can be considered; however, the desired flow solution generally contains a disturbance
that would be forced to zero. This would introduce an error due to the increased damping
of the disturbances in the boundary layer (Lundbladh et al. 1999). An improvement to
the aforementioned boundary condition can be made by using the Neumann boundary
condition given by

∂Uj

∂y

∣∣∣∣
y=yL

= ∂Uj

∂y

∣∣∣∣
y=yL

, (2.7)

where yL is the height of the solution domain in the wall-normal direction in physical space
and Ui is the laminar base flow that is chosen as the Blasius flow for the present study. For
the passive scalars a constant (isothermal) wall boundary condition is applied, as given by

Θi|y=0 = Θi,w = 0, (2.8)

which corresponds to a vanishing thermal-activity ratio K. The thermal-activity ratio
defines the ratio between the fluid density, thermal conductivity and specific heat capacity
and the same properties of the boundary surface as defined below

K =
√

ρkCp

ρwkwCp,w
. (2.9)

Here, ρw, kw and Cp,w correspond to the density, thermal conductivity and specific heat
capacity of the wall. The isothermal wall boundary condition corresponds to the fluid that
exchanges heat with the boundary surface, without modifying the wall temperature. The
boundary condition in the free stream is given by

Θi|y=yL = Θi,∞ = 1. (2.10)

2.3. Numerical scheme
The DNS is performed with a pseudo-spectral method, where Fourier expansions are
used in the streamwise and spanwise directions and Chebyshev polynomials Tk(ξ) (on
−1 ≤ ξ ≤ 1) are used in the wall-normal direction employing the Chebyshev-tau method
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for faster convergence rates. The time advancement is performed using the second-order
Crank–Nicholson scheme for linear terms and the third-order Runge–Kutta method for
nonlinear terms, with a constant time step 
t. The maximum Courant number is set to
0.6. The nonlinear terms are calculated in physical space and the aliasing errors in the
evaluation of these terms are removed by the 3/2 rule.

Since the TBL is developing in x, the periodic boundary condition cannot be directly
used in this particular direction, which requires a specific numerical treatment. In this
regard, one approach is to impose an appropriate instantaneous velocity and scalar profile
at the inlet for every time step. Assuming self-similarity of the flow in the streamwise
direction, Lund, Wu & Squires (1998) proposed a rescaling–recycling method to generate
the required inlet profiles based on the solution downstream. An alternative approach is the
addition of the fringe region downstream of the physical domain to retain the periodicity in
the streamwise direction as described by Bertolotti, Herbert & Spalart (1992); Nordström,
Nordin & Henningson (1999). In this method, the disturbances are damped, and the flow
is forced from the outflow of the physical domain to the same profile as the inflow. The
fringe technique is used in the present study, as the inflow conditions from a laminar
profile followed by tripping produce natural instantaneous fluctuations for the velocity
and the scalar fields (Araya & Castillo 2012). The fringe region is implemented by adding
a volume force (Fj; FΘi) to the momentum and scalar transport equations ((2.3) and (2.4)),
respectively. The forcing term is given by

Fj = λ(x) (Uj − Uj
)
, (2.11)

FΘi = λ(x)
(
Θ̆i − Θi

)
, (2.12)

where λ(x) is the strength of the forcing, which is non-zero only in the fringe region. The
flow field at the inlet is the laminar Blasius profile Uj and for the scalar Θi it is the linear
variation with y ranging from 0 to 1, denoted by Θ̆i.

2.4. Computational domain and numerical set-up
The laminar base flow is tripped by a random volume force strip (at x/δ∗

0 = 10) to trigger
the transition of the flow to a turbulent state. For this simulation, a three-dimensional
cuboid is considered with length, height and width equal to xL, yL, zL, respectively. The
lower surface of the cuboid is considered as a flat plate with no-slip boundary conditions.
The boundary layer grows in the considered computational domain with initial thickness
denoted by δ∗

0 . In the streamwise direction, the computational domain terminates with
the fringe region. The vertical extent of the computational domain includes the whole
boundary layer and the domain height is chosen based on the free-stream boundary
condition. In particular, the problem set-up in this work is similar to that studied by Li
et al. (2009).

The computational domain is discretized by Nx, Ny and Nz grid points in the streamwise,
wall-normal and spanwise directions, respectively. The grid spacing is uniform in the
streamwise and spanwise directions. For the wall-normal direction, the collocation points
follow the Gauss–Lobatto distribution given by

yc = cos
(

π
c

Ny

)
c = 0, 1, 2, . . . , Ny. (2.13)

The computational box has dimensions 1000δ∗
0 × 40δ∗

0 × 50δ∗
0 in the streamwise,

wall-normal and spanwise directions, respectively. The number of grid points in each
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direction is 3200 × 385 × 320, correspondingly. Note that the smallest scale in the scalar
fluctuations is inversely proportional to Pr1/2 (Tennekes & Lumley 1972) and, hence, the
Batchelor length scale ηΘi (which is analogous to the smallest scale in turbulent flow, the
Kolmogorov scale η) is estimated as ηPr−1/2 (Kozuka et al. 2009). Similarly, the ratio of
the largest to the smallest scales is proportional to Re1.5Pr0.5 at high Pr (Batchelor 1959;
Tennekes & Lumley 1972). In this study, an adequate grid resolution is adopted to resolve
all the physically relevant scales. The Reynolds number based on free-stream velocity
and displacement thickness at the inlet is Reδ∗

0
= 450 and the friction Reynolds number

based on local friction velocity (uτ ) and boundary-layer thickness (δ99) is Reτ = 46. At
the outlet, the Reynolds number based on displacement thickness is Reδ∗

0
= 1, 580 and

Reτ = 396.
Considering the friction velocity uτ at the middle of the computational domain (x/δ∗

0 =
500, corresponding to Reθ = 794), the grid resolution in viscous units is 
x+ = 6.6 and

z+ = 3.3 in the wall-parallel directions. In the wall-normal direction, we have an
irregular distribution of collocation points, hence 
y+ varies between 0.01 and 3.5. The
results discussed at a particular streamwise position are inner scaled with respect to
the local friction velocity, whereas, when the data along the streamwise direction are
considered, the reference quantity at x/δ∗

0 = 500 is considered for inner scaling. This
indicates that if a particular wall-parallel plane (x–z plane) is sampled at a wall-normal
distance (for e.g. y+ = ys), considering the friction velocity at x/δ∗

0 = 500, the actual
inner-scaled location varies along the streamwise direction, which is within ±0.1ys for
the range of Reynolds numbers simulated in this work.

In this study, five different realizations of ZPG TBL are performed by introducing
different trip forcings through modification of the random seed parameter, to obtain an
ensemble average of the statistical quantities. All the different realizations are run for
approximately 2400 time units (δ∗

0/U∞) after one flow through of initial transience, which
corresponds to 1000 time units (δ∗

0/U∞). The converged statistics are obtained with the
data corresponding to 12,000 time units (δ∗

0/U∞), equivalent to 600 eddy-turnover times.

3. Comparison with data in the literature

3.1. Integral quantities and non-dimensional numbers
The shape factor H12, which measures the ratio between the displacement thickness δ∗ and
the momentum thickness θ , is plotted in figure 1. The shape factor is lower in the turbulent
region with increasing Reθ and agrees well with the experimental and numerical data for
Reθ > 600 where the TBL is fully developed.

Figure 2 depicts the streamwise variation of the skin-friction coefficient Cf for the
present simulation and indicates that the obtained result is in good agreement with the
turbulent skin-friction solution provided by Schoenherr (1932), which is given by

Cf = 0.31
[
ln2 (2Reθ ) + 2 ln (2Reθ )

]−1
. (3.1)

The computed skin-friction coefficient is also in good agreement with the correlation
proposed by Smits, Matheson & Joubert (1983), which is given as

Cf = 0.024Re−1/4
θ . (3.2)

The trip location is at x/δ∗
0 = 10, with a strong peak in the skin-friction coefficient

followed by the transition to turbulence before x/δ∗
0 = 200. The experimental data
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400 600 800 1000

2.6

2.4

2.2

2.0

1.8

1.6

1.4
200

H12

Reθ
Figure 1. Streamwise evolution of the shape factor H12. (——, blue) Present DNS, (�, blue) Simens et al.
(2009), experimental data by (◦, blue) Roach & Brierly (1992), (�, blue) Erm & Joubert (1991), (�, blue)
Purtell, Klebanoff & Buckley (1981).

0 100 200 300 400 500 600 700 800

x

2

4

6

200 400 600 800 1000

(×10–3)

8

Cf

Reθ
Figure 2. Variation of skin-friction coefficient along the streamwise direction. (——, blue) Present DNS,
(· · · · · · , blue) theoretical laminar skin-friction solution, (- - -, blue) turbulent solution given by Schoenherr
(1932), (◦, blue) experimental data by Erm & Joubert (1991) with wire tripping.

provided by Erm & Joubert (1991) with wire tripping also closely correspond to the
calculated turbulent skin-friction coefficient. It should be noted that Erm & Joubert (1991)
also repeated the experiments with different tripping devices and found the influence
of tripping to persist until Reθ ≈ 1500. Due to this, Jiménez et al. (2010) found the
experimental data to be scattered for Reθ < 1070 and also showed the scatter to decrease
with Reθ > 1600.

The Stanton number measures the convective heat transfer into the fluid with respect to
the thermal capacity of the fluid. The spatial evolution of the Stanton numbers for different
passive scalars scaled with the square root of Pr (as plotted in figure 3) is very similar to
the skin-friction profiles plotted in figure 2. There is a difference observed in the laminar
Stanton number at x = 0 with the present scaling. However, the individual Stanton-number
profiles correspond well to the laminar solution (not shown in the figure) given by Kays &
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0

1

2

3

4

5

1.5 2.0 2.5

St
·P
r0

.5

3.0 3.5 4.0 4.51.00.5

(×105)

(×10–3)

Rex
Figure 3. Variation of Stanton number along the streamwise direction for different passive scalars. (——,
orange) Θ1 , (——, green) Θ2, (——, red) Θ3, (——, blue) Θ4, (· · · · · · , blue) Kays & Crawford (1993)
correlation corresponding to Θ4 and (- - -, blue) Reynolds–Colburn analogy as given by Lienhard & John
(2005) plotted for Θ4, (— ·, blue) interpolation developed by Hollingsworth (1989) plotted for Θ4.

Crawford (1993), which is

St = 0.332√
RexPr2/3 , (3.3)

and to the turbulent solution obtained from the Reynolds–Colburn analogy as given by
Lienhard & John (2005). For Θ1, due to the Reynolds analogy, the Stanton profile matches
with the skin-friction profile scaled by a factor of two. For the passive scalars at higher
Prandtl numbers, a generalization of the Reynolds–Colburn analogy can be obtained, as
reported in the study by Lienhard (2020)

St = Nu
RexPr

= Cf /2
a1 + a2 (Pra3 − 1)

√
Cf /2

, (3.4)

with the values of a1 = 1, a2 = 12.8 and a3 = 0.68 provided in Lienhard & John (2005)
and Cf being expressed as

Cf = 0.455

ln2 (0.06Rex)
. (3.5)

The Stanton-number plot for the passive scalar at Pr = 6 agrees well with the turbulent
solution obtained from the Reynolds–Colburn analogy, as shown in figure 3. On the other
hand, reference curves for Kays & Crawford and the Reynolds–Colburn analogy are only
reported for Θ4 for clarity.

Using the data for water with Pr = 5.9, Hollingsworth (1989) developed an
interpolation for Prandtl numbers from 0.7 to 5.9 assuming the critical thickness of the
sub-layer to be a simple function of Prandtl number. The empirical expression is given by

St = 0.02426Pr−0.895Re−0.1879Pr−0.18

x , (3.6)

which is plotted for the scalar at Pr = 6 in figure 3. We find that the relationship proposed
by Hollingsworth (1989) underpredicts the Stanton number at Pr = 6. However, the
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Figure 4. Inner-scaled mean streamwise velocity profile at Reθ = 670. (——, blue) Present DNS, (◦, blue)
Spalart (1988), (�, blue) Komminaho & Skote (2002) at Reθ = 666.

interpolation relation provides a good match with the calculated Stanton number for Θ1,
better than the Reynolds–Colburn analogy, which is not indicated in the plot for clarity.

Using the data obtained in the present simulation, a correlation between the Nusselt,
Prandtl and Reynolds numbers can be obtained as

Nux = 0.02Re0.828
x Pr0.514, (3.7)

which yields R2 = 0.9985. This is similar to the correlation proposed by Kays & Crawford
(1993) but for fully developed profiles in circular tubes and computed for gases

Nu = 0.021Re0.8Pr0.5. (3.8)

3.2. Mean velocity and scalar profiles
The mean velocity profile obtained at the streamwise location corresponding to Reθ = 670
is shown in figure 4. The streamwise velocity profile is compared with the DNS data
from Spalart (1988) at Reθ = 670 and Komminaho & Skote (2002) at Reθ = 666. The
comparison of the present data with the existing DNS results shows a good agreement in
the inner region. There is a slight deviation of the mean velocity profile reported by Spalart
(1988) in the wake region with respect to the present data but it agrees well with the data
provided by Komminaho & Skote (2002).

The mean profiles of the various passive scalars Θi are normalized with the respective
Prandtl numbers and represented in inner scaling by dividing with the friction scalar Θi,τ
defined as

Θi,τ = qi,w

ρCpuτ

, (3.9)

where Cp is the heat capacity of the fluid and qi,w is the rate of heat transfer from the wall
to the fluid and is defined by

qi,w = −k
d 〈Θi〉

dy

∣∣∣∣
y=0

, (3.10)

where k is the thermal conductivity of the fluid. The normalized inner-scaled mean scalar
profiles are plotted at Reθ = 1070, corresponding to Reτ = 395, as shown in figure 5.
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Figure 5. Normalized mean profiles of the passive scalars at Reθ = 1070 corresponding to Reτ = 395.
(——, blue) Pr = 1, (——, orange) Pr = 2, (——, green) Pr = 4, (——, red) Pr = 6, channel DNS
data by Kozuka et al. (2009) at Reτ = 395 and (◦, blue) Pr = 1, (◦, orange) Pr = 2, (◦, red) Pr = 7,
(◦, green) channel DNS data by Alcántara-Ávila, Hoyas & Pérez-Quiles (2018) at Reτ = 500 and Pr = 4,
with (- - -, grey) corresponding fit by Pirozzoli (2023) and (inset) (· · · · · · , black) conductive sub-layer relation,
Θ+

i = Pry+.

The mean scalar profiles follow the conductive sub-layer relation (Θ+
i = Pry+) and is

clearly identified in the plots for y+ < 5. The profiles of the passive scalars at Pr = 1, 2
are compared against the channel DNS data provided by Kozuka et al. (2009) at the same
Prandtl numbers. The comparison shows a good agreement in the near-wall and overlap
regions. It should be noted that the boundary condition used by Kozuka et al. (2009) is the
uniform-heat-flux condition as opposed to the uniform scalar boundary condition applied
in this study. Note that the study by Kawamura, Abe & Shingai (2000) showed that the
Kármán constant kΘ as appearing in (3.11)

〈Θi〉 − 〈
Θi,w

〉
Θi,τ

= 1
kΘ

log y++AΘi (Pr) , (3.11)

varies between the Dirichlet and Neumann boundary conditions based on low-Reynolds-
number simulations. Here, AΘi denotes the additive constant for scalar Θi. However, based
on higher-Reynolds-number simulations, Pirozzoli, Bernardini & Orlandi (2016) reported
that the difference in boundary condition affects the mean passive scalar profiles only in
small magnitudes in the logarithmic region, although the effect is evident in the scalar
fluctuation profiles reported later.

The scalar profile at Pr = 4 is compared against the channel DNS data reported by
Alcántara-Ávila et al. (2018). The channel DNS data reported by Kozuka et al. (2009)
at Pr = 7 are used for comparison of the passive scalar at Pr = 6, since there are no
simulations reported in the literature at exactly the same Prandtl number. This gives us the
opportunity to highlight the difference between the profiles at these high Prandtl numbers.
Due to the difference in the considered Prandtl numbers, we observe a discrepancy in
the mean velocity profile for y+ > 40 in the overlap region. Since the channel data are
used for the comparison, there is a difference observed near the wake region for all
the cases. However, a good agreement of the profiles is observed for the inner region.
Based on experimental data, semi-empirical fits were provided by Kader (1981) for a
boundary layer with constant heat flux. In this study it was assumed that the overlap layer
exhibited logarithmic variation as given in (3.11), and an empirical relation was provided
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to determine the additive constant BΘi . The comparison of the mean scalar profiles against
the relationships provided by Kader (1981) shows that the value at the wake is slightly
overestimated with respect to the DNS data. The deviation for scalar Θ4 corresponding
to Pr = 6 is approximately 3 % for y+ ∈ [100, 500]. One possible reason for this small
deviation could also be the constant scalar boundary condition imposed in our simulations
as opposed to the constant-heat-flux boundary conditions considered by Kader (1981). The
comparison against Kader (1981) is not presented, instead, the mean scalar profiles are
evaluated against the recent correlations proposed by Pirozzoli (2023). These correlations
were developed by fitting the functional form of eddy thermal diffusivity to DNS data,
resulting in predictive formulae for mean scalar profiles. Our comparison demonstrates
good agreement across the different Prandtl numbers. For the passive scalar Θ4, the
maximum observed deviation is approximately 2 %.

In the overlap region, the mean scalar profiles are nearly logarithmic and are
characterized as

〈Θi〉+∞ − 〈Θi〉+ = − 1
kΘ

log
(

y/δ∗) + BΘi (Pr) . (3.12)

The mean scalar and velocity profiles are plotted in defect form in figure 6. We observe
that the slope of the scalar profiles in defect form is nearly parallel indicating a constant
Kármán constant for the scalar fields. The Kármán constant for the velocity is observed to
be 0.41, consistent with the values reported in Spalart (1988). The diagnostic function for
scalar is defined as

ΞΘ = y+ ∂ 〈Θi〉+
∂y+ = 1

kΘ

, (3.13)

is plotted in figure 7. The Kármán constant for a scalar field is obtained as kΘ = 0.4, which
is in between kΘ = 0.33 (Wikström 1998) and kΘ = 0.47 (Kader 1981). The obtained kΘ

from the present simulation is the same as observed by Kawamura, Abe & Matsuo (1999)
and close to the value of 0.41 as reported by Li et al. (2009). In the outer region, we
observe a collapse of the profiles.

3.3. Velocity and scalar fluctuations
As shown in figure 8, the present velocity-fluctuation root-mean-squared (r.m.s.) data show
a trend similar to that of the results by Jiménez et al. (2010). The r.m.s. profiles of the three
velocity components are in good agreement in the inner region, while a minor difference
can be observed in the outer region. Nonetheless, the peaks of the velocity fluctuations
match in both position and magnitude. There is a slight offset in the plots of prms, which
can be attributed to the small difference in the considered Reθ for comparison. The r.m.s.
of the velocity components are also compared with the channel DNS data provided by
Abe et al. (2004). The streamwise r.m.s. agrees well with the present DNS results and
the near-wall peak value coincides with the present observations. As expected, there is a
difference observed in the outer region of flow, since channel and boundary-layer flows
are fundamentally different farther from the wall. Additionally, the r.m.s. of the pressure
fluctuations observed in the boundary layer is different compared with the channel flow.
From the present DNS data, the peak of the streamwise velocity fluctuation is found at
y+ = 14, corresponding in outer units to y/δ99 = 0.035.

The r.m.s. of the scalars at different Prandtl numbers are plotted in figure 9. The scalar
r.m.s. profile at Pr = 1 is similar to the streamwise velocity r.m.s. and has a higher (roughly
5 %) near-wall peak comparatively, as expected. The comparison of scalar-fluctuation

974 A49-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

80
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.803


DNS of a ZPG TBL with passive scalars up to Pr = 6

20.0
5.5

5.0

4.0
0.20 0.22 0.24 0.26 0.280.30

4.5

17.5

15.0

12.5

10.0

7.5

5.0

2.5

0

〈Θ
i〉 ∞+

  
–

 〈Θ
i〉+

〈Θ
i〉 ∞+

  
–

 〈Θ
i〉+

10–2

10–1 100

10–1 100

y/δ99

y/δ99

y/δ*

Figure 6. Mean profiles in defect form at Reθ = 1070 corresponding to Reτ = 395. (——, blue) Pr = 1,
(——, orange) Pr = 2, (——, green) Pr = 4, (——, red) Pr = 6 and (- - -, black) velocity defect 〈U∞〉+ −
〈U〉+.
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Figure 7. Variation of the diagnostic function for scalar ΞΘ along the wall-normal direction at Reθ = 1070
corresponding to Reτ = 395. (——, blue) Pr = 1, (——, orange) Pr = 2, (——, green) Pr = 4, (——,
red) Pr = 6 and (— ·, black) ΞΘ = 0.25; kΘ = 0.4.

profiles at Pr = 1, 2 with the channel DNS data from Kozuka et al. (2009) shows a good
agreement in the inner and logarithmic region in addition to a good match of the peak
value and wall-normal location. Despite the small difference in Reτ , the profiles at Pr = 4
obtained by Alcántara-Ávila et al. (2018) show a reasonably good agreement with the
present results. With increasing Prandtl number, the peak value of the scalar-fluctuation
r.m.s. increases and is located closer to the wall. The scalar fluctuations decay to zero at
the wall due to the isothermal boundary condition and they also decay to zero outside the
boundary layer due to the absence of disturbances in the free stream.

The obtained scalar-fluctuation r.m.s. profiles are scaled with the respective Prandtl
numbers and plotted in figure 10. We observe that the lines of θ+

i rms for different scalars at
different Reynolds numbers are parallel and not coinciding. Similar observations were
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Figure 8. The r.m.s. velocity fluctuations and r.m.s. pressure fluctuation at Reθ = 1070. (——, blue) Present
DNS, (◦, blue) Jiménez et al. (2010) at Reθ = 1100, (�, blue) channel DNS data of Abe, Kawamura & Matsuo
(2004) at Reτ = 395.
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Figure 9. Scalar fluctuation r.m.s. at Reθ = 1070. Present DNS data for (——, blue) Pr = 1, (——,
orange) Pr = 2, (——, green) Pr = 4, (——, red) Pr = 6, channel DNS data by Kozuka et al. (2009) at
Reτ = 395 and (◦, blue) Pr = 1, (◦, orange) Pr = 2, (◦, red) Pr = 7, (◦, green) channel DNS data by
Alcántara-Ávila et al. (2018) at Reτ = 500 and Pr = 4.

also made by Alcántara-Ávila, Hoyas & Pérez-Quiles (2021) for a particular scalar at
Pr = 0.71 and they attributed the differences in the viscous-diffusion term at the wall
to the increase in the slope of θ+

i rms. The slope of θ+
i rms changes with Reynolds number

because the peak of θ+
i rms varies as shown in figure 11 and the location of such a peak moves
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Figure 10. Scalar fluctuations scaled by Prandtl number at (——, blue) Pr = 1, (——, orange) Pr = 2, (——,
green) Pr = 4, (——, red) Pr = 6 and (——, black) Reθ = 420, (- - -, black) Reθ = 628, (— ·, black) Reθ =
830, (· · · · · · , black) Reθ = 1070 at the corresponding Prandtl numbers.

farther from the wall as the Reynolds number increases. On the other hand, the location of
θ+

i rms,max moves closer to the wall with respect to the Prandtl number, as discussed earlier.
A correlation for θ+

i rms, max was obtained as in Alcántara-Ávila et al. (2021) for each passive
scalar considered in the present study, as shown in figure 11. It should be noted that if the
maximum value is obtained directly at the collocation point, some variations are observed
along Reτ due to the grid resolution. In order to minimize the high-frequency variation
along Reτ , as plotted in figures 11 and 12, a simple convolution operation is performed
which does not alter the obtained empirical fits. Clearly, for higher Prandtl numbers of
4, 6, the peak of the scalar-fluctuation r.m.s. tends to decrease with increasing Reτ . When
the present DNS data with Reθ ∈ [470, 1070] and Pr = 1, 2, 4, 6 are used to find an overall
variation of the peak in the scalar-fluctuation r.m.s. we find

θ+
i rms,max=2.969Re−0.00858

τ Pr0.571, (3.14)

with R2 = 0.99, where R2 corresponds to the coefficient of determination. It is defined
as R2 = 1 − (Σ(xt − xp)

2)/(x2
t rms), with xp corresponding to the fitted value of xt. The

observed correlation shows a weak dependence on Re compared with Pr. Further, from
(3.14), a decaying trend of θ+

i rms,max with Re is obtained, although such a trend has not
been observed in the literature except for Θ3, Θ4 in the present study. The studies by
Pirozzoli et al. (2016) and Alcántara-Ávila et al. (2021) have reported the increasing trend
of θ+

i rms,max with respect to Re but for a lower Pr than in the present work. Pirozzoli et al.
(2016) have suggested that the attached-eddy arguments support the increase of inner peak
of streamwise velocity r.m.s. with respect to Reτ due to the effect of overlying attached
eddies and they assumed that the same argument applies to the passive scalars. On the
other hand, we find that the inner peak of the passive scalar r.m.s. at high Pr does not follow
the previous argumentation. It should also be noted that the range of Reτ in our present
simulation is narrow compared with those of the works by Pirozzoli et al. (2016) and
Alcántara-Ávila et al. (2021) and a more detailed investigation of this topic is necessary
to make any conclusive statements.

The above procedure was also performed for the streamwise heat flux, as shown in
figure 12. A similar behaviour was observed with the overall variation in streamwise heat
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Figure 11. Variation of the peak of scalar fluctuation r.m.s. with respect to Reτ , for (——, blue) Pr = 1, (——,
orange) Pr = 2, (——, green) Pr = 4, (——, red) Pr = 6 including the corresponding empirical fits (· · · · · · ,
blue) 0.116 log (Reτ ) + 2.210 with R2 = 0.976, (· · · · · · , orange) 0.037 log (Reτ ) + 3.963 with R2 = 0.620,
(· · · · · · , green) −0.068 log (Reτ ) + 6.583 with R2 = 0.726, (· · · · · · , red) −0.151 log (Reτ ) + 8.753 with R2 =
0.894.
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Figure 12. Variation of the peak of streamwise heat flux with respect to Reτ , for (——, blue) Pr = 1, (——,
orange) Pr = 2, (——, green) Pr = 4, (——, red) Pr = 6 including the corresponding empirical fits (· · · · · · ,
blue) 0.250 log (Reτ ) + 5.732 with R2 = 0.808, (· · · · · · , orange) 0.064 log (Reτ ) + 9.769 with R2 = 0.119,
(· · · · · · , green) −0.1626 log (Reτ ) + 14.223 with R2 = 0.328, (· · · · · · , red) −0.293 log (Reτ ) + 16.773 with
R2 = 0.513.

flux given by
〈uθi〉+max = 7.74Re−0.006

τ Pr0.401, (3.15)

with R2 = 0.9913.

3.4. Turbulent Prandtl number
An important parameter for scalar transport is the turbulent Prandtl number Prt, which is
defined as the ratio between turbulent eddy viscosity and turbulent eddy diffusivity

Prt = νt

αt
. (3.16)
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The eddy viscosity and the eddy diffusivity arise from the Boussinesq hypothesis
(Boussinesq 1877) for modelling turbulent stresses and the heat-flux vector, respectively.
For parallel flows (the ones in which the velocity profile does not vary in the streamwise
direction), the turbulent eddy viscosity and the turbulent eddy diffusivity are used to
describe the turbulent momentum transfer and heat transfer with respect to the mean-flow
conditions, in particular the mean velocity strain and temperature gradients, respectively.
They are defined as

νt = − 〈uv〉
∂ 〈U〉/∂y

, (3.17)

and

αt = − 〈vθi〉
∂ 〈Θi〉/∂y

. (3.18)

It should be noted that the eddy viscosity or diffusivity does not represent a physical
property of the fluid, like the molecular viscosity, but rather a property of the flow. The
Reynolds analogy introduces the similarity between the turbulent momentum exchange
and turbulent heat transfer in a fluid. Reynolds (1874) noted that, for a fully turbulent field,
both the momentum and heat are transferred due to the motion of turbulent eddies. This
yields a simpler model for the turbulent Prandtl number, where the turbulent eddy viscosity
for the momentum exchange and turbulent eddy diffusivity for the scalar transport are
equal, such that Prt = 1.

Substitution of the eddy viscosity and diffusivity into the definition of turbulent Prandtl
number results in

Prt = 〈uv〉
〈vθi〉

∂ 〈Θi〉/∂y
∂ 〈U〉/∂y

. (3.19)

From this definition, evaluating the turbulent Prandtl number at any point in the
boundary layer would require the turbulent shear stress, turbulent heat transfer, velocity
gradient and temperature gradient. Experimental investigations have limited accuracy in
the simultaneous measurement of the Reynolds shear stress and wall-normal turbulent heat
flux, in particular close to the wall (Araya & Castillo 2012). For this reason, experimental
investigations like Blom (1970), Antonia (1980) and Kays & Crawford (1993) exhibit
significant scatter in the data.

The variation of turbulent Prandtl number with the wall-normal distance in inner units at
a given Reθ = 1070 is reported in figure 13. We observe that the turbulent Prandtl number
varies at the wall and increases with respect to molecular Prandtl number of the scalar.
From figure 14, we also see the turbulent Prandtl number decays for y+ > 15 and this
decay becomes steeper as Re decreases. The turbulent Prandtl number was assumed to
approach a constant value close to the wall independent of the molecular Prandtl number
(Li 2007). Studies such as the ones by Kestin & Richardson (1963) and Blom (1970) have
analysed experimentally the turbulent Prandtl number in order to assess the validity of this
assumption. Such experimental investigations have reported a constant value of turbulent
Prandtl number as the wall is approached. However, different experimental campaigns
provided data that could not show a conclusive interpretation of the behaviour of turbulent
Prandtl number close to the wall. Nonetheless, many authors have proposed different
correlations based on the experimental data to predict the heat-transfer coefficient through
the prediction of turbulent Prandtl number with respect to molecular Prandtl number.

For the different passive scalars considered in the present study, the turbulent Prandtl
number approaches a constant value > 1 close to the wall in the viscous sub-layer.
The plots of Prt exhibit a significant difference closer to the wall with respect to various
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Figure 13. Variation of turbulent Prandtl number with respect to wall-normal distance in inner scale at
Reθ = 1070 for passive scalar at (——, blue) Pr = 1, (——, orange) Pr = 2, (——, green) Pr = 4, (——, red)
Pr = 6.
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Figure 14. Variation of turbulent Prandtl number with respect to wall-normal distance in inner scale at
(——, blue) Reθ = 396, (——, orange) Reθ = 420, (——, green) Reθ = 628, (——, red) Reθ = 830, (——,
purple) Reθ = 1070 for a passive scalar at Pr = 1.

molecular Prandtl numbers. There is a slight decrease in Prt up to y+ ≈ 20 and then the
increase is maintained farther from the wall up to y+ ≈ 50, the point after which the trend
steadily decreases. It is pointed out in Kays (1994) that the peak between y+ ≈ 20 and 100
is not observed in the experimental data, an observation which was attributed to the high
Reynolds number of the experiments, where DNS data are not available for comparison.

Following the discussions about a constant Prt in the logarithmic region, Kays &
Crawford (1993) proposed a correlation for the turbulent Prandtl number that is applicable
to air. In this correlation, the value of Prt approaches a constant value of 0.85 in the
logarithmic region. In the studies by Hollingsworth (1989), a correlation was proposed
based on the measurement of the temperature profile of water at Pr ≈ 6. Again, the value
of Prt approaches a value of 0.85 as y+ is increased. This observation of constant Prt in the
logarithmic region is not clearly observed with the present DNS data. This can be due to
the low-Reynolds-number range considered in the present study. Based on the correlation
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proposed by Hollingsworth (1989), Kays (1994) suggested a constant value of Prt = 1.07
for 0 < y+ < 5. Indeed, if we consider only the passive scalars at Pr = 1, 2, the turbulent
Prandtl number approaches a constant value of 1.07 closer to the wall. It appears that
the turbulent Prandtl number close to the wall is independent of the molecular Prandtl
number, as shown in the studies by Li et al. (2009). This independence of the turbulent
Prandtl number at the wall with respect to the molecular Prandtl number has also been
reported in many other studies like Kong et al. (2000) and Jacobs & Durbin (2000) for
TBL flow, as well as in Kim & Moin (1989) and Kasagi, Tomita & Kuroda (1992) for
turbulent channel flow. However, from the present study, we find that the turbulent Prandtl
number indeed depends on the molecular Prandtl number and this observation is based on
the increasing value of Prt at the wall with respect to the scalars with Pr = 4, 6, as shown
in figure 13.

In order to verify the plausibility of the present observations at Pr = 4, 6, the obtained
DNS data were compared with the DNS channel data reported by Alcántara-Ávila &
Hoyas (2021). Figure 15 shows the comparison of Prt at different molecular Prandtl
numbers, where the present DNS data were at Reθ = 1070, corresponding to Reτ = 395,
and the data from Alcántara-Ávila & Hoyas (2021) were at Reτ = 500. Despite these
differences, the turbulent Prandtl numbers close to the wall are in good agreement,
confirming that the Pr-scaled wall-normal heat flux decreases with an increase in Pr
for Pr � 4, as stated by Alcántara-Ávila & Hoyas (2021). Thus, the present observation
confirms the constant behaviour of the turbulent Prandtl number very close to the wall and
highlights its dependence on the molecular Prandtl number, which has been often ignored
in turbulent heat-transfer calculations.

A brief discussion of the Reynolds-stress budget is provided in Appendix A.

3.5. Higher-order statistics, shear stress and heat flux
The higher-order statistics (specifically, the values of the third- and fourth-order moments
of a quantity) provide information on the non-Gaussian behaviour of turbulence. The third-
and fourth-order moments are also called the skewness and flatness, respectively, and for
a statistically stationary variable m, they are defined as

S(m) =
〈
m3

〉/ 〈
m2

〉3/2
, (3.20)

F(m) =
〈
m4

〉/ 〈
m2

〉2
. (3.21)

The skewness and flatness of the streamwise and wall-normal velocity components are
shown in figure 16 where, for the spanwise velocity, we observe a Gaussian behaviour
in the overlap region, as expected. The higher-order moments obtained by Vreman &
Kuerten (2014) for the turbulent channel flow are compared with the present TBL results at
Reτ = 180 (corresponding to Reθ = 420), showing a reasonable agreement. From figure 2,
it should be highlighted that Reθ = 420 is roughly at the beginning of the turbulent
regime and the deviation of the profiles for y+ > 100 as observed in figure 16 is due
to the intermittent wake region which decays to the values for a Gaussian distribution
as the free stream is approached. There are some differences observed in the overlap
region where the skewness of u is roughly 10 % higher than that reported by Vreman &
Kuerten (2014). Although the plots indicate an overall good agreement, some drastic
differences are observed in the flatness of the wall-normal and spanwise velocity
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Figure 15. Comparison of turbulent Prandtl number against the channel DNS data at Reθ = 1070 for different
molecular Prandtl numbers. Present DNS for (——, blue) Pr = 1, (——, orange) Pr = 2, (——, green) Pr =
4, (——, red) Pr = 6, channel DNS data by Alcántara-Ávila & Hoyas (2021) at Reτ = 497 and (◦, blue) Pr =
1, (◦, orange) Pr = 2, (◦, green) Pr = 4, (◦, red) Pr = 6.

components close to the wall, where the turbulence is highly intermittent. The flatness
of the wall-normal velocity component approaches a value of ≈ 29 close to the wall for
the data provided by Vreman & Kuerten (2014) whereas, in the TBL, it converges to ≈ 20.
This is still lower than the value of 22 obtained by Kim, Moin & Moser (1987). The
skewness of the pressure fluctuations is roughly 20 % higher in the overlap region of the
TBL compared with the channel. Further, the intermittency (flatness) of the pressure is
higher than the velocity components as reported by Kim et al. (1987), whereas the data
obtained with TBL show an offset of 15 % throughout and are lower than the flatness
behaviour observed in the channel. The flatness factor for pressure fluctuation at the wall
approaches a value of 4.5 in the present simulations as compared with the values of 4.7
(Li et al. 2009) and 4.9 (Schewe 1983), whereas a value of ≈5.2 is reported by Vreman &
Kuerten (2014).

The Reynolds shear stress is plotted in figure 17 and it is compared with the TBL data
provided by Jiménez et al. (2010) and the channel DNS data by Kozuka et al. (2009).
Even if there is a good agreement between the data in the inner region, there is a clear
difference in the overlap region between the channel and the TBL. Such differences
were also observed in the plots of the fluctuations in the streamwise and wall-normal
directions shown in figure 8. The peak of the Reynolds shear stress is higher for the
TBL compared with a channel flow, which indicates a higher momentum transfer by
the fluctuating velocity field in the TBL. Looking at the energy budgets for shear stress
component in both the channel and TBL corresponding to Reτ = 395 (plots not shown
here), we find that there is higher production in the TBL compared with channel flows
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Figure 16. Skewness and flatness for the streamwise, wall-normal and spanwise velocity components at Reθ =
420 corresponding to Reτ = 180. (——, blue) Present DNS, (◦, blue) channel DNS data by Vreman & Kuerten
(2014) at Reτ = 180.

(with uniform-heat-flux wall conditions) in the overlap region whereas the dissipation was
of similar magnitude.

The turbulent streamwise heat flux shows a reasonable agreement with the channel data
available at Pr = 1, 2, as shown in figure 18, although the peaks for the channel-flow
data are slightly higher and closer to the wall compared with the present observations.
For Pr = 4, however, the peak of the streamwise heat flux is higher in the channel data by
Alcántara-Ávila et al. (2018), since the heat flux is reported at a higher Reynolds number
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Figure 17. Inner-scaled Reynolds shear stress as a function of the wall-normal direction at Reθ = 1070. (——,
blue) Present DNS, (◦, blue) Jiménez et al. (2010) at Reθ = 1100, (�, blue) channel DNS data by Kozuka et al.
(2009) at Reτ = 395.
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Figure 18. Variation of streamwise heat flux along the wall-normal direction at Reθ = 1070 for different
passive scalars. Present DNS data for (——, blue) Pr = 1, (——, orange) Pr = 2, (——, green) Pr = 4, (——,
red) Pr = 6, channel DNS data by Kozuka et al. (2009) at Reτ = 395 and (◦, blue) Pr = 1, (◦, orange) Pr = 2,
(◦, red) Pr = 7, (◦, green) channel DNS data by Alcántara-Ávila et al. (2018) at Reτ = 500 and Pr = 4.

than our DNS. Furthermore, the comparison at the highest Pr in our simulation was at
a slightly lower Pr than that in the channel and hence there is a difference in the slope
of the streamwise heat flux close to the wall. Figure 19 shows the wall-normal heat flux
for the different simulations. A clear difference can be observed in the outer region when
comparing similar Prandtl numbers. On the other hand, the boundary-layer data and the
channel data show a better agreement in the inner region.

The correlation coefficients provide more information on the statistical association
between the fields, and here the structure of the flow field and scalar fluctuations are
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Figure 19. Variation of wall-normal heat flux along the wall-normal direction at Reθ = 1070 for different
passive scalars. Present DNS data for (——, blue) Pr = 1, (——, orange) Pr = 2, (——, green) Pr = 4, (——,
red) Pr = 6, channel DNS data by Kozuka et al. (2009) at Reτ = 395 and (◦, blue) Pr = 1, (◦, orange) Pr = 2,
(◦, red) Pr = 7, (◦, green) channel DNS data by Alcántara-Ávila et al. (2018) at Reτ = 500 and Pr = 4.
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Figure 20. Correlation coefficients: (a) u − θi, (b) v − θi. Present DNS data for scalars at (——,
blue) Pr = 1, (——, orange) Pr = 2, (——, green) Pr = 4, (——, red) Pr = 6 at Reθ = 1070.

analysed in terms of

Ruθi = 〈uθi〉
urmsθi rms

,

Rvθi = 〈vθi〉
vrmsθi rms

.

⎫⎪⎪⎬
⎪⎪⎭ (3.22)

The correlation-coefficient plot in figure 20 corresponding to u − θi shows a strong
correlation of streamwise velocity and scalar fluctuations at Pr = 1 and it decreases with
increase in Prandtl number. This is related to the similarity in the momentum and passive
scalar transport by the turbulent eddies close to the wall. On the other hand, the v − θi
correlation coefficient also shown in figure 20 exhibits an increasing trend with the Prandtl
number. In the conductive sub-layer the correlation coefficients coincide for the various
Prandtl numbers under study and then approach different values at the wall. This highlights
a similar behaviour of the turbulent wall-normal momentum and passive scalar fields with
a caveat, i.e. the differences are present very close to the wall for different Prandtl numbers.
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Figure 21. Variation of mean spanwise streak spacing along the streamwise direction at y+ ≈ 7. (——,
blue) U, (◦, blue) Θ1, (◦, orange) Θ2, (◦, green) Θ3, (◦, red) Θ4. Comparison data from Li et al. (2009)
for (×, black) U, (�, black) Θ2. Inset: spanwise two-point correlation for (——, blue) Θ1, (——, orange) Θ2,
(——, green) Θ3, (——, red) Θ4 at Reθ ≈ 830.

3.6. Spanwise two-point correlations
The two-point correlations provide some quantitative information on the turbulent
structures near the wall. For example, the streak spacing near the wall is of interest
and can also be observed in an experimental setting. In order to identify the mean
streak spacing, spanwise two-point correlations of the velocity components and passive
scalars were obtained at five different positions along the streamwise direction at different
wall-normal positions. Overall, the obtained results at Reθ = 830 were compared with the
data reported by Kim et al. (1987) and show good agreement (not depicted here). The
obtained two-point correlations for different scalars at Reθ = 830 are shown in figure 21
to assess the differences for varying Pr. The two-point correlation becomes negative and
reaches a minimum at an inner-scaled correlation length of δz+ ≈ 50. The length at which
the minimum occurs provides an estimate of the half-mean separation between the streaks
in the spanwise direction, i.e. (λ+s /2). The streak spacing is plotted along the streamwise
direction at a wall-normal position of y+ ≈ 7, as shown in figure 21. Overall, the velocity
and scalar streak spacings increase with Reθ , as reported in the works of Li et al. (2009)
and Schlatter et al. (2009). Note that the correlations are available only at five streamwise
locations (solid line for U in figure 21 is for clarity), but the comparison with Li et al.
(2009) is in reasonably good agreement for the velocity and scalar streaks at Pr = 2. The
velocity streak spacing increases from 102 to 115 and appears to saturate for Reθ > 830.
Note that such a saturation of streak spacing was also pointed out by Li et al. (2009)
for Reθ > 1500. From figure 21, we also observe that the streak spacing decreases with
increasing Pr and that the streak spacings for the scalars at Pr = 4, 6 are indistinguishable,
although the rate of decay of the two-point correlations for the scalars is different. A higher
grid resolution might be necessary to quantify the possible differences in the scalar streak
spacing at higher Pr.

3.7. Scaling of wall-heat-flux fields
The wall-shear and heat-flux fields at different Prandtl numbers are normalized
by subtracting the mean and dividing by the corresponding r.m.s. quantities.
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Figure 22. Instantaneous normalized streamwise wall-shear and heat-flux fields at different Prandtl numbers.

The normalization of a quantity n is calculated as

n̄ = n − 〈n〉
nrms

. (3.23)

For the results discussed, n could indicate streamwise wall-shear stress, streamwise scalar
flux, streamwise velocity or scalar concentrations at different Prandtl numbers. Figure 22
shows the instantaneous normalized streamwise wall-shear and heat-flux fields at different
Prandtl numbers. The instantaneous normalized streamwise velocity and scalar fields are
shown at y+ = 15 (corresponding to x/δ∗

0 = 500) in figure 23. The normalized wall fields
appear qualitatively similar and this result is confirmed by the distribution of the data in
the streamwise shear and heat-flux fields obtained from 3700 samples, shown in figure 24.
Although the distribution of data is different in the various fields, after normalization
the distributions become identical. This indicates the uniformity in the distribution of the
fluctuations of shear and heat flux when scaled with the corresponding r.m.s. quantities.
This observation is useful for certain applications, for instance, in the prediction of
fluctuating flow quantities from the wall, as discussed in the study by Guastoni et al.
(2022).

4. Spectral analysis

The analysis of thermal boundary-layer statistics reveals that the scalar fluctuations and
heat flux are strongly affected by the Prandtl number of the scalar in the flow and
the corresponding scalings were reported in § 3. Additional insight can be obtained by
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Figure 23. Instantaneous normalized streamwise velocity and passive scalar fields for different Prandtl
numbers corresponding to y+ = 15 at x/δ∗
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Figure 24. Probability density function of wall-shear and heat-flux fields at different Prandtl numbers.
(a) Distribution of absolute data in the fields with a bin size of 1 unit, (b) distribution of the normalized
data in the fields with a bin size of 0.1 unit, (——, blue) ∂U/∂y or ∂U/∂y, (——, orange) ∂Θ1/∂y or ∂Θ1/∂y,
(——, green) ∂Θ2/∂y or ∂Θ2/∂y, (——, red) ∂Θ3/∂y or ∂Θ3/∂y, (——, purple) ∂Θ4/∂y or ∂Θ4/∂y.

analysing the energy distribution at the different length scales for the scalars at the
simulated Prandtl numbers. In this regard, time series of the wall-shear, wall heat flux,
streamwise velocity and different scalars were sampled at different wall-normal locations
with a sampling time (∼
t+s = 1 with the reference friction velocity at x/δ∗

0 = 500)
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corresponding to 12 000 time units (δ∗
0/U∞). The two-dimensional (2-D) premultiplied

power-spectral density (PSD) kzktφ(λ+z , λ+t ) is obtained in the spanwise direction and in
time based on the time series, for a total sampled time of about 11.5 flow-through times.
Note that, here, kz, kt denote the spanwise, temporal wavenumber, respectively, and φ is
the PSD defined for the particular quantity under study.

For the calculation of PSD, the procedure outlined in Pozuelo et al. (2022) is utilized.
After the mean subtraction of the sampled time series to obtain the turbulent quantities,
first a 1-D spectrum E[t, x](λ+z ) is obtained by performing a fast Fourier transform
(FFT) in the spanwise direction, due to the periodicity condition imposed along z. As
a result, a spectral decomposition of the energy content into different wavenumbers kz
is obtained with the corresponding wavelengths λz given by 2π/kz. Note that the local
friction velocity is used to obtain the inner-scaled quantities. It should be pointed out
that the flow is developing along the streamwise direction and hence the FFT along
the streamwise direction is not applicable. In the present spectral analysis, we consider
the Reθ range between 470 and 1070 and use Welch’s overlapping-window method to
address the non-periodicity in the temporal signal. As a next step, the spectrum in time is
obtained using Welch’s method with 15 bins in total, where 8 of them are independent. A
Hamming window is used for imposing the periodicity in the bins, and the 2-D spectrum is
obtained as E[x](λ+z , λ+t ) by using FFT along z and Welch’s method in t, with λt denoting
the temporal wavelength (i.e. the period), which is defined as λt = 2π/kt. The obtained
spectrum is divided by 
kt
kz and premultiplied with ktkz. Finally, an averaging along x
is performed to yield the 2-D premultiplied PSD ktkzφ(λ+z , λ+t ).

The 2-D PSDs of the streamwise wall shear and wall heat flux at different Prandtl
numbers are provided in figure 25, along with the PSD of the streamwise velocity and
scalar fluctuations at y+ = 15. The obtained 2-D PSD at y+ = 15 agrees well with the
results reported by Pozuelo et al. (2022), although the latter are at higher Reynolds number.
At the wall, the spectral peak is observed at λ+z ≈ 100 and λ+t ≈ 100. Furthermore, at
y+ = 15, we observe that the maximum of spectral-energy distribution is at λ+z ≈ 120,
which corresponds to the characteristic streak spacing in wall turbulence (Smith & Metzler
1983). It is observed that the PSD for the streamwise wall-shear stress is very similar to
that for the wall heat flux at Pr = 1, which is an expected result for the reasons outlined
in § 3.1. However, with increasing Pr, the PSD shifts to the right, indicating that the energy
is not spread over a wider range of scales, and instead is concentrated in longer temporal
structures. One could argue that, with a shorter boundary layer, the structures at Pr = 6 can
become larger than the ones developing at Pr = 1. Because of this, the larger structures
have a different footprint at the wall. Additionally, the plots in figure 25 also exhibit a
slight trend downwards for higher Pr, a fact that indicates the presence of smaller spanwise
scales, in agreement with the discussion in § 3.6. Overall, the temporal wavelength range
at which we have the most energetic structures in the wall-heat-flux fields increases for
larger Prandtl numbers. From the above observations, considering the dominant energetic
structures to be composed of streaks at the wall, the scalar at Pr = 6 (in general for higher
Pr) might exhibit longer and thinner scalar streak structures at the wall compared with the
case at Pr = 1.

The PSDs calculated at y+ = 30 and 50 are shown in figure 26. From this figure, we
observe that the similarity in the distribution of energy for the scalar at Pr = 1 and the
streamwise velocity is lost as we move farther from the wall. In contrast to the observation
of large streamwise structures at the wall, we find an increasing concentration of energy
in smaller scales as we increase the Prandtl number. Further, the range of scales in which
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Figure 25. Two-dimensional premultiplied PSD of (a) streamwise wall-shear and wall-heat-flux fields and
(b) streamwise velocity and scalar at y+ = 15, for the ZPG thermal TBL with Reθ ranging from
467 to 1072. The three contour lines correspond to 10 %, 50 % and 90 % of the maximum
energy density. We show: ktkzφuyuy or ktkzφuu (shaded contours), (——, blue) ktkzφΘ1yΘ1y or
ktkzφΘ1Θ1 , (——, orange) ktkzφΘ2yΘ2y or ktkzφΘ2Θ2 , (——, green) ktkzφΘ3yΘ3y or ktkzφΘ3Θ3 ,
(——, red) ktkzφΘ4yΘ4y or ktkzφΘ4Θ4 , correspondingly. Here, the spatial coordinate in
subscript denotes partial derivative with respect to that coordinate. Panels show (a) y+ = 0,
(b) y+ = 15.
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Figure 26. Two-dimensional premultiplied PSD of streamwise velocity and scalar fields at (a) y+ = 30 and
(b) y+ = 50. The two contour lines correspond to 10 % and 50 % of the maximum energy density. We show:
ktkzφuu (shaded contours), (——, blue) ktkzφΘ1Θ1 , (——, orange) ktkzφΘ2Θ2 , (——, green) ktkzφΘ3Θ3 , (——,
red) ktkzφΘ4Θ4 .

the energy is distributed also increases with Pr. Focusing on the most energetic structures,
we find that these are concentrated in a region of smaller temporal and spanwise scales
with increasing Pr at both y+ = 30 and 50. For the scalar at Pr = 6, the spectral peak is
observed at λ+z ≈ 100 and λ+t ≈ 20 for y+ = 30 and 50.
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5. Summary and conclusions

In the present study, a DNS of the thermal TBL is performed up to Reθ = 1080 with
passive scalars at Pr = 1, 2, 4 and 6, which to authors’ knowledge is the highest Prandtl
number simulated for the thermal boundary layer. Various statistical quantities for the flow
and scalars were computed and compared against the reported channel and TBL data in the
literature. Overall, the statistical quantities are in good agreement with the existing data
whenever a comparison is possible. For higher Pr, we also observed that the peak of the
scalar fluctuations decreases when Reτ increases, which is different from the trend reported
in the literature. Further, we showed that the variation of the peak in scalar fluctuation has
a weak dependence with Reτ compared with the Prandtl number. Similarly, the peak in the
heat flux also exhibits a weak dependence with Reτ compared with Pr of the scalar and
the heat flux scales as ∼Pr0.4.

In the present study, we also highlighted the behaviour of the turbulent Prandtl number
Prt, which does not approach a constant value of 1.07 as the wall is approached for higher
Prandtl numbers. In addition, we also found the corresponding Prt to increase with Pr,
confirming the findings of Alcántara-Ávila & Hoyas (2021). Finally, a brief description of
the energy distribution in the scales for different Pr at different wall-normal locations is
presented by analysing the 2-D pre-multiplied PSD.

The analysis and data provided in this work are expected to serve as a database for the
research community to assess the validity of new turbulence models and validate other
numerical and experimental results.
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Appendix A. Reynolds-stress budget

The Reynolds-stress equation is written (in index notation) as

D
〈
ujuk

〉
Dt

= Pjk − εjk + Cjk + Djk + Tjk, (A1)

where D/Dt represents the material derivative and
〈
ujuk

〉
is the Reynolds-stress tensor.

Here, Pjk denotes the production term, εjk is the viscous dissipation rate tensor, Cjk
is the velocity pressure-gradient term (which can be split into the pressure strain term
and pressure diffusion term), Tjk is the turbulent diffusion and Djk is the molecular
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Figure 27. Comparison of the Reynolds-stress budgets; (a) 〈uu〉, (b) 〈vv〉, (c) 〈ww〉, (d) 〈uv〉, (——,
black) present DNS, (◦, black) Jiménez et al. (2010), (——, blue) convection, (——, orange) velocity-pressure
diffusion, (——, green) dissipation, (——, red) production, (——, purple) molecular diffusion, (——,
brown) turbulent diffusion.

diffusion term. The corresponding terms are written respectively as

Pjk := − 〈ukul〉
∂

〈
Uj

〉
∂xl

− 〈
ujul

〉 ∂ 〈Uk〉
∂xl

, (A2)

εjk := 2ν

〈
∂uj

∂xl

∂uk

∂xl

〉
, (A3)

Cjk := − 1
ρ

〈
uj

∂p
∂xk

+ uk
∂p
∂xj

〉
, (A4)

Tjk := − ∂

∂xl

〈
ujukul

〉
, (A5)

Djk := ν
∂2

∂xl∂xl

〈
ujuk

〉
. (A6)

A detailed description of the above terms can be found in Pope (2000) and they are
non-dimensionalized by u4

τ /ν.
The obtained Reynolds-stress budgets at Reθ = 1080 (which is located almost at the

end of the computational domain before the fringe region) are compared with the data by
Jiménez et al. (2010) in the TBL at Reθ = 1100, as shown in figure 27. All the different
components contributing to the stress terms are in good agreement with the reference data.
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Figure 28. Comparison of the scalar-flux budgets; (a) 〈uθi〉, (b) 〈vθi〉, (——, black) present DNS at Pr = 2,
(◦, black) Kozuka et al. (2009) at Pr = 2, (——, blue) convection, (——, orange) scalar-pressure diffusion,
(——, green) dissipation, (——, red) production, (——, purple) molecular diffusion, (——, brown) turbulent
diffusion.

The scalar-flux equation is written (in index notation) as

D
〈
ujΘi

〉
Dt

= PΘij − εΘij + CΘij + DΘij + TΘij, (A7)

where PΘij is the production term due to both the mean gradients of the velocity and
scalar Θi, εΘij is the dissipation term, CΘij is the scalar-pressure-gradient correlation term
(which can be split into a pressure scalar-gradient correlation term and a divergence of the
pressure–scalar correlation term), TΘij is the turbulent diffusion and DΘij is the molecular
diffusion term. The terms are defined as

PΘij := −〈ulθi〉
∂

〈
Uj

〉
∂xl

+ 〈
ujul

〉 ∂ 〈Θi〉
∂xl

, (A8)

εΘij :=
(

ν + k
ρCp

) 〈
∂uj

∂xl

∂θi

∂xl

〉
, (A9)

CΘij := − 1
ρ

(
∂ 〈pθi〉

∂xj
−

〈
p
∂θi

∂xj

〉)
, (A10)

TΘij := − ∂

∂xl

〈
ujulθi

〉
, (A11)

DΘij := ∂

∂xl

(
k

ρCp

〈
uj

∂θi

∂xl

〉
+ ν

〈
θi

∂uj

∂xl

〉)
. (A12)

A detailed description of the scalar-flux budget terms can be found in Kozuka et al.
(2009) and Li et al. (2009). Due to the lack of TBL data at higher Prandtl numbers,
the budgets for the scalar at Pr = 2 are compared against the channel DNS data from
Kozuka et al. (2009), as shown in figure 28. Overall, there is a good comparison
obtained for the different terms in the scalar-flux budgets. Also, as discussed in § 3.5,
we observe a higher production compared with the channel-flow case for the vertical
passive scalar-flux budget in the overlap region. In addition, the scalar-pressure diffusion
term also exhibits the same behaviour as discussed above and it should be noted that the
discrepancy not only stems from the different problem set-up but also the wall boundary
condition for the scalar, which is Dirichlet in the present study and Neumann in the works
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Figure 29. Comparison of the scalar-flux budgets; (a) 〈uθi〉, (b) 〈vθi〉, (——, black) present DNS at Pr = 6,
(◦, black) Kozuka et al. (2009) at Pr = 7, (——, blue) convection, (——, orange) scalar-pressure diffusion,
(——, green) dissipation, (——, red) production, (——, purple) molecular diffusion, (——, brown) turbulent
diffusion.

of Kozuka et al. (2009). Further, a comparison of the data obtained at Pr = 6 with the
data obtained by Kozuka et al. (2009) at Pr = 7 for a channel flow is also provided in
figure 29. Overall, the comparison of the stress budgets at different parameter points shows
a good agreement with the data available in the literature. Note that the small discrepancy
observed in figure 29 is due to the different Prandtl numbers.
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