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Abstract

This paper investigates new properties concerning the multifractal structure of a class
of random self-similar measures. These measures include the well-known Mandelbrot
multiplicative cascades, sometimes called independent random cascades. We evaluate the
scale at which the multifractal structure of these measures becomes discernible. The value
of this scale is obtained through what we call the growth speed in Hölder singularity sets of
a Borel measure. This growth speed yields new information on the multifractal behavior
of the rescaled copies involved in the structure of statistically self-similar measures. Our
results are useful in understanding the multifractal nature of various heterogeneous jump
processes.
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1. Introduction

This paper investigates new properties concerning the multifractal structure of random self-
similar measures. The class of measures to which our results apply includes the well-known
Mandelbrot multiplicative cascades [39], sometimes called independent random cascades. The
case of another important class, the random Gibbs measures, was treated in [12]. Since these
two important subclasses of random self-similar measures are extensively discussed in the
sequel, in order to fix ideas we recall their definitions here.

• Random Gibbs measures, as considered in [12], are obtained as follows. Let b ≥ 2 be
an integer. Let φ be a Hölder continuous function on R

d . Assume that φ is 1-periodic
in each variable. Also let ω = (ωn)n≥0 be a sequence of independent random phases
uniformly distributed in [0, 1]d . Let T be the shift transformation on [0, 1)d :

T (t1, . . . , td ) = (bt1 (mod 1), . . . , btd (mod 1)).

The Birkhoff sums associated with φ are defined by

Sn(φ, ω)(t) =
n−1∑
k=0

φ(T kt + ωk) for all t ∈ [0, 1)d and all n ≥ 1,
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Renewal of singularity sets 163

where T k stands for the kth iterate of T . It follows from the thermodynamic formal-
ism [48], [33] that the random sequence of measures on [0, 1]d defined by

µn(dt) = exp(Sn(φ, ω)(t))∫
[0,1] exp(Sn(φ, ω)(u)) du

dt

converges almost surely, as n → ∞, to a measure. This is called a random Gibbs
measure.

• We also focus on independent random cascades (also referred to as canonical cas-
cades [39]). Let X be a real-valued random variable. Define L : R � q �→ d log b +
log E(exp(qX)), and assume thatL(1) < ∞. For every b-adic boxB included in [0, 1]d ,
let XB be a copy of X. Moreover, assume that the XBs are mutually independent. A
branching random walk Sn is then defined by

Sn(t) =
∑

1≤j≤n

∑
B∈�j

1B(t)XB for all t ∈ [0, 1)d and all n ≥ 1,

where �j denotes the set of b-adic cubes of generation j .
The canonical cascade measure µ is then obtained as the almost-sure weak limit of the
sequence µn on [0, 1]d given by µn(dt) = E(expX)−n exp(Sn(t)) dt . Let θ : R � q �→
(qL(1) − L(q))/ log b. In [39] and [31] it was shown that θ ′(1−) > 0 is a necessary
and sufficient condition for µ almost surely to be a positive measure with support equal
to [0, 1]d .

We now discuss the purpose and main results of this work, and their connection with
multifractal analysis. Multifractal analysis is a field introduced by physicists in the context of
fully developed turbulence [24]. It is now widely accepted as a tool relevant in modeling other
physical and social phenomena characterized by extreme spatial (or temporal) variability [40],
[44], [35]. Let B(t, r) denote the closed ball of radius r centered at t . Given a positive
measureµ defined on a compact subset of R

d , performing the multifractal analysis ofµ consists
in computing (or estimating) the Hausdorff dimensions, dµ(α), of Hölder singularities setsEµα .
These sets Eµα are the level sets associated with the Hölder exponent

hµ(t) = lim
r→0+

logµ(B(t, r))

log r

(whenever it is defined at t). Thus,

Eµα = {t : hµ(t) = α}. (1.1)

Of course, these limit behaviors are incalculable numerically, both when simulating model
measures and when processing real data. Nevertheless, this difficulty can be circumvented
since the Hausdorff dimension of Eµα can sometimes be numerically estimated by counting at
scale 2−j the number of dyadic boxes B such that µ(B) ≈ 2−jα (this could be done with any
regular fine grid). This number can formally be defined, for any scale j ≥ 0, any ε > 0, and
any α > 0, by

Nε
j (α) = card{B ∈ �j : b−j (α+ε) ≤ µ(B) ≤ b−j (α−ε)}. (1.2)
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Then, when some formal multifractal conditions are fulfilled, it can be shown that, for some
α > 0,

dµ(α) = lim
ε→0

lim
j→∞

logNε
j (α)

log 2j
. (1.3)

This is the case, for instance, for the multifractal measures used as models [39] in the applications
mentioned above. It is thus natural to seek theoretical results giving estimates of the first scale at
which a substantial part of the singularity set Eµα is discernible when measuring the µ-mass of
the elementsB of the regular grid. In other words, we search for the first generation J ≥ 0 such
that, for every j ≥ J , Nε

j (α) ≈ 2jdµ(α). This is of course important for numerical applications
and modeling.

The properties studied in this paper and in [12] rely on this problem. We provide new, accurate
information on the fine structure of multiplicative cascades, thus providing some answers to the
above problems. As an interesting by-product of this work, we find that Mandelbrot measures
and Gibbs measures have very different behaviors from the statistical self-similarity point of
view, although it is known that they cannot be distinguished by the form of their multifractal
spectra. Finally, our results are critical tools for the Hausdorff dimension estimate of a new
class of supremum limit sets (see (1.7)) involved in multifractal analysis of recently studied
jump processes [10], [9], [11].

1.1. A definition of random self-similar measures

We now specify what we mean by a random self-similar measure. Our point of view takes
into account a structure which often arises in the construction of random measures generated
by multiplicative processes.

Let � be the set of closed b-adic subhypercubes of [0, 1]d . A random measure µ(ω) on
[0, 1]d , d ≥ 1, is said to be random self-similar if there exist an integer b ≥ 2, a sequence
(Qn(t, ω))n≥1 of random nonnegative functions, and a sequence of random measures (µI )I∈�

on [0, 1]d such that

1. for every I ∈ � and g ∈ C([0, 1]d ,R) (the space of real-valued, continuous functions
on [0, d]d ), ∫

[0,1]d
g(u)µ(ω)(du)

d=
∫

[0,1]d
g(u)µI (ω)(du) (1.4)

(where ‘ d=’ denotes equality in distribution), and

2. with probability 1, for every n ≥ 1, I ∈ � of generation n, and g ∈ C(I,R),
∫
I

g(v)µ(ω)(dv) = �(I )

∫
I

Qn(v, ω)g(v)µ
I (ω) ◦ f−1

I (dv), (1.5)

where fI stands for a similitude that maps [0, 1]d onto I and � is the Lebesgue measure.

Property 1 asserts that the measures µI and µ have the same probability distribution.
Property 2 asserts that, up to the densityQn, the behavior of the restriction ofµ to I is governed
by the rescaled copy µI of µ. Of course, the random densityQn(t, ·) plays a fundamental role,
both in the construction of the measure µ, which is often equal to the almost-sure weak limit
of Qn(t, ·)�, and in the local behavior of µ at scale b−n.

We restrict ourselves to measures with support equal to [0, 1]d . Up to technical refinements,
our point of view can easily be extended to measures whose support is the limit set of more
general iterated random similitude systems (see [27], [21], [45], [1], and [5]).
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The classes of measures described above illustrate conditions (1.4) and (1.5). Gibbs measures
appear in random dynamical systems [33]. Independent multiplicative cascades [39], [31]
are in fact contained in a wider class of [0, 1]d -martingales (in the sense of [29] and [30]);
see [7] for details. This larger class also contains compound Poisson cascades [6] and their
extensions [3], [7]. As claimed above, these two classes are quite similar regarding their
multifractal structure, in the sense that any measure from these classes is governed by the so-
called multifractal formalism [17], [46]. However, the study of their self-similarity properties
reveals the notable differences between them. These differences are consequences of their
construction schemes: for the class of random Gibbs measures, the copies µI used in (1.4)
and (1.5) only depend on the generation of I , while, as illustrated by the construction of
canonical cascades, they are all different for [0, 1]d -martingales (since they depend on the
interval I ).

This difference is quantitatively measured using a concept which is related to the multifractal
structure, namely the growth speed in the µI Hölder singularity sets Eµ

I

α (see Section 1.3 and
Theorems 1.1 and 1.2 in Section 1.4, below). For independent random cascades, this quantity
is precisely defined and studied in the rest of the paper. It yields an estimate of the largest
scale at which the observation of the mass distribution of the µI accurately coincides with the
prediction of the multifractal formalism.

1.2. New supremum limit sets and conditioned ubiquity

The notion of growth speed in Hölder singularity sets (defined in Section 1.3) naturally
appears in the computation of the Hausdorff dimension of a new type of supremum limit set.
These supremum limit sets are closely connected to the level sets of the pointwise Hölder
exponent of some heterogeneous jump processes considered in [10] and [11]. This is why these
sets are so interesting.

Let µ be a finite Borel measure whose support is [0, 1]. The heterogeneous jump processes
we consider are either purely discontinuous measures which have the form

∑
j≥0

∑
0≤k≤bj−1

j−2µ([kb−j , (k + 1)b−j ])δkb−j ,

or the Lévy processes X in multifractal time µ defined as (X ◦ µ([0, t]))0≤t≤1. The frac-
tal geometry of supremum limit sets already occupies an important role in determining the
multifractal nature of homogeneous sums of Dirac masses [22] and Lévy processes [28].
In this homogeneous context, the measure µ is the Lebesgue measure, and computing the
dimension of these sets relies on the notion of ubiquity (see [19], for instance). The study of
(X ◦µ([0, t]))0≤t≤1 requires the notion of heterogeneous (or conditioned) ubiquity introduced
in [10] and [8]. The work in [11] is a fundamental step in the study of the fractal nature of
the path of processes under multifractal subordination. The importance of this topic comes
from the fact that such processes have been introduced as relevant models in applications,
especially in mathematical finance [40], [42], [41]. The reader will find an extensive study of
processes in multifractal time in [50], which provides, for instance, the large deviation spectrum
of Lévy processes in multifractal time, that is, a statistical description of the variations of these
processes, rather than the geometric one given in [11].

We now describe the nature of the supremum limit sets discussed above. Let µ be a random
self-similar measure whose support is [0, 1]. Let x̃ = (xn)n≥1 denote a countable sequence
of points in [0, 1]d , and let λ̃ = (λn)n≥1 be a positive sequence decreasing to 0 such that
lim supn→∞ B(xn, λn) = [0, 1]. For h > 0, ξ > 1, and ε̃ = (εn)n≥1, the latter a positive
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sequence converging to 0, let

K(µ, h, ξ, x̃, λ̃, ε̃) =
⋂
N≥1

⋃
{n≥N : λh+εnn ≤µ([xn−λn,xn+λn])≤λh−εnn }

[xn − λξn, xn + λξn]. (1.6)

Heuristically,K(µ, h, ξ, x̃, λ̃, ε̃) contains the points that infinitely often belong to an interval of
the form [xn − λ

ξ
n, xn + λ

ξ
n], upon the condition thatµ([xn−λn, xn+λn]) ∼ λhn. This condition

implies that µ has roughly Hölder exponent h at xn at scale λn. One of the main results of [10],
[8], and [9] is the computation of the Hausdorff dimension ofK(µ, h, ξ, x̃, λ̃, ε̃). The value of
this dimension is related to the free energy function τµ considered in the multifractal formalism
for measures in [26] and [17]. For every q ∈ R and for every integer n ≥ 1, introduce the
quantities

τµ,n(q) = −1

n
logb

(∑
I∈�n

µ(I)q
)

and τµ(q) = lim inf
n→∞ (τµ,n(q)).

The Legendre transform, τ ∗
µ, of τµ at h > 0 is defined as τ ∗

µ(h) := infq∈R(hq − τµ(q)).
Under suitable assumptions, the authors proved in [10] and [8] that, for all h such that

τ ∗
µ(h) > 0 and all ξ ≥ 1, there exists an ε̃ such that, with probability 1,

dim(K(µ, h, ξ, x̃, λ̃, ε̃)) = τ ∗
µ(h)/ξ (1.7)

(where dim(·) stands for Hausdorff dimension).
This result is a nontrivial generalization of what are referred to as ‘ubiquity properties’

(see [19] and references therein) of the resonant system {(xn, λn)}n (see [2]). The main
difficulty here lies in the fact that µ may be a multifractal measure and not just the uniform
Lebesgue measure. Results on growth speed in Hölder singularity sets are necessary to obtain
estimate (1.7).

Suppose that µ is an independent random cascade whose support is [0, 1], and that X is a
stable Lévy process of index β ∈ (0, 1). Let ν denote the derivative of (X ◦µ([0, t]))0≤t≤1. It
was shown in [11] that there exist x̃, λ̃, and ε̃ as above such that, for every h ∈ (0, τ ′

µ(1)/β],
the level set Eνh differs from K(µ, τ ′

µ(1), τ
′
µ(1)/βh, x̃, λ̃, ε̃) by (roughly speaking) only a

small set.

1.3. Growth speed in the Hölder singularity sets of µI

Let µ be a random self-similar, positive Borel measure as described in Section 1.1. As we
said, multifractal analysis of µ [27], [34], [43], [23], [1], [14], [5] usually considers Hölder
singularities sets of the form (1.1) and their Hausdorff dimension dµ(α), which is a measure
of their size. The method used to compute dµ(α) is to find a random measure µα (of the
same nature as µ) that is concentrated on Eµα ∩ E

µα
τ∗
µ(α)

. This measure is often referred to

as an analyzing measure of µ at α. Then, by the Billingsley lemma ([16, pp. 136–145]),
we obtain dµ(α) = τ ∗

µ(α), and the multifractal formalism for measures developed in [17] is
said to hold for µ at α. Finally, the estimate (1.3) is a direct consequence of the multifractal
formalism [49] for the large deviation spectrum. Thus, the existence of µα has important
consequences regarding the possibility of measuring the mass distribution of µ at high enough
resolutions.
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In this paper we refine the classical approach by considering, instead of the level sets Eµα ,
the finer level sets Ẽµα,p and Ẽµα defined, for a sequence (εn)n decreasing to 0, by

Ẽµα,p = {t ∈ [0, 1]d : b−n(α+εn) ≤ µ(In(t)) ≤ b−n(α−εn) for all n ≥ p} (1.8)

Ẽµα =
⋃
p≥1

Eµα,p, (1.9)

where In(t) denotes the b-adic cube of generation n containing t . It is possible to choose
(εn)n≥1 such that, for all the exponents α for which τ ∗

µ(α) > 0, with probability 1 we have
µα(Ẽ

µ
α ) = ‖µα‖, where ‖µα‖ denotes the total mass of µα .

Since the set sequence (Ẽµα,p)p≥1 is nondecreasing and µα(Ẽ
µ
α ) = ‖µα‖, we can define the

growth speed of (Ẽµα,p) as the smallest value of p for which the µα-measure of Ẽµα,p reaches a
certain positive fraction f ∈ (0, 1) of the mass of µα , i.e.

GS(µ, α) = inf{p : µα(Ẽµα,p) ≥ f ‖µα‖}.
For each copyµI ofµ, the corresponding family of analyzing measuresµIα exists and is related
to µI as µα is related to µ. The result we focus on in the following is the asymptotic behavior
(as the generation of I goes to ∞) of

GS(µI , α) = inf{p : µIα(Ẽµ
I

α,p) ≥ f ‖µIα‖}. (1.10)

This number yields an estimate of the number of generations needed to observe a substantial

amount of the singularity set Eµ
I

α . Let

Nn(µ
I , α) = card{B ∈ �n : b−n(α+εn) ≤ µI (B) ≤ b−n(α−εn)}.

As a counterpart to controlling GS(µI , α), we shall also control the smallest rank n for which
Nn(µ

I , α) behaves like bnτ
∗
µ(α). This rank is defined using

GS′(µI , α) = inf{p : bn(τ∗
µ(α)−εn) ≤ Nn(µ

I , α) ≤ bn(τ
∗
µ(α)+εn) for all n ≥ p} (1.11)

and yields far more precise information than a result like (1.3). We should expect that (εn)
and GS(µI , α) are related through some constraints. This is indeed the case and this point is
discussed in Theorem 3.2 and Remarks 3.1 and 3.2.

1.4. A simplified version of the main results

In this paper we focus on the one-dimensional case and we deal with independent random
cascades, which are a slight extension of the first example of [0, 1]-martingales introduced
in [39] (see Section 3.1). We start by recalling the theorem proved in [12], and then give
simplified versions of the main results, detailed in Section 3.

Theorem 1.1. Let µ be a random Gibbs measure as defined above (in particular, in (1.4)
and (1.5), µI = µI

′
if I and I ′ are of the same generation). Let β > 0. There exists a choice of

(εn)n≥1 such that, with probability 1, for all α > 0 such that τ ∗
µ(α) > 0, if I is of large enough

generation j then GS(µI , α) ≤ exp(
√
β log j).

The fact that GS(µI , α) behaves like o(j) as j → ∞ is a crucial property needed to
establish (1.7) for random Gibbs measures.

Under suitable assumptions, we have the following result (see Theorem 3.2), which shall be
compared with Theorem 1.1.
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Theorem 1.2. Let µ be an independent random cascade. Let η > 0. There exists a choice of
(εn)n≥1 such that, with probability 1, for all α > 0 such that τ ∗

µ(α) > 0, if I is of large enough
generation j then GS(µI , α) ≤ j logη j .

Consequently, we lose the uniform upper bound of o(j) for GS(µI , α) when I ∈ �j . In
fact this ‘worse’ behavior is not surprising. Indeed, for an independent random cascade, at
each resolution j the behaviors at small scales of bj distinct measures µI have to be controlled
simultaneously. However, this technical difficulty can be circumvented by using a refinement
of Theorem 1.2 (see Theorems 3.3 and 5.1), which is enough to prove (1.7).

Theorem 1.3. Let µ be an independent random cascade. Let η > 0. There exists a choice
of (εn)n≥1 such that, with probability 1, for every α > 0 such that τ ∗

µ(α) > 0, µ-almost
every t , and large enough j , GS(µBj (t), α) ≤ j log−η j (where Bj (t) denotes the b-adic box
of generation j containing t).

The paper is organized as follows. Section 2 gives new definitions and establishes two
general propositions useful for our main results. In Section 3 independent random cascades
are defined in an abstract way. This makes it possible to consider Mandelbrot measures, as
well as their substitute in the critical case of degeneracy. Then the main results (Theorems 3.1,
3.2, and 3.3) are stated and proved. Theorem 3.4 is a counterpart to Theorem 1.2 in terms of
GS′(µI , α) (recall (1.11)). Theorem 3.5 concerns a problem connected with the estimate of
the growth speed in singularity sets, namely the estimation of the speed of convergence of τµ,n
to τµ. Section 4 provides the proofs of the results stated in Section 3. Finally, Section 5 is
devoted to the version of Theorem 3.3 needed to recover (1.7).

The techniques presented in this paper can be applied to derive similar results for other
random self-similar [0, 1]-martingales described in [6], [3], and [7].

2. General estimates for the growth speed in singularity sets

2.1. Measure of fine-level sets: a neighboring boxes condition

Let (�,B,P) stand for the probability space on which the random variables in this paper
are defined. Fix an integer b ≥ 2 and let A = {0, . . . , b − 1}. For every w ∈ A∗ = ⋃

n≥0 An

(A0 := {∅}), let Iw be the closedb-adic subinterval of [0, 1] naturally encoded byw. Ifw ∈ An,
we set |w| = n. For n ≥ 1 and 0 ≤ k ≤ bn − 1, we denote the interval [kb−n, (k + 1)b−n)
by In,k . If t ∈ [0, 1) then kn,t is the unique integer such that t ∈ [kn,t b−n, (kn,t + 1)b−n).
We denote by w(n)(t) the unique element w of An such that Iw = [kn,t b−n, (kn,t + 1)b−n].
With w ∈ An we can associate a unique number, i(w) ∈ {0, 1, . . . , bn − 1}, such that Iw =
[i(w)b−n, (i(w)+ 1)b−n]. Then, for v,w ∈ An, δ(v,w) stands for |i(v)− i(w)|. Let µ and
m be two positive Borel measures with supports equal to [0, 1], let ε̃ = (εn)n≥0 be a positive
sequence, let N ≥ 1, and let α ≥ 0.

We consider a slight refinement of the sets introduced in (1.8) and (1.9). For p ≥ 1, we
define

Eµα,p(N, ε̃) = {t ∈ [0, 1] : bγn(α−γ εn)µ(Iw)γ ≤ 1 for all n ≥ p,

all w ∈ An such that δ(w,w(n)(t)) ≤ N, and all γ ∈ {−1, 1}},
Eµα (N, ε̃) =

⋃
p≥1

Eµα,p(N, ε̃).
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This set contains the points t for which, for every large enough n, the µ-measure of the 2N + 1
neighbors of In,kt belongs to [b−n(β+εn), b−n(β−εn)]. The information on neighboring intervals
is involved in the proof of (1.7).

For n ≥ 1 and ε, η > 0, consider the quantity

SN,ε,ηn (m,µ, α) =
∑

γ∈{−1,1}
bn(α−γ ε)γ η ∑

{v,w∈An : δ(v,w)≤N}
m(Iv)µ(Iw)

γ η. (2.1)

The following result was established in [12], but the proof is given here for completeness.

Proposition 2.1. Let µ and m be two positive Borel measures with supports equal to [0, 1].
Let ε̃ = (εn)n≥0 be a positive sequence, let N ≥ 1, and let α ≥ 0. Let (ηn)n≥1 be a positive
sequence. If

∑
n≥1S

N,εn,ηn
n (m,µ, α) < ∞, then Eµα (N, ε̃) is of full m-measure.

Remark 2.1. Similar conditions were used in [13] to obtain a comparison between the multi-
fractal formalisms of [17] and [46].

Proof of Proposition 2.1. For γ ∈ {−1, 1} and n ≥ 1, define

Eµα (N, εn, γ ) = {t ∈ [0, 1] : bγn(α−γ εn)µ(Iw)γ ≤ 1

for all w ∈ An such that δ(w,w(n)(t)) ≤ N}. (2.2)

For t ∈ [0, 1] and k ∈ {−N, . . . , N}, if there exists a (necessarily unique) w ∈ An such that
i(w)− i(w(n)(t)) = k, this word w is denoted w(n)k (t).

For γ ∈ {−1, 1}, let Sn,γ = ∑
−N≤k≤N mk,n with

mk,n = m({t ∈ [0, 1] : i(w)− i(w(n)(t)) = k implies that bγn(α−γ εn)µ(Iw)γ > 1}).
We clearly have

m(Eµα (N, εn,−1)c ∪ Eµα (N, εn, 1)c) ≤ Sn,−1 + Sn,1. (2.3)

Fix ηn > 0 and k, −N ≤ k ≤ N . Let Y (t) be the random variable defined to equal

bγn(α−γ εn)ηnµ
(
I
w
(n)
k (t)

)γ ηn

ifw(n)k (t) exists or to equal 0 otherwise. The Markov inequality applied toY (t)with respect tom
yields mk,n ≤ ∫

Y (t) dm(t). Since Y is constant over each b-adic interval Iv of generation n,
we obtain

mk,n ≤
∑

{v,w∈An : i(w)−i(v)=k}
bn(α−γ εn)γ ηnm(Iv)µ(Iw)γ ηn .

Summing over k ∈ {−N, . . . , N} yields Sn,−1 + Sn,1 ≤ S
N,εn,ηn
n (m,µ, α). The conclusion

follows from (2.3) and from the Borel–Cantelli lemma.

2.2. Uniform growth speed in singularity sets

Let � be a set of indices and �∗ a measurable subset of � of probability 1. Some notation
and technical assumptions are needed to state the general result that we shall apply in Section 3.
These assumptions describe a common situation in multifractal analysis. In particular, the
measures in the following sections satisfy these requirements.
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• For every ω ∈ �∗, we consider two sequences of families of measures, ({µwλ }λ∈�)w∈A∗
and ({mwλ }λ∈�)w∈A∗ (indexed by A∗), such that, for every w ∈ A∗, the elements of
the families {µwλ }λ∈� and {mwλ }λ∈� are positive, finite Borel measures whose support
is [0, 1]. We write {µ∅

λ }λ∈� as {µλ}λ∈� and we write {m∅

λ }λ∈� as {mλ}λ∈�.

• We consider an integerN ≥ 1, a positive sequence ε̃ = (εn)n≥1, and a family of positive
numbers {αλ}λ∈�. Then, recalling (2.2), for every j ≥ 0, w ∈ Aj , and p ≥ 1 we
consider the sets

E
µwλ
αλ,p(N, ε̃) =

⋂
n≥p

E
µwλ
αλ (N, εn,−1) ∩ Eµwλαλ (N, εn, 1).

The sets {Eµwλαλ,n(N, ε̃)}n form a nondecreasing sequence. We assume that the measuremwλ
is concentrated on limp→∞ E

µwλ
αλ,p(N, ε̃). We define the growth speed of E

µwλ
αλ,p(N, ε̃) as

GS(mwλ , µ
w
λ , αλ,N, ε̃) = inf{p ≥ 1 : mwλ (Eµ

w
λ

αλ,p(N, ε̃)) ≥ ‖mwλ ‖/2}. (2.4)

Since
µwλ

(
lim
p→∞E

µwλ
αλ,p(N, ε̃)

)
= ‖mwλ ‖,

we have
GS(mwλ , µ

w
λ , αλ,N, ε̃) < ∞.

This number is a measure of the number, p, of generations needed for E
µwλ
αλ,p(N, ε̃) to

recover a certain given fraction (here chosen to equal 1
2 ) of the measure mwλ .

• We assume that, for every positive sequence η̃ = (ηj )j≥0, there exist a random vec-
tor (U(η̃), V (η̃)) ∈ R+ × R

N+, a sequence (Uw, V w = (V wn )n∈N)w∈A∗ of copies of
(U(η̃), V (η̃)), and a sequence (ψj (η̃))j≥0 such that, for P-almost every ω ∈ �∗,

Uw ≤ inf
λ∈� ‖mwλ ‖, V wn ≥ sup

λ∈�
SN,εn,ηnn (mwλ , µ

w
λ , αλ),

for all w ∈ A∗ and all n ≥ ψ|w|(η̃), (2.5)

where the quantity SN,εn,ηnn (mwλ , µ
w
λ , αλ) is as defined in (2.1) (remember that |w| = j

if w ∈ Aj ). This provides us with a uniform control over λ ∈ � of the families of
measures {(mwλ , µwλ )}w∈A∗ .

Proposition 2.2. (Uniform growth speed in singularity sets.) Assume that two sequences of
positive numbers η̃ = (ηj )j≥0 and (ρj )j≥0 are fixed, and let (Sj )j≥0 be a sequence of integers
such that Sj ≥ ψj (η̃). If

∑
j≥0

bj P(U(η̃) ≤ b−ρj ) < ∞ and
∑
j≥0

bjbρj
∑
n≥Sj

E(Vn(η̃)) < ∞, (2.6)

then, with probability 1, and for every large enough j , every w ∈ Aj , and λ ∈ �,

GS(mwλ , µ
w
λ , αλ,N, ε̃) ≤ Sj .
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Proof. Fix j ≥ 1 and w ∈ Aj . As shown in the proof of Proposition 2.1, for every n ≥ 1
and every λ ∈ � we can write

mwλ (E
µwλ
αλ (N, εn,−1)c ∪ Eµwλαλ (N, εn, 1)c) ≤ SN,εn,ηnn (mwλ , µ

w
λ , αλ).

Thus, using (2.5), we obtain

mwλ

( ⋃
n≥Sj

(E
µwλ
αλ (N, εn,−1)c ∪ Eµwλαλ (N, εn, 1)c)

)
≤

∑
n≥Sj

V wn . (2.7)

We apply the ‘random self-similar control’ (2.6) combined with the Borel–Cantelli lemma. On
the one hand, the left-hand relation of (2.6) yields

∑
j≥1

P(there exists a w ∈ Aj such that Uw ≤ b−ρj ) < ∞.

Hence, with probability 1, for large enough j and for all w ∈ Aj ,

sup
λ∈�

‖mwλ ‖−1 ≤ (Uw)−1 ≤ bρj . (2.8)

On the other hand, the right-hand relation of (2.6) yields

∑
j≥1

P

(
there exists a w ∈ Aj such that bρj

∑
n≥Sj

V wn ≥ 1

2

)
≤ 2

∑
j≥1

bjbρj E

( ∑
n≥Sj

V wn

)
< ∞.

This implies that, with probability 1, bρj
∑
n≥Sj

V wn < 1
2 for every large enough j and all

w ∈ Aj .
Thus, by (2.8), supλ∈�

∑
n≥Sj

V wn /‖mwλ ‖ < 1
2 . By combining this with (2.7) and (2.4), we

find that
GS(mwλ , µ

w
λ , αλ,N, ε̃) ≤ Sj

for every λ ∈ �.

3. Main results for independent random cascades

3.1. Definition

Let v = (v1, . . . , v|v|) ∈ A∗. For every k ∈ {1, . . . , |v|}, v|k is the truncated word
(v1, . . . , vk) ∈ Ak , and by convention v|0 is the empty word, ∅. If v and w belong to A∗ then
the word obtained by concatenation of v and w is denoted by either vw or v · w.

In this paper we focus on the measures introduced in [39] and, more recently, in [5]. A
measure µ(ω) is said to be an independent random cascade if it has the following property.
There exist a sequence of random positive vectors (W(w) = (W0(w), . . . ,Wb−1(w)))w∈A∗
and a sequence of random measures (µw)w∈A∗ such that

(P1) for all v,w ∈ A∗, µ(Ivw) = µv(Iw)
∏|v|−1
k=0 Wvk+1(v|k) (with µ∅ = µ);

(P2) the random vectors W(w), w ∈ A∗, are independent and identically distributed with a
vector W = (W0, . . . ,Wb−1) such that

∑b−1
k=0 E(Wk) = 1;

(P3) for all v ∈ A∗, (µv(Iw))w∈A∗ ≡ (µ(Iw))w∈A∗ , and for every j ≥ 1 the measures
µv , v ∈ Aj , are mutually independent; and
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(P4) for every j ≥ 1, the σ -algebras σ(W(w) : w ∈ ⋃
0≤k≤j−1 Ak) and σ(µv(Iw) : v ∈ Aj ,

w ∈ A∗) are independent.

Let (W(w))w∈A∗ be as above. For q ∈ R, define the function

τ̃µ(q) = − logb

(
E

(b−1∑
k=0

W
q
k

))
∈ R ∪ {−∞}. (3.1)

In the following we consider two classes of measures.

• For τ̃ ′
µ(1

−) > 0, we consider nondegenerate multiplicative martingales. Let (W(w) =
(W0(w), . . . ,Wb−1(w)))w∈A∗ be a sequence of random positive vectors satisfying (P2).
With probability 1, for all v ∈ A∗ the sequence of measures (µvj )j≥0 defined on [0, 1] by

dµvj
d�

(t) = bj
j−1∏
k=0

Wtk+1(v · t |k) (3.2)

converges weakly, as n → ∞, to a measure µv . The following statements hold.

1. For µ = µ∅, properties (P1) to (P4) are satisfied.

2. Forµ = µ∅, the total masses‖µv‖ are almost surely positive and their expectations
are equal to 1 (see [31]and [20]).

• In the critical case, τ̃ ′
µ(1

−) = 0, we consider the following modified construction. Sup-
pose that τ̃ ′

µ(1
−) = 0 and that τ̃µ(h) > −∞ for some h > 1. Then, with probability 1,

for all v ∈ A∗, µv(Iw) = limj→∞(−Hv
j (w)), where

Hv
j (w) =

∑
u∈Aj

(|w|+j−1∏
k=0

W(w·u)k+1(v · (w ·u|k))
)

log

(|w|+j−1∏
k=0

W(w·u)k+1(v · (w ·u|k))
)
,

defines a function on the b-adic intervals Iw which is a positive Borel measure with
support [0, 1] (see [5] and [37]). The following statements hold.

1. For µ = µ∅, properties (P1) to (P4) are satisfied.

2. For µ = µ∅, E(‖µ‖h) < ∞ for h ∈ [0, 1) but E(‖µ‖) = ∞.

3.2. Analyzing measures

Let O be the interior of the interval {q ∈ R : τ̃ ′
µ(q)q − τ̃µ(q) > 0}. We always have

(0, 1) ⊂ O, and O ⊂ (−∞, 1) if τ̃ ′
µ(1

−) = 0. We assume that

• if τ̃ ′
µ(1

−) > 0 then O contains the closed interval [0, 1], and that

• if τ̃ ′
µ(1

−) = 0 then 0 ∈ O.

For q ∈ O, v ∈ A∗, and j ≥ 1, let µvq,j be the measure defined as µvj in (3.2) but with the
sequence (Wq(v · w) = (bτ̃µ(q)W0(v · w)q, . . . , bτ̃µ(q)Wb−1(v · w)q))w instead of (W(v·w))w.
It was proved in [5] that, on a set �∗ ⊂ � of probability 1, for all ω ∈ �∗, all v ∈ A∗, and all
q ∈ O, the sequence (µvq,j ) converges weakly to a positive measure µvq .
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It was proved in [15] and [5] that, with probability 1,

• the mappings O � q �→ Yq(v) are analytic and positive, where

µ∅

q = µq, Yq = ‖µ∅

q ‖, and Yq(v) = ‖µvq‖ for v ∈ A∗, (3.3)

and that

• τµ ≡ τ̃µ on O.

Finally, we remark that R+ ⊂ O and R− ⊂ O if and only if, for all q ∈ R+ and, respectively,
q ∈ R−, τ̃µ(hq)− hτ̃µ(q) > 0 and h > 1, which amounts to saying that, for all q ∈ R+ and,
respectively, q ∈ R−, E(Y hq ) < ∞ and h > 1 (see the proof of Lemma 4.3).

3.3. Main results

For an independent random cascadeµ, we assume that if τ̃ ′
µ(1

−) > 0 then O contains [0, 1],
and that if τ̃ ′

µ(1
−) = 0 then O ⊂ (−∞, 1). We also suppose that 0 ∈ O.

Theorem 3.1. Let µ be an independent random cascade. Let N be an integer greater than or
equal to 1, and let ε̃ = (εn)n≥1 be a sequence of positive numbers decreasing to 0. Assume

that the series
∑
n≥1 nb

−nχε2
n converges, for all χ > 0.

Then, with probability 1 for every q ∈ O, τµ(q) = τ̃µ(q) and the level sets Eµ
τ ′
µ(q)

(N, ε̃)

and E
µq
τ ′
µ(q)q−τµ(q)(N, ε̃) are both of full µq -measure.

Remark 3.1. The conclusions of Theorem 3.1 hold if

there exists an η > 0 such that εn ≥ n−1/2 log(n)1/2+η for every n. (3.4)

This condition on (εn)n≥1 must be compared with the stronger one which holds if we consider
only one measure, µq , generated by a vector Wq = Wq(∅) which satisfies the additional
conservative condition

∑b−1
k=0 Wq,k = 1. Indeed, in this case, Yq = 1 almost surely and, as a

function of (t, ω), the logarithmic density log(µq(In(t)))/n is a sum of independent, identically
distributed random variables with respect to the probability measure Qq , to be introduced in
Section 4.4. If 0 < σ 2

q = ∑b−1
k=0 Wq,k log2Wq,k < ∞, then the law of the iterated logarithm

implies that, with probability 1,

lim sup
n→∞

∣∣∣∣ logµq(In(t))− n(τ ′
µ(q)q − τµ(q))

σq
√
n log log(n)

∣∣∣∣ = 1 µq -almost everywhere.

In this case, for n ≥ 3, εn can be chosen to equal σ ′√n log log(n) for any σ ′ > σq .
The estimate (3.4) comes from our wish to control the asymptotic behavior of an uncountable

family of measures simultaneously, and from the technique we use. Moreover, when Wq

does not satisfy the conservative condition described above, it seems difficult to control the
asymptotic behavior using a term of the form σ ′√|v| log log(|v|).
Theorem 3.2. (Growth speed in Hölder singularity sets.) Under the assumptions of Theo-
rem 3.1, assume that (εn)n satisfies (3.4) and that there exists an A > 1 such that, with
probability 1, A−1 ≤ Wi or Wi ≤ A for all i, 0 ≤ i ≤ b − 1, and let K be a compact
subinterval of O ∩ R+ or, respectively, O ∩ R−. Then, with probability 1, for large enough j ,
all q ∈ K , and w ∈ Aj ,

max(GS(µwq , µ
w, τ ′

µ(q),N, ε̃),GS(µwq , µ
w
q , τ

′
µ(q)q − τµ(q),N, ε̃)) ≤ Sj , (3.5)

with Sj = [exp((j log(j)η)1/(1+2η))] (where [·] denotes the integer-part function).
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If there exists an η > 0 such that, for every n, εn ≥ log(n)−η, then the above conclusion
holds with Sj = [j log(j)η

′ ], for any η′ > 2η.

Remark 3.2. Our computations show that, the faster (εn) decreases with n, the faster the
growth speed increases (in the sense that Sj increases faster than j ). In Theorem 3.2, the first
choice of (εn) corresponds to the fastest choice for the convergence speed of (εn) allowed by
our technique (see Remark 3.1). As a counterpart, Sj is very large compared to j . The second
choice for (εn) is the slowest one, but as a counterpart Sj corresponds to the ‘best’ choice
allowed to minimize Sj /j .

Using the proof of Theorem 3.2, we can find other pairs ((Sj )j≥1, (εn)n≥1) for which (3.5)
holds and whose asymptotic behaviors are intermediate between those of the ‘extremal’ pairs
presented in the statement.

Remark 3.3. We assume that the number of neighbors, N , is fixed. In fact, it is not difficult
to consider a sequence of Nn neighbors simultaneously with the speed of convergence εn. The
number Nn can then go to ∞ under the condition that logNn = o(nε2

n). Another modification
would consist in replacing the fixed fraction f in (1.10) by a fraction fj going to 1 as j goes
to ∞. The choice fj = 1 − b−sj with sj = j is convenient. These two improvements yield
technical complications, but comparable results are easily derived from the proofs we propose.

The growth speed obtained in Theorem 3.2 can be improved by considering results valid
only almost surely, for almost every q, µq -almost everywhere. Recall that if t ∈ [0, 1) and
j ≥ 1, then w(j)(t) is the unique w ∈ Aj such that t ∈ [i(w)b−j , (i(w)+ 1)b−j ).

Theorem 3.3. (Improved growth speed.) Under the assumptions of Theorem 3.1, fix a κ > 0
and assume that (3.4) holds. For j ≥ 2, let Sj = [j log(j)−κ ].
1. For every q ∈ O, with probability 1 the following property (property P (q)) holds. For
µq -almost every t ∈ [0, 1), if j is large enough then, for w = w(j)(t),

max(GS(µwq , µ
w, τ ′

µ(q),N, ε̃),GS(µwq , µ
w
q , τ

′
µ(q)q − τµ(q),N, ε̃)) ≤ Sj .

2. With probability 1, property P (q) holds for almost every q ∈ O.

For w ∈ A∗, n ≥ 1, and q ∈ O, let

Nn(µ
w, α, εn) = card{b-adic box I of scale n : |I |α+εn ≤ µw(I) ≤ |I |α−εn},

where |I | denotes the diameter of I . Remember that τµ = τ̃µ on O.

Theorem 3.4. (Renewal speed of the large deviation spectrum.) Under the assumptions of
Theorem 3.1, we also assume that (3.4) holds, that O = R (in particular, τ̃ ′

µ(1) > 0), and
that there exists an A > 1 such that, with probability 1, A−1 ≤ Wi ≤ A for all i, 0 ≤ i ≤
b − 1. Let Sj be as defined in Theorem 3.2, let K be a compact subinterval of R, and let
β = 1 + maxq∈K |q|. Then, with probability 1, for large enough j , all q ∈ K , and w ∈ Aj ,
we have

Yq(w)b
n(τ̃ ′

µ(q)q−τ̃µ(q)−βεn) ≤ Nn(µ
w, τ̃ ′

µ(q), εn) ≤ Yq(w)b
n(τ̃ ′

µ(q)q−τ̃µ(q)+βεn)

for all n ≥ Sj . (3.6)
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Heuristically, Theorem 3.4 asserts that, for large values of j , if |w| = j then the number of
b-adic intervals of scale b−n such that µw(I) ∼ |I |τ ′

µ(q) approximately equals bn(τ̃
′
µ(q)q−τ̃µ(q))

for n ≥ Sj . Hence, (3.6) contains precise information on the renewal of the large deviation
spectrum α �→ limε→0 limj→∞ j−1 logb N

ε
j (α) (see (1.2)).

For w ∈ A∗, n ≥ 1, and q ∈ R, introduce the functions

τwn (q) = −1

n
logb

( ∑
v∈An

µw(Iv)
q

)

(τ∅
n is associated with µ∅ = µ and is simply denoted by τn).

Theorem 3.5. (Convergence speed of τwn toward τ̃µ.) Under the assumptions of Theorem 3.4,
let K be a compact subinterval of R. There exist θ > 0 and δ ∈ (0, 1) such that, with
probability 1,

1. for large enough j , |τ̃µ(q)− τj (q)| ≤ | logb Yq |j−1 + θ log(j)j−1, and

2. for large enough j , every n ≥ jδ , and every w ∈ Aj ,

|τ̃µ(q)− τwn (q)| ≤ | logb Yq(w)|n−1 + θ log(n)n−1,

with | logYq(w)| ≤ θ log j .

The convergence speed obtained in Theorem 3.5 provides precise information on the esti-
mator of the function τµ discussed in [18] and [47].

4. Proofs of the main results

4.1. Proof of Theorem 3.1

Fix K , a compact subinterval of O, and η̃ = (ηn)n≥1, a bounded, positive sequence to be
specified later. For ω ∈ �∗ and q ∈ K , introduce

Fn(q) = SN,εn,ηnn (µq, µ, τ
′
µ(q)) and Gn(q) = SN,εn,ηnn (µq, µq, τ

′
µ(q)− τµ(q))

(recall (2.1)). We begin by giving estimates for E(Hn(q)) and E(H ′
n(q)), for H ∈ {F,G}.

Lemma 4.1. Under the assumptions of Theorem 3.1, for small enough ‖η̃‖∞ there exists a
CK > 0 such that

max(E(Hn(q)),E(H ′
n(q))) ≤ CKnb

−n(εnηn+O(η2
n)) for all q ∈ K, (4.1)

with H ∈ {F,G}, where O(η2
n) is uniform over q ∈ K .

The proof of this lemma is postponed to the next subsection.
Let q0 be the left-hand endpoint ofK . Since supq∈K Hn(q) ≤ Hn(q0)+

∫
K

|H ′
n(q)| dq, we

have
E
(

sup
q∈K

Hn(q)
)

≤ CK(1 + |K|)nb−n(εnηn+O(η2
n)). (4.2)

Choosing ηn = εn/A for large enoughA yields εnηn+O(η2
n) ≥ ε2

n/2A. Under the assumptions
ofTheorem 3.1, we obtain the almost-sure convergence of

∑
n≥1 supq∈K Hn(q) forH ∈ {F,G}.

We then conclude the proof by using Proposition 2.1.
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4.2. Proof of Lemma 4.1

4.2.1. The case H = F . For v,w ∈ An, q ∈ O, and γ ∈ {−1, 1}, we write

µq(Iv)µ(Iw)
γ ηn = Yq(v)Y1(w)

γηnbnτµ(q)
n−1∏
k=0

Wvk+1(v|k)qWwk+1(w|k)γ ηn

(recall that Yq(v) was defined in (3.3)). Moreover, it follows from estimates of Lemma 6 of [5]
that, for small enough ‖η̃‖∞, the quantities

C′
K(η̃) = sup

q∈K, γ∈{−1,1}
n≥1, v,w∈An

(
E

(∣∣∣∣ d

dq
Yq(v)Y1(w)

γηn

∣∣∣∣
)

+ E(Yq(v)Y1(w)
γηn)

)
,

C′′
K(η̃) = sup

q∈K, γ∈{−1,1}
n≥1, v,w∈An, 0≤k≤n−1

E(|(d/dq)Wvk+1(v|k)qWwk+1(w|k)γ ηn |)
E(Wvk+1(v)

qWwk+1(w)
γηn)

are finite. Hence, due to the definition of Fn(q) and the fact that τ̃ is continuously differentiable
on O, there exists a constant CK(η̃) such that, for every q ∈ K , max(E(Fn(q)),E(F ′

n(q))) ≤
CK(η̃)Tn(q), where

Tn(q) = nbn(q)
∑

γ∈{−1,1}
v,w∈An, δ(v,w)≤N

n−1∏
k=0

E(Wvk+1(v|k)qWwk+1(w|k)γ ηn)

with bn(q) = bn(τµ(q)+γ ηn(τ
′
µ(q)−γ εn)).

Let us make the following important remark.

Remark 4.1. If v and w are words of length n, and if v̄ and w̄ stand for their prefixes of
length n− 1, then δ(v̄, w̄) > k implies that δ(v,w) > bk. Thus, given two integers, n and m,
n ≥ m > 0, and two words, v and w, in An such that bm−1 < δ(v,w) ≤ bm, there are two
prefixes, v̄ and w̄ (of, respectively, v and w), of common length n−m such that δ(v̄, w̄) ≤ 1.
Moreover, there are at most b2m pairs (v,w) of words in An such that v̄ and w̄ are respectively
the prefixes of v and w.

According to Remark 4.1 and the form of Tn(q), there exists a constant C′′′
K such that

Tn(q) ≤ C′′′
Knbn(q)

∑
γ∈{−1,1}

v,w∈An, δ(v,w)≤1

n−1∏
k=0

E(Wvk+1(v|k)qWwk+1(w|k)γ ηn)

for all q ∈ K and all n ≥ 1.

The situation is thus reducible to the case N = 1. Now, Tn(q) ≤ n(Tn,1(q)+ Tn,2(q)), where

Tn,1(q) = bn(q)
∑

γ∈{−1,1}, v∈An

n−1∏
k=0

E(Wvk+1(v|k)q+γ ηn),

Tn,2(q) = bn(q)
∑

γ∈{−1,1}
v,w∈An, δ(v,w)=1

n−1∏
k=0

E(Wvk+1(v|k)qWwk+1(w|k)γ ηn).
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By using the twice continuous differentiability of τµ (τµ = τ̃µ), we immediately find that

Tn,1(q) =
∑

γ∈{−1,1}
bn(τµ(q)+γ ηn(τ

′
µ(q)−γ εn)−τµ(q+γ ηn)) = 2b−n(εnηn+O(η2

n)),

where O(η2
n) is uniform over q ∈ K if ‖η̃‖∞ is small enough.

Let gk and dk respectively denote the word consisting of k consecutive 0s and the word
consisting of k consecutive entries of b − 1. The estimation of Tn,2(q) is achieved using the
following identity:

⋃
v,w∈An, δ(v,w)=1

(v,w) =
n−1⋃
m=0

⋃
u∈Am

⋃
r∈{0,...,b−2}

(u · r · dn−1−m, u · (r + 1) · gn−1−m).

We have Tn,2(q) = Tn(q,−1)+ Tn(q, 1), where, for γ ∈ {−1, 1},

Tn(q, γ ) = bn(q)
∑

v,w∈An

δ(v,w)=1

n−1∏
k=0

E(Wvk+1(v|k)qWwk+1(w|k)γ ηn)

= bn(q)

n−1∑
m=0

∑
u∈Am

b−2∑
r=0

�n−1−m(r)
m−1∏
k=0

E(Wuk+1(u|k)q+γ ηn)

= bn(q)

n−1∑
m=0

b−mτµ(q+γ ηn)
b−2∑
r=0

�n−1−m(r)

with

�m(r) = E(Wq
r W

γηn
r+1 )E(Wq

b−1)
m E(Wγηn

0 )m + E(Wγηn
r W

q
r+1)E(Wq

0 )
m E(Wγηn

b−1)
m.

All the components of W are positive almost surely. Thus, by the definition, (3.1), of τ̃µ(q) =
τµ(q), there is a constant cK ∈ (0, 1) such that max(E(Wq

0 ),E(Wq
b−1)) ≤ cKb

−τµ(q) for all
q ∈ K . Moreover, if ‖η̃‖∞ is small enough then max(E(Wγηn

0 ),E(Wγηn
b−1)) ≤ (c−1

K + 1)/2
(this maximum goes to 1 as ‖η‖∞ goes to 0). This yields

�m(r) ≤ (E(Wq
r W

γηn
r+1 )+ E(Wγηn

r W
q
r+1))

(
cK + 1

2

)m
b−mτµ(q)

≤ CK

(
cK + 1

2

)m
b−mτµ(q)

(since cK(c
−1
K + 1) = cK + 1). Consequently, we obtain

Tn(q, γ ) ≤ CKb
n(τµ(q)+γ ηn(τ ′

µ(q)−γ εn))b−(n−1)τµ(q+γ ηn)
n−1∑
m=0

(
cK + 1

2

)m
bm(τµ(q+γ ηn)−τµ(q))

≤ CKb
−n(εnηn+O(η2

n))
n−1∑
m=0

(
cK + 1

2

)m
bm(τµ(q+γ ηn)−τµ(q)).
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The function τµ is continuously differentiable. Hence, the sum

n−1∑
m=0

(
cK + 1

2

)m
bm(τµ(q+γ ηn)−τµ(q))

is uniformly bounded over n ≥ 0 and q ∈ K if ‖η̃‖∞ is small enough. Finally, if ‖η̃‖∞ is small
enough then we also have Tn(q, γ ) ≤ CKb

−n(εnηn+O(η2
n)). Going back to Tn(q), we find that

Tn(q) ≤ CKnb
−n(εnηn+O(η2

n)) for all q ∈ K . This proves (4.1).

4.2.2. The case H = G. The proof follows similar lines to that in the previous case. The only
additional property required in the computations is the boundedness of supq∈K E(Y−h

q ) for
some h > 0. In fact, we shall need the following stronger property in the proof of Theorem 3.2.

Lemma 4.2. 1. If K ⊂ O is a compact interval then there exists an h > 0 such that
E(supq∈K Y−h

q ) < ∞.

2. Assume that there exists anA > 1 such that, with probability 1, eitherA−1 ≤ Wi orWi ≤ A

for all i, 0 ≤ i ≤ b − 1. Then, for any compact interval K ⊂ O ∩ R+ or, respectively,
K ⊂ O ∩ R−, there are two constants, CK > 0 and γK ∈ (0, 1) (depending on K), such that

P
(

inf
q∈K Yq ≤ x

)
≤ exp(−CKx−γK/(1−γK)) for all small enough x > 0.

Proof. 1. Fix K , a compact subinterval of O ∩ R+ or O ∩ R−. For w ∈ A∗, we define
ZK(w) = infq∈K Yq(w) (ZK(∅) is denoted by ZK ). We learn from [15] and [5] that this
infimum is positive since q �→ Yq(w) is almost surely positive and continuous.

For the random vector Wq(w) = (Wq,0(w),Wq,1(w), . . . ,Wq,b−1(w)), define WK(w) =
infq∈K, 0≤i≤b−1Wq,i(w) (WK(∅) is denoted by WK ). Since we assumed that O contains a
neighborhood of 0, there exists an h > 0 such that the moment of order −h of this random
variable WK(w) is finite.

Moreover, with probability 1, for all q ∈ O we have Yq = ∑b−1
i=0 Wq,i(∅)Yq(i). Hence,

ZK ≥ WK

b−1∑
i=0

ZK(i).

By construction, the random variables ZK(i), 0 ≤ i ≤ b − 1, are independent and identically
distributed with ZK , and are independent of the positive random variable WK . Consequently,
the Laplace transform ofZK , denotedL : t �→ E(exp(−tZK)) for t ≥ 0, satisfies the inequality

L(t) ≤ E

(b−1∏
i=0

L(WKt)

)
, for t ≥ 0. (4.3)

Since E(W−h
K ) < ∞, by using the approach of [43] to study the behavior at ∞ of Laplace

transforms satisfying an inequality like (4.3) (see also [4] and [38]), we obtain E(Z−h
K ) < ∞.

2. The second statement of the lemma is a simple consequence of Theorem 2.5 of [38] (or
Corollary 2.5 of [27]) and of the fact that the random variable WK in (4.3) is bounded from
below by a positive constant.
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4.3. Proof of Theorem 3.2

Fix K , a compact subinterval of O. The computations performed to prove Theorem 3.1
yield (4.2). Thus, there are two constants,C > 0 andβ > 0, and a sequence η̃ = (ηn)n≥1 ∈ R

N
∗

+
such that, for every j, n ≥ 1, q ∈ K , and w ∈ Aj ,

E
(

sup
q∈K

SN,εn,ηn(µwq , µ
w, τ ′

µ(q))
)

≤ Cnb−βnε2
n . (4.4)

In order to apply Proposition 2.2, we take the following steps.

• Let � = K , {(mwλ , µwλ )}w∈A∗ = {(µwq , µw)}w∈A∗, q∈K , and {αλ}λ∈� = {τ ′
µ(q)}q∈K .

• For w ∈ A∗ and n ≥ 1, let

Uw = inf
q∈K ‖µwq ‖ and V wn = sup

q∈K
SN,εn,ηn(µwq , µ

w, τ ′
µ(q)).

• For every j ≥ 1, let ψj (η̃) = 1 and ρj = log(j)1+η.

• Fix η > 0 and η′ > 2η. For every j ≥ 1, let Sj = [exp((j log(j)η)1/(1+2η))] if
log(j)−η ≥ εj ≥ j−1/2 log(j)1/2+η and let Sj = [j log(j)η

′ ] if εj ≥ log(j)−η.

Now, on the one hand, Lemma 4.2 implies that

uj := bj P(Uw ≤ b−ρj ) ≤ bj exp(−CKbγK(log j)(1+η)/(1−γK)). (4.5)

Moreover,
∑
j≥1 uj < ∞. On the other hand, for some χ > 0 and any w ∈ A∗, we have

vj :=
∑
n≥Sj

E(V wn ) ≤
∑
n≥Sj

Cnb−βnε2
n = O(b−j log(j)χ ).

The sequence ρj has been chosen so that
∑
j≥1 b

jbρj vj < ∞. Consequently, Proposition 2.2
yields the desired upper bound for the growth speed GS(µwq , µ

w, τ ′
µ(q),N, ε̃).

Upon replacing the measures {(mwλ , µwλ )}w∈A∗ by {µwq , µwq }w∈A∗, q∈K and replacing the
exponents {τ ′

µ(q)}q∈K by {τ ′
µ(q)q − τµ(q)}q∈K , the same arguments yield the conclusion for

GS(µwq , µ
w
q , τ

′
µ(q)q − τµ(q),N, ε̃).

4.4. Proof of Theorem 3.3

We prove only the results for the control of GS(µwq , µ
w, τ ′

µ(q),N, ε̃) by Sj , since

GS(µwq , µ
w
q , τ

′
µ(q)q − τµ(q)),N, ε̃)

is controlled using the same approach.
We first prove part 1 of the theorem. Recall that (�,B,P) denotes the probability space on

which the random variables are defined. On B ⊗ B([0, 1]) we consider the so-called Peyrière
probability Qq [31], such that

Qq(A) = E

(∫
[0,1]

1A(ω, t) µq(dt)
)
, A ∈ B ⊗ B([0, 1]).

By construction, ‘Qq -almost surely’ means ‘P-almost surely, µq(ω)-almost everywhere’.
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Fix η̃ as in the proof of Theorem 3.2. Also, for j ≥ 1 let ρj = log(j)1+η, and let Sj =
[j log(j)−κ ]. Now, for j ≥ 0 and n ≥ 1, on �× [0, 1) define the random variables

U (j)(ω, t) = ‖µw(j)(t)q (ω)‖, V
(j)
n (ω, t) = SN,εn,ηnn (µw

(j)(t)
q (ω), µw

(j)(t)(ω), τ ′
µ(q)).

To prove Theorem 3.3, by Proposition 2.2 we claim that it is enough to prove that

∑
j≥0

Qq(U
(j) ≤ b−ρj ) < ∞ and

∑
j≥0

bρjh EQq

(( ∑
n≥Sj

V
(j)
n

)h)
< ∞

for some h ∈ (0, 1], where EQq denotes expectation with respect to Qq . The main difference
between the proofs of Proposition 2.2 and Theorem 3.2 is that here we do not seek a result
valid uniformly over words w of the same generation j , but only a result valid for w(j)(t),
for µq -almost every t . As a consequence, we must control only one pair of random variables
(U (j),V (j)) in each generation, instead of bj random variables. This allows us to slow the rate
of increase of Sj .

Fix an h ∈ (0, 1). Since x �→ xh is subadditive on R+, we have

EQq

(( ∑
n≥Sj

V
(j)
n

)h)
≤

∑
n≥Sj

EQq ((V
(j)
n )h).

For ω ∈ �∗, j ≥ 1, and n ≥ 1, by definition of the measures µq and µwq and since
(µ
w(j)(t)
q (ω), µw

(j)(t)(ω)) does not depend on t ∈ Iw, we have
∫

[0,1]
(V

(j)
n (ω, t))hµq(ω)(dt) =

∑
w∈Aj

∫
Iw

(V
(j)
n (ω, t))hµq(ω)(dt)

=
∑
w∈Aj

j−1∏
k=0

Wq,wk+1(w|k)
∫
Iw

(V
(j)
n (ω, t))hµwq (ω) ◦ f−1

Iw
(dt)

=
∑
w∈Aj

(j−1∏
k=0

Wq,wk+1(w|k)
)
(V wn )

h‖µwq ‖,

where V wn = S
N,εn,ηn
n (µwq (ω), µ

w(ω), τ ′
µ(q)) is as defined in the proof of Theorem 3.2. The

above sum is a random variable on (�,B,P). In addition, in each of its terms, the product is
independent of (V wn )

h‖µwq ‖. Moreover, the probability distribution of (V wn )
h‖µwq ‖ does not

depend on w. Consequently, using the martingale property of the sequence (‖µq,j‖)j≥0, we
obtain

EQq ((V
(j)
n )h) = E((V wn )

h‖µwq ‖),
where w ∈ Aj . Let p = 1/(1 − h). The Hölder inequality yields

E((V wn )
h‖µwq ‖) ≤ E(V wn )

h E(‖µq‖p)1/p.
Finally, fix p close enough to 1 that E(‖µq‖p) < ∞ (see the proof of Lemma 4.3 for the
existence of such a p). Then (4.4) implies that

∑
j≥1 b

ρjh
∑
n≥Sj

(E(V wn ))
h < ∞, and the

result follows.
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Computations similar to those above show that, for every j ≥ 1,

Qq(U
(j) ≤ b−ρj ) = E(1{Yq≤b−ρj }Yq) ≤ b−ρj P(Yq ≤ b−ρj ).

It follows from Lemma 4.2.1 that, for some h > 0, we have P(Yq ≤ x) = O(xh) as x → 0.
This implies that

∑
j≥1 Qq(U

(j) ≤ b−ρj ) < ∞.
We now prove part 2 of the theorem. The proof is similar to that of part 1. It is enough

to prove the result for a compact subinterval, K , of O, instead of for O itself. Fix such an
interval K . The idea is now to consider on (K × � × [0, 1],B(K) ⊗ B ⊗ B([0, 1])) the
probability distribution QK such that

QK(A) =
∫
K

EQq (1A(q, ω, t))
dq

|K| , A ∈ B(K)⊗ B ⊗ B([0, 1]).

Then U (j)(q, ω, t) and V
(j)
n (q, ω, t) are redefined as

U (j)(q, ω, t) = ‖µw(j)(t)q (ω)‖,
V
(j)
n (q, ω, t) = SN,εn,ηnn (µw

(j)(t)
q (ω), µw

(j)(t)(ω), τ ′
µ(q)).

Since there exists a p > 1 such that M = supq∈K E(‖µq‖p)1/p < ∞ (again, see the proof of
Lemma 4.3), the computations performed above yield

∑
j≥0

bρjh
∑
n≥Sj

EQK
((V

(j)
n )h) ≤ |K|M

∑
j≥1

bρjh
∑
n≥Sj

(E(V wn ))
h < ∞.

Finally,
∑
j≥0 QK(U

(j) ≤ b−ρj ) ≤ |K| ∑j≥1 b
−ρj P(infq∈K Yq ≤ b−ρj ), which is finite

according to part 1 of Lemma 4.2.

4.5. Proof of Theorem 3.4

We assume without loss of generality that K contains the point 1, and we define qK =
max{|q| : q ∈ K}. Recall that, for j ≥ 0 and n ≥ 1, if (w, v) ∈ Aj × An and q ∈ K then

µw(Iv)
q = µwq (Iv)b

−nτ̃µ(q) Y (wv)
q

Yq(wv)
.

Summing over v ∈ An yields

Yq(w)b
−nτ̃µ(q) inf

q∈K, v∈An

Y (wv)q

Yq(wv)
≤ b−nτwn (q), (4.6)

b−nτwn (q) ≤ Yq(w)b
−nτ̃µ(q) sup

q∈K, v∈An

Y (wv)q

Yq(wv)
.

Fix δ ∈ (0, 1) and θ > 0 such that the conclusions of Propositions 4.1 and 4.2, below, hold.
Then, with probability 1, for large enough j , every w ∈ Aj , q ∈ K , and n ≥ jδ , we have
b−nτwn (q) ≤ Yq(w)b

−nτ̃µ(q)n(qK+1)θ . Now, remarking that

Nn(µ
w, τ̃ ′

µ(q), εn)min(b−nq(τ̃ ′
µ(q)+εn), b−nq(τ̃ ′

µ(q)−εn)) ≤ b−nτwn (q),
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we obtain
Nn(µ

w, τ̃ ′
µ(q), εn) ≤ bn(τ̃

′
µ(q)q−τwn (q)+sgn(q)qεn)

≤ Yq(w)b
n(τ̃ ′

µ(q)q−τ̃µ(q)+sgn(q)qεn)n(qK+1)θ .

On the other hand, owing to Theorem 3.2 and Proposition 4.1, there exists a θ > 0 such that,
with probability 1, for large enough j , all w ∈ A∗, and q ∈ K , we have

µwq

(
E
µw

τ̃ ′
µ(q),Sj

(0, ε̃) ∩ Eµ
w
q

τ̃ ′
µ(q)q−τ̃µ(q),Sj (0, ε̃)

)
≥ ‖µwq ‖

2
= Yq(w)

2
.

This implies that bn(τ̃
′
µ(q)q−τ̃µ(q)−εn)Yq(w)/2 ≤ Nn(µ

w, τ̃ ′
µ(q), εn) for every n ≥ Sj . More-

over, for large enough j , jδ ≤ Sj . Thus, for large enough n,

sup
q∈K

sgn(q)qεn + (qK + 1)θ
logb n

n

is controlled by (1 + qK)εn. The conclusion follows.

4.6. Proof of Theorem 3.5

We begin with three technical lemmas.

Lemma 4.3. Assume that O = R. For every compact subintervalK of R, there existCK, cK >
0 such that

sup
q∈K

P(Yq ≥ x) ≤ CK exp(−cKx) for every x ≥ 1.

Proof. We recall the following properties involved in the proofs of several statements in
Section 3. It is known (see [31] and [20]) that if h > 1 then E(Y h1 ) < ∞ if and only if
E(

∑b−1
k=0 W

h
k ) < 1. Consequently, if q ∈ O = {q ∈ R : τ̃ ′

µ(q)q − τ̃µ(q) > 0} and h > 1, then
E(Y hq ) < ∞ if and only if E(

∑b−1
k=0 W

h
q,k) < 1, that is, τ̃µ(qh) − hτ̃µ(q) > 0. Moreover, it

follows from Théorème VI.A.bi) of [4] that, for every compact subintervalK of O, there exists
an h > 1 such that supq∈K E(Y hq ) < ∞.

That the mapping q �→ τ̃µ(q)/q is increasing on both R
∗− and R

∗+ is equivalent to having
O = R. As a consequence, we obtain τ̃µ(qh) − hτ̃µ(q) > 0 for all q ∈ R and h > 1, that is,
E(Y hq ) < ∞. We also have ‖Wq,k‖∞ ≤ 1 for all q ∈ R and k, 0 ≤ k ≤ b − 1.

We fix K , a compact subset of R, and consider the quantity defined by tk(q) = E(Y kq )/k!
for q ∈ K and k ≥ 1, with t0(q) = 1. Using Equation (4.6) of [36] (our random variable Yq is
denoted there by W ), we find that, for every k ≥ 2 and every q ∈ K ,

tk(q) ≤ cK
∑

{(k0,...,kb−1) : 0≤ki≤k−1, k0+···+kb−1=k}

b−1∏
i=0

tki (q),

where cK = supq∈K supk≥2(1 − b−τ̃µ(kq)+kτ̃µ(q))−1. We see that

cK = sup
q∈K

(1 − b−τ̃µ(2q)+2τ̃µ(q))−1 < ∞.

Hence, with t̃k = supq∈K tk(q), we have

t̃k ≤ cK
∑

{(k0,...,kb−1) : 0≤ki≤k−1, k0+···+kb−1=k}

b−1∏
i=0

t̃ki for all k ≥ 2.
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Since t̃0 = t̃1 = 1, Lemma 2.6 of [25] yields lim supk→∞ t̃
1/k
k < ∞. This implies the existence

of a constant C > 0 such that

sup
q∈K

E(Y kq ) ≤ Ckk! for all k ≥ 1.

Now fix cK ∈ (0, C−1). For x > 0, we have

sup
q∈K

P(Yq ≥ x) ≤ e−cKx sup
q∈K

E(ecKYq ) ≤ e−cKx
∞∑
k=0

ckK

k! sup
q∈K

E(Y kq ) ≤ (1 − cKC)
−1e−cKx.

Remark 4.2. We are not able to control P(supq∈K Yq ≥ x) at ∞. This is the reason why the
next two lemmas are needed to obtain Proposition 4.2.

For n ≥ 1, let Qn be the set of dyadic numbers of generation n.

Lemma 4.4. Let K be a compact subinterval of O, and let η > 0. There exist χ ∈ (0, 1) and
δ ∈ (0, 1) such that, with probability 1,

1. for large enough j , all w ∈ Aj , all n ≥ [j1+η], and all q, q ′ ∈ Qn such that |q − q ′| =
2−n, we have |Ywq − Yw

q ′ | ≤ |q ′ − q|χ ; and

2. for large enough j , all n ≥ jδ , all w ∈ Aj , all v ∈ An, all m ≥ [n1+η], and all
q, q ′ ∈ Qm such that |q ′ − q| = 2−m, we have |Ywvq − Ywv

q ′ | ≤ |q ′ − q|χ .

Proof. By Théorème VI.A.bi) of [4], there exist h > 1 and CK > 0 such that

E(|Yq − Yq ′ |h) ≤ CK |q − q ′|h for all (q, q ′) ∈ K2. (4.7)

For n ≥ 1, let Q̃n be the set of pairs (q, q ′) ∈ Qn such that |q − q ′| = 2−n, and let χ ∈
(0, (h− 1)/h). Using (4.7) and the Markov inequality, we obtain

pn := P(there exists (q, q ′) ∈ Q̃n such that |Yq − Yq ′ | ≥ |q − q ′|χ )
≤

∑
(q,q ′)∈Q̃n

P(|Yq − Yq ′ | ≥ |q − q ′|χ )

≤ 2|K|2nCK2nχh2−nh.

Fix η > 0 and δ ∈ ((1 + η)−1, 1). The inequality
∑
j≥1 b

j
∑
n≥[j1+η] pn < ∞ implies part 1

of the lemma, by the Borel–Cantelli lemma. Part 2 follows from the fact that
∑
j≥1

bj
∑
n≥jδ

bn
∑

m≥[n1+η]
pm < ∞.

Lemma 4.5. Under the assumptions of Theorem 3.4, let K ⊂ R be a compact interval. Let
η > 0. There exist δ ∈ (0, 1) and θ > 1 such that, with probability 1,

1. for large enough j and all w ∈ Aj , we have supq∈Q[j1+η ]∩K Yq(w) ≤ jθ ; and

2. for large enough j , all n ≥ jδ , and all (v,w) ∈ An × Aj , we have

sup
q∈Q[n1+η ]∩K

Yq(wv) ≤ nθ .
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Proof. Fix θ > 1 + η. For q ∈ K and j ≥ 1, define pj (q) = P(Yq ≥ jθ ). By Lemma 4.3,
for all j ≥ 1 we have

P
(

sup
q∈Q[j1+η ]∩K

Yq ≥ jθ
)

≤
∑

q∈Q[j1+η ]∩K
pj (q) ≤ pj := 2CK |K|2j1+η

exp(−cKjθK ).

We leave it to the reader to verify that
∑
j≥1 b

jpj < ∞ and
∑
j≥1 b

j
∑
n≥jδ bnpn < ∞ if

δ ∈ (θ−1
K , 1). This yields both parts of Lemma 4.5.

The following two propositions are needed to control the inequality (4.6).

Proposition 4.1. Under the assumptions of Theorem 3.2, let K be a compact subinterval of
O ∩ R+ or O ∩ R−. There exist θ > 0 and δ ∈ (0, 1) such that, with probability 1,

1. for large enough j , and all w ∈ Aj , we have infq∈K Yq(w) ≥ j−θ ; and

2. for large enough j , all n ≥ jδ , all w ∈ Aj , and all v ∈ An, we have

inf
q∈K Yq(wv) ≥ n−θ .

Proof. Fix a θ > 1 such that θK = θγK/(1 − γK) > 1, where γK is as in Lemma 4.2. Also
define pj := P(infq∈K Yq < j−θ ). We leave it to the reader to verify, using Lemma 4.2, that∑
j≥1 b

jpj < ∞ and that if δ ∈ (θ−1
K , 1) then

∑
j≥1 b

j
∑
n≥jδ bnpn < ∞. This yields both

parts of the proposition.

Proposition 4.2. Under the assumptions of Theorem 3.4, let K ⊂ O be a compact interval.
There exist θ > 0 and δ ∈ (0, 1) such that, with probability 1,

1. for large enough j and all w ∈ Aj , we have supq∈K Yq(w) ≤ jθ ; and

2. for large enough j , all n ≥ jδ , all w ∈ Aj , and all v ∈ An, we have

sup
q∈K

Yq(wv) ≤ nθ .

Proof. We assume without loss of generality that the endpoints of K are dyadic numbers.
It is well known (see the proof of Kolmogorov’s theorem in [32, pp. 53–55]) that Lemma 4.4
implies the existence of a constant CK > 0 such that, with probability 1,

1. for large enough j , all w ∈ Aj , and all q, q ′ ∈ K such that |q − q ′| ≤ 2−[j1+η], we have
|Yq(w)− Yq ′(w)| ≤ CK |q ′ − q|χ ; and

2. for large enough j , all n ≥ jδ , all (v,w) ∈ An × Aj , and all q, q ′ ∈ K such that
|q ′ − q| ≤ 2−[n1+η], we have |Yq(wv)− Yq ′(wv)| ≤ CK |q ′ − q|χ .

The result then follows from Lemma 4.5.

Finally, Theorem 3.5 is a consequence of (4.6) and Propositions 4.1 and 4.2.

5. Growth speed as a tool for conditioned ubiquity results

Let {(xn, λn)}n≥1 be a sequence in [0, 1] × (0, 1] such that limn→∞ λn = 0. For every
t ∈ (0, 1), k ≥ 1, and r ∈ (0, 1), we consider the set of balls

Bk,r (t) = {B(xn, λn) : t ∈ B(xn, rλn), λn ∈ (b−(k+1), b−k]}
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(B(y, r ′) is the closed interval centered at y with radius r ′). Note that this set may be empty.
Then, if ξ > 1 and B(xn, λn) ∈ Bk,1/2(t), let B

ξ
k (t) be the set of b-adic intervals of maximal

length included in B(xn, λ
ξ
n).

The next result is key in building a generalized Cantor set of Hausdorff dimension greater
than or equal to τ ∗

µ(h)/ξ in the set K(µ, h, ξ, x̃, λ̃, ε̃) (see (1.6)), when µ is a Mandelbrot
measure. In the construction of this Cantor set, the following property related to the control of
the growth speed is used repeatedly: if q ∈ O and h = τ ′

µ(q), then each measure µuq is carried

by the set E
µuq
τ∗
µ(h)

(N, ε̃) and, roughly speaking, if GS(µuq, µ
u
q, τ

∗
µ(h),N, ε̃) is not too large, the

measure µuq restricted to E
µuq
τ∗
µ(h)

(N, ε̃) can be viewed as being monofractal of exponent τ ∗
µ(h).

Theorem 5.1. Suppose that lim supn→∞ B(xn, λn/4) = (0, 1), let µ be an independent ran-
dom cascade, and fix a κ > 0. For j ≥ 2, let Sj = j log(j)−κ and ρj = log(j)χ with χ > 1.
Assume that (3.4) holds.

For every q ∈ O and ξ > 1, with probability 1 the following property (property P (ξ, q))
holds: for µq -almost every t , there are infinitely many k ≥ 1 such that Bk,1/2(t) �= ∅, and
there exists a u ∈ {v ∈ A∗ : there exists an I ∈ B

ξ
k (t) with I = Iv} such that

GS(µuq, µ
u
q, τ

′
µ(q)q − τµ(q),N, ε̃) ≤ S|u| and ‖µuq‖ ≥ b−ρ|u| . (5.1)

Remark 5.1. 1. Under the assumptions of Theorem 5.1, Theorems 3.1 and 5.1, which are
associated with the main result on heterogeneous ubiquity established in [8], imply that, for
every q ∈ O and ξ > 1, with probability 1,

dim K(µ, τ ′
µ(q), ξ, x̃, λ̃, ε̃) ≥ τ ′

µ(q)q − τµ(q)

ξ
.

2. If q is fixed in O then the assumption that lim supn→∞ B(xn, λn/4) = (0, 1) can be weakened
by instead requiring only that lim supn→∞ B(xn, λn/4) is of full µq -measure.

3. The result of [10] on ubiquity conditioned by Mandelbrot measures concerns the case where
{(xn, λn)}n = {(kb−j , b−j )}j≥1, 0≤k<b−j . There a slightly different version of P (ξ, q) is
invoked whose proof is easily deduced from that of Theorem 5.1.

Proof of Theorem 5.1. For k ≥ 1 and w ∈ Ak+3, note that Bk,1/4(t) ⊂ Bk,1/2(s) for all
t, s ∈ Iw. Let Rw = {n : there exists a t ∈ Iw such that B(xn, λn) ∈ Bk,1/4(t)}. Define
n(w) = inf{n : xn = min{xm : m ∈ Rw}} if Rw �= ∅ and n(w) = 0 otherwise.

If ξ > 1 and n(w) > 0, then let u(w) be the word that encodes the b-adic interval of maximal
length included in B(xn, λ

ξ
n) and whose left-hand endpoint is minimal. If ξ > 1 and n(w) = 0,

then let u(w) be the word of generation [ξ |w|] that has prefix w and whose [ξ |w|] − |w| last
digits equal 0.

Now, w(j)(t) being as defined in the statement of Theorem 3.3, we prove a slightly stronger
result than Theorem 5.1. For every q ∈ O and ξ > 1, with probability 1 the following property
(property P̃ (ξ, q)) holds: for µq -almost every t , if j is large enough then, for all k ≥ j such
that n(wk+3(t)) > 0, u ≡ u(wk+3(t)) satisfies (5.1). In the sequel we denote u(wk+3(t)) by
uk,ξ (t).

Fix ξ > 1 and q ∈ K . For j ≥ 0 and n ≥ 1, define on �× [0, 1) the random variables

U (j)(ω, t) = ‖µuj,ξ (t)q (ω)‖,

V
(j)
n (ω, t) = SN,εn,ηnn (µ

uj,ξ (t)
q (ω), µ

uj,ξ (t)
q (ω), qτ ′

µ(q)− τ ′
µ(q)).
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We can use the proof of Proposition 2.2 to deduce that it is enough to prove that

∑
j≥1

Qq

({
there exists a k ≥ j such that bρ|uk,ξ (t)|

∑
n≥S|uk,ξ (t)|

V (k)
n (ω, t) ≥ 1

2

})
< ∞, (5.2)

∑
j≥1

Qq({there exists a k ≥ j such that U (j)(ω, t) ≤ b
−ρ|uk,ξ (t)| }) < ∞. (5.3)

Since there exist c and c′, c > c′ > 0, such that c′ξk ≤ |uk,ξ (t)| ≤ cξk for all t , in order to
prove (5.2) and (5.3) it is enough to show that

T :=
∑
j≥1

∑
k≥j

Qq

(
bρk̄

∑
n≥S

k̃

V (k)
n (ω, t) ≥ 1

2

)
< ∞,

T ′ :=
∑
j≥1

∑
k≥j

Qq(U
(k) ≤ b−ρ

k̃ ) < ∞,

where k̄ = [cξk] + 1 and k̃ = [c′ξk]. Note that

T ≤ 2h
∑
j≥1

∑
k≥j

∑
n≥S

k̃

bρk̄h EQq ((V
(k)
n )h)

if h ∈ (0, 1). Mimicking the computations performed in the proof of Theorem 3.3, we obtain

∫
[0,1]

(V
uk,ξ (t)
n (ω))hµq(ω)(dt) =

∑
w∈Ak+3

(k−1∏
k=0

Wq,wk+1(w|k)
)
(V u(w)n )h‖µwq ‖.

Using the independence of the random variables as well asp andh as in the proof of Theorem 3.3,
we obtain

EQq ((V
(k)
n )h) ≤ E(V u(w)n )h E(‖µwq ‖p)1/p,

where w is any element of A∗. Then our choices for ρj and Sj ensure that T is finite.
For any h′ > 0, T ′ ≤ ∑

j≥1
∑
k≥j b−ρ

k̃
h EQq ((U

(k))−h′
). A computation analogous to the

one above shows that, with the same h and p,

EQq ((U
(k))−h′

) ≤ (E(Y u(w)q )−h′/h)h E(‖µwq ‖p)1/p

for any elementw ofA∗. Ifh′ is small enough, then the right-hand side is bounded independently
of k according to Lemma 4.2, and the conclusion follows from our choice for ρj .
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