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Abstract
The aim of this paper is to study the dimension reduction analysis of an elastic plate with small thickness reinforced
with increasing number of thin ribbons developing fractal geometry. We prove the �-convergence of the energy
functionals to a two-dimensional effective energy including singular terms supported within the Sierpinski carpet.

1 Introduction

Starting from the pioneering work by Adkins and Rivlin [1] who studied the deformation of a structure
reinforced with thin parallel, flexible and inextensible cords, strong research efforts have been devoted to
the study of reinforced structures in order to describe their constitutive parameters. A lot of earlier works
have focused on the homogenisation of elastic materials reinforced with fibres or ribbons composed of
highly contrasting elastic materials (see for instance [5, 12, 15], and the references therein). The obtained
homogenised composites are generally characterised by high strength and improved stiffness.

In this paper, we consider the deformation of a three-dimensional elastic plate with vertical small
varying thickness reinforced with highly contrasted thin vertical ribbons following fractal paths. More
specifically, we assume that the ribbons are thin vertical elastic strips of height 2rh which are built on a
pre-fractal curve obtained after h-iterations of the contractive similarities of the Sierpinski carpet�. We
suppose that the plate occupies the domain ω× (−εh, εh) of thickness 2εh; h ∈N, where ω is a bounded
domain of R2 with Lipschitz continuous boundary ∂ω.

Our main purpose is to describe, under suitable scaling regimes of the Lamé constants of the plate
and that of the ribbons, the state of equilibrium of a such structure as the thickness of the plate and the
height of the ribbons tend to zero, and the sequence of pre-fractal curves converges in the Hausdorff
metric to the Sierpinski carpet. Using �-convergence methods (see for instance [11]), we obtain the
following effective potential energy of the composite:

F∞ (u, v)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
ω
ηαβ (u) eαβ (u) dx′ + ∫

ω

αβ (u3)

∂2u3

∂xα∂xβ
dx′

+μ∗ ∫
�

dL� (v)
+ πμγ

Hd (�) (ln 2)2
∑
α=1,2

∫
�

Aαα (s) (uα − vα)
2 dHd (s)

+ πμγ

Hd (�) (ln 2)2
∫
�

A33u2
3dHd (s)

if (u, v) ∈ H
(
ω, R3

)
,

+∞ otherwise,

(1.1)
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Figure 1. The network {Cl}l∈N is represented by black squares.

where x′ = (x1, x2), u = (u1, u2), v = (v1, v2),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηαβ (u)= 4μ

(
eαβ (u)+ λ

2μ+ λeιι (u) δαβ

)
,

eαβ (u)= 1

2

(
∂uα
∂xβ

+ ∂uβ
∂xα

)
; α, β = 1, 2,


αβ (u3)= 4

3
μ

(
∂2u3

∂xα∂xβ
+ λ

2μ+ λ (�x′u3) δαβ

)
; α, β = 1, 2,

�x′u3 = ∂2u3

∂x2
1

+ ∂2u3

∂x2
2

,

(1.2)

where the summation convention with respect to repeated indices has been used and will be used in the
sequel, λ> 0 and μ> 0 are the Lamé constants of the material in ω, μ∗ is the effective shear modulus
of the material occupying the fractal �, and where δij denotes Kronecker’s symbol, the parameter γ ∈
(0, +∞) is given by

γ = lim
h→∞

(
8

3

)h a

εh ln rh

, (1.3)

a being a positive constant which will be specified in the next Section,Hd is the d-dimensional Hausdorff
measure where d is the fractal dimension of � with

d = ln 8/ ln 3, (1.4)

H
(
ω, R3

)
is the space of admissible displacements defined by

H
(
ω, R3

) =
{
(u, v) ∈ L2

(
�, R3

) × L2
Hd

(
�, R2

)
; u ∈ H1

0

(
ω, R2

)
v ∈D�,E , u3 ∈ H2

0 (ω)

}
, (1.5)

D�,E is the domain of the energy supported on the fractal � (see (3.7), Section 3), κ = 3μ+ λ
μ+ λ ,

A (s)=

⎧⎪⎪⎨⎪⎪⎩
Diag

(
1,

2

(1 + κ) ,
2

(1 + κ)
)

if ν (s)= ± (0, 1),

Diag
(

2

(1 + κ) , 1,
2

(1 + κ)
)

if ν (s)= ± (1, 0),
(1.6)

where ν(s) is the outward unit normal on� ∩ ∂Cl seen from Cl; {Cl}l∈N being the network of the squares
removed from [0, 1]2 to obtain the Sierpinski carpet � (see Figure 1), and L� is a measure-valued
Lagrangian with L� (v)=L� (v, v)≥ 0 is a positive measure (see Section 3, Proposition 2 for more
details). The Lagrangian L� takes on the fractal � the role of the Euclidean Lagrangian dL (u, v)=
∇u.∇vdx′.

The effective energy (1.1) is composed of stretching and bending energies for an isotropic elastic
plate occupying the domain ω, a singular fractal energy term supported on the Sierpinski carpet �, and
a nonlocal term due to the microscopic interactions between the constituent materials. The equilibrium
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of the fractal � is asymptotically described by a generalised Laplace equation which is related to the
discontinuity of the effective stress on � through the following relation:⎧⎪⎨⎪⎩μ

∗�α,� (v)
Hd

Hd (�)
= −2πμγ

Hd (�) (ln 2)2
Aαα (s) (uα − vα)Hd on �,

= [
ηαβ (u) νβ

]
�

; α = 1, 2 in �,
(1.7)

where (u, v) is the solution of the limit problem stated in Corollary 13 of Section 5, �� =
(
�1,�

�2,�

)
is a

second-order operator in L2
Hd

(
�, R2

)
defined by the form E� in Lemma 3 Section 3, and[

ηαβ (u) νβ
]
�

= η+
αβ (u) νβ − η−

αβ (u) νβ ; α = 1, 2, (1.8)

where η+
αβ (u) νβ is the outward normal stress on � ∩ ∂Cl; l ∈N, and η−

αβ (u) νβ is the inward normal
stress.

If γ = +∞ then, for every (u, v) ∈ H
(
ω, R3

)
, F∞ (u, v) <+∞ ⇒ u = v and u3 = 0 in ω. In this case,

the energy supported by the structure is given by

F∞ (u)=

⎧⎪⎨⎪⎩
∫
ω
ηαβ (u) eαβ (u) dx′ +μ∗ ∫

�
dL� (u)

if u ∈ H1
0

(
ω, R2

) ∩D�,E ,

+∞ otherwise,

(1.9)

where we see the disappearance of the term corresponding to the bending energy.
If γ = 0, then the effective energy of the structure turns out to be

F0,∞ (u, v)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
ω
ηαβ (u) eαβ (u) dx′ + ∫

ω

αβ (u3)

∂2u3

∂xα∂xβ
dx′

+μ∗ ∫
�

dL� (v)
if (u, v) ∈ H

(
ω, R3

)
,

+∞ otherwise.

(1.10)

In this case, there is no connection between the energy of the plate and the effective energy stored in
the Sierpinski carpet.

The homogenisation of structures reinforced with thin inclusions developing a fractal geometry has
attracted attention in recent years due to the geometrical and physical characteristics of the inclusions
(see for instance [6–10, 13, 16, 26, 32–35]). The homogenised problems obtained at the limit generally
consist of singular forms containing fractal terms. The asymptotic analysis of a three-dimensional elastic
material reinforced with thin vertical strips constructed on horizontal iterated Sierpinski gasket curves
was studied in [16]. The problem considered in this work is quite different as we deal here with a three-
dimensional plate with varying thickness reinforced with vertical strips disposed on iterated Sierpinski
carpet curves. So far, much analysis has been realised on a very small class of self-similar sets, called
finitely ramified fractals, which are characterised by the property that they are disconnected by remov-
ing a finite set of points. The standard example of finitely ramified fractals is the Sierpinski gasket. The
Sierpinski carpet is an infinitely ramified fractal for which a purely analytic local regular Dirichlet form
was very recently constructed in [20]. Note that the asymptotic analysis of elastic materials contain-
ing microcracks located along the Sierpinski carpet and the Menger sponge fractal (three-dimensional
Sierpinski carpet) has been carried out in [14].

The homogenisation of three-dimensional elastic materials reinforced by highly rigid fibres with
variable cross-section, which may have fractal geometry, has been studied in [15]. The authors showed
that the geometrical changes induced by the oscillations along the fibre-cross-section interfaces, which
may include fractal ones, can provide jumps of displacement fields or stress fields.

This paper is organised as follows. The statement of the problem is presented in Section 2. In
Section 3, we introduce the energy form and the notion of a measure-valued local energy on the
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Figure 2. The construction of Sierpinski carpet.

Sierpinski carpet �. Section 4 is devoted to compactness results, which will be useful for the proof
of the main results. In Section 5, we formulate the main results of this work. Section 6 is devoted to the
proof of the main results.

2 Statement of the problem

Let us consider the unit square E0 = [0, 1]2. Let us divide E0 into 9 equal subcubes of side 1/3. Let SC1

be the set of eight subsquares remaining after removing the interior of the central subsquare and let
E1 = ⋃ {C; C ∈ SC1}. Repeating the process, subdividing each element of SC1 into 9 equal subcubes of
side 1/9, we obtain E2 = ⋃ {C; C ∈ SC2}, where SC2 is the set of subcubes remaining after removing
the interior of the central subsquare from each element of SC1. Continuing in this way (see Figure 2),
we obtain a decreasing sequence of compact sets (Eh)h∈N. The set � defined by

� =
∞⋂

h=0

Eh, (2.1)

is the standard Sierpinski carpet. The set � can be obtained as an iterated function system con-
struction. Let a1 = (0, 0), a2 = (1/2, 0), a3 = (1, 0), a4 = (1, 1/2), a5 = (1, 1), a6 = (1/2, 1), a7 = (0, 1),
a8 = (0, 1/2). We suppose that

E0 ⊂ω and E0 ∩ ∂ω= {a1, a3, a5, a7} , (2.2)

where ω is the bounded domain of R2 with Lipschitz continuous boundary ∂ω, which was already set
in the Introduction. Let us denote by {ψi}i=1,...,8 the family of contractive similitudes defined on R2 by

ψi

(
x′) = x′ + 2ai

3
, ∀x′ = (x1, x2) ∈R

2. (2.3)

Then, � is the unique non-empty compact set of R2 satisfying

� =
8⋃

i=1

ψi (�) . (2.4)

Let us setV0 = {a1, a2, a3, a4, a5, a6, a7, a8}. Let h ∈N∗. We consider the set of verticesVi1...ih ; i1, ..., ih ∈
{1, ..., 8}, defined by

Vi1...ih =ψi1 ◦ ... ◦ψih (V0) . (2.5)
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We then set

Vh =
⎧⎨⎩
V0 for h = 0,⋃
i1,...,ih∈{1,...,8}

Vi1...ih for h ∈N∗ (2.6)

and

V∞ =
⋃
h∈N

Vh. (2.7)

We consider the connected graph �i1...ih = (Vi1...ih , Si1...ih

)
, where Si1...ih is the set of edges

[
p, q

]
with

p, q ∈ Vi1...ih , such that |p − q| = 3−h/2; |p − q| being the Euclidian distance between p and q. We denote
by S0 the set of edges

[
p, q

]
with p, q ∈ V0, such that |p − q| = 1/2, �0 = (V0, S0), and set⎧⎪⎪⎨⎪⎪⎩

Sh = ⋃
i1,...,ih∈{1,...,8}

Si1...ih , ∀h ∈N∗,

�h = ⋃
i1,...,ih∈{1,...,8}

�i1...ih , ∀h ∈N∗.
(2.8)

We also define ⎧⎪⎪⎪⎨⎪⎪⎪⎩
S1

h = ⋃
[p,q]⊂Sh: [p,q]⊥(0,1)

[
p, q

]
,

S2
h = ⋃

[p,q]⊂Sh: [p,q]⊥(1,0)

[
p, q

]
,

(2.9)

where
[
p, q

] ⊥ (0, 1) (resp.
[
p, q

] ⊥ (1, 0)) means that the line segment
[
p, q

]
is perpendicular to the

unit vector (0, 1) (resp. (1, 0)).
Let Nv

h be the number of vertices in Vh and let Ne
h be the number of edges in Sh. These numbers can be

computed by using the proof of [30, Lemma 2.1.2]. Indeed, Nv
h can be obtained by adding the number

of midpoints of the edges of the graph approximation of the Sierpinski carpet of [30, Paragraph 2.1] to
the number of vertices obtained in [30, Lemma 2.1.2], then, using the proof of [30, Lemma 2.1.2], Ne

h

can be obtained by induction. We have, for h ≥ 2,

Nv
h = (

3h+1 + 1
) (

3h + 1
) −

h−2∑
k=0

8k
(
3h−1−k − 1

) (
3h−k − 1

)
,

Ne
h = 4

(
3h

(
3h + 1

) −
h−2∑
k=0

8k3h−1−k
(
3h−1−k − 1

))
,

(2.10)

from which we deduce, by a straightforward computation, that

Nv
h ∼

h→∞
a8h,

Ne
h ∼

h→∞
b8h,

(2.11)

where a and b are positive constants with a ≈ 3.657 and b ≈ 4.8. The edges belonging to Sh can be
rearranged as Sk

h; k ∈ Ih = {
1, 2, ..., Ne

h

}
. We suppose that the sequences (εh)h∈N and (rh)h of positive

numbers verify ⎧⎪⎨⎪⎩
lim
h→∞
εh = 0, lim

h→∞
rh = 0,

lim
h→∞

rh/εh = 0, lim
h→∞

3hrh = 0.
(2.12)

Let pk
h = (

pk
h1, pk

h2

)
, qk

h = (
qk

h1, qk
h2

)
be the extremities of the line segment Sk

h; k = 1, 2, ..., Ne
h . We define

the ribbon Tk
h by

Tk
h = (

ω ∩ Sk
h

) × (−rh, rh) , (2.13)
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Figure 3. An example of the union Th of ribbons for h = 2.

Figure 4. The fractal � embedded in ω such that � ∩ ∂ω= {a1, a3, a5, a7}.

and their union (see Figure 3) by

Th =
Ne

h⋃
k=1

T ,k
h . (2.14)

Denoting |Th| the 2-dimensional measure of Th, we see that

|Th| = 4rhNe
h

3h
. (2.15)

Let us recall that ω is a bounded domain of R2 with Lipschitz continuous boundary ∂ω. We suppose
that � ⊂ω and, according to (2.2), that (see Figure 4)

� ∩ ∂ω= E0 ∩ ∂ω= {a1, a3, a5, a7}= ∂�. (2.16)

We define
�h = ω× (−εh, εh),

�h = ∂ω× (−εh, εh).
(2.17)

We suppose that �h\Th is the reference configuration of a linear, homogeneous, and isotropic
elastic material with Lamé coefficients μh > 0 and λh > 0. This means that the deformation tensor

e (u)= (
eij (u)

)
i,j=1,2,3

, with eij (u)= 1

2

(
∂ui

∂xj

+ ∂uj

∂xi

)
for some displacement u, is linked to the stress

tensor σ h (u)= (
σ h

ij (u)
)

i,j=1,2,3
, through Hooke’s law

σ h
ij (u)= λhemm (u) δij + 2μheij (u) ; i, j = 1, 2, 3, (2.18)
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where λh > 0 and μh > 0 are the Lamé constants of the material. We suppose that Th is the reference
configuration of a linear, homogeneous and isotropic elastic material with Lamé coefficients μ∗

h, λ∗
h > 0,

and stress tensor σ ∗h (u) with components

σ ∗h
ij (u)= λ∗

hemm (u) δij + 2μ∗
heij (u) ; i, j = 1, 2, 3, (2.19)

with

λ∗
h = chλ

∗ and μ∗
h = chμ

∗, (2.20)

where λ∗, μ∗ are positive constants and

ch = ρh

rh3h
, (2.21)

is a scaling parameter which is related to the geometry of the fractal inclusion Th, where ρ > 1 is a
structural constant which, according to [3, 4], is related to the spectral dimension ds of the Sierpinski
carpet � by the following relation:

ρ = 82/ds−1. (2.22)

The exact value of ρ remains still unknown, and only some bounds for ρ are given in [3, 4]:⎧⎨⎩
ρ ∈ [

7/6, 3/2
]

based on shorting and cuttingarguments,

ρ ∈ [1.25147, 1.25149] based on computer calculation.
(2.23)

We suppose that a perfect adhesion occurs between �h and Th along their common interfaces. We
suppose that the material in �h is held fixed on �h, remains free on ∂�h\�h and submitted to volumic
forces f h ∈ L2

(
�h, R3

)
. We assume that the applied forces f h have the following form:{

f h
α (x) = fα (x1, x2, x3/εh) /εh; α = 1, 2,

f h
3 (x) = f3 (x1, x2, x3/εh) ,

(2.24)

with f = (f1, f2, f3) ∈ L2
(
ω× (−1, 1) , R3

)
and that

lim
h→∞
εhμh =μ> 0 and lim

h→∞
εhλh = λ> 0. (2.25)

We define the energy functional Fh on L2
(
�h, R3

)
by

Fh (u)=

⎧⎪⎪⎨⎪⎪⎩
∫
�h\Th

σ h
ij (u) eij (u) dx + ∫

Th
σ ∗h

ij (u) eij (u) dsdx3

if u ∈ H
(
�h, R3

)
,

+∞ otherwise,

(2.26)

where ds is the measure on Sh defined by

ds =
{

dx1 on S1
h,

dx2 on S2
h

and

H
(
�h, R3

) = H1
�h

(
�h, R3

) ∩ H1
(
Th, R3

)
, (2.27)

with

H1
�h

(
�h, R3

) = {
u ∈ H1

(
�h, R3

)
; u = 0 on �h

}
.

The equilibrium of the elastic material occupying �h is described by the minimisation problem

min
u∈L2(�h ,R3)

{
Fh (u)− 2

∫
�h

f h.udx

}
. (2.28)
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3 Energy forms on the Sierpinski carpet

In this section, we introduce the energy form and the notion of a measure-valued local energy (or
Lagrangian) on the Sierpinski carpet. For any function w : V∞ −→R2, we define

Eh
� (w)= ρh

∑
p,q∈Vh

|p−q|=3−h/2

|w (p)− w (q)|2 , (3.1)

where ρ is given in (2.22). We then define the energy
E� (z) = lim

h→∞
E h
� (z) , (3.2)

with domain D∞ = {
z : V∞ −→R2 : E� (z) <∞}

. This energy has been constructed in [20]. Every func-
tion z ∈D∞ can be uniquely extended to be an element of C

(
�, R2

)
, still denoted as z. Let us set

D = {
z ∈ C

(
�, R2

)
: E� (z) <∞}

, (3.3)

where E� (z)= E�
(
z |V∞

)
. We define the space DE as

DE =D‖.‖DE , (3.4)

where ‖.‖DE is the intrinsic norm

‖z‖DE =
{
E� (z)+ ‖z‖2

L2
Hd (�,R2)

}1/2

, (3.5)

where

L2
Hd

(
�, R2

) =
{

u :� −→R
2;

∫
�

|u|2
(s) dHd (s) <∞

}
. (3.6)

Let us now define the space

D�,E = {z ∈DE : z = 0 on ∂�} , (3.7)

where ∂� is defined in (2.16). We denote E� (., .) the bilinear form defined on D�,E ×D�,E by

E� (w, z)= 1

2
(E� (w + z)− E� (w)− E� (z)) , ∀w, z ∈D�,E . (3.8)

One can see that

E� (w, z)= lim
h→∞

E h
� (w, z) , (3.9)

where

E h
� (w, z)= ρh

∑
p,q∈Vh

|p−q|=3−h/2

(w (p)− w (q)) . (z (p)− z (q)) . (3.10)

According to [20, Theorem 2.5 and Theorem 10.4], the form E� is a strongly local regular closed
form on L2

Hd

(
�, R2

)
. This means (see for instance [19]) that

1. (local property) u, v ∈D�,E with compact supp[u] and supp[v], and v is constant on a neighbourhood
of supp[u] implies that E� (u, v)= 0,

2. (regularity) D�,E ∩C0

(
�, R2

)
(C0

(
�, R2

)
being the space of functions of C

(
�, R2

)
with compact

support) is dense both in C0

(
�, R2

)
with respect to the uniform norm and in D�,E with respect to

the norm (3.5),
3. (closedness) Let (un)n ⊂D�,E such that ‖un − um‖DE −→ 0, n, m −→ ∞, there exists u ∈D�,E such

that ‖un − u‖DE −→ 0, n −→ ∞.

The space D�,E is injected in L2
Hd

(
�, R2

)
and is complete with respect to the norm (3.5); thus, D�,E

is an Hilbert space with the scalar product associated with the norm (3.5). Moreover, every function of
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D�,E possesses a continuous representative. Indeed, according to [20, Theorem 2.7 and Remark 11.3],
the space DE is continuously embedded in the space Cβ

(
�, R2

)
of Hölder continuous functions with

β = ln ρ/ ln 9.
Let us now consider the sequence (mh)h of measures defined by

mh =
∑
p∈Vh

|p−q|=3−h/2

δp

Nv
h

, (3.11)

where δp is the Dirac measure at the point p. We have the following:

Lemma 1 The sequence (mh)h weakly converges in C (�)∗ to the measure

m = 1�
dHd

Hd (�)
,

where C (�)∗ is the topological dual of the space C (�) and 1� is the indicator function of the set �.

Proof. Let ϕ ∈ C (�). Then, according to the ergodicity result of [17, Theorem 6.1],

lim
h→∞

∫
�

ϕ (x) dmh = lim
h→∞

∑
p∈Vh

ϕ (p)

Nv
h

= 1

Hd (�)

∫
�

ϕ (s) dHd (s).

According to [31, Section 3], the approximating form Eh
� (., .) can be written as

Eh
� (w, z)=

∫
�

∇hw.∇hz dmh, (3.12)

with

∇hw.∇hz (p)= 1

22κ

∑
q∈Vh

|p−q|=3−h/2

(w (p)− w (q))

|p − q|κ/2 .
(z (p)− z (q))

|p − q|κ/2 ,

where κ is the unique positive number for which the sequence
(E h
� (., .)

)
h

has a non-trivial limit. We
note that, using (3.1),

κ = ln 8ρ

ln 3
, (3.13)

where ρ is given in (2.22). The following result holds true:

Proposition 2 For every w, z ∈D�,E , the sequence of measures
(Lh

� (w, z)
)

h
defined, for every ∀A ⊂�,

by
Lh
� (w, z) (A) = ∫

A∩� ∇hw.∇hz dmh

= ρh
∑

p,q∈A∩Vh
|p−q|=3−h/2

(w (p)− w (q)) . (z (p)− z (q)) ,

weakly converges in C
(
�, R2

)∗ to a signed finite Radon measure L� (w, z) on �, called Lagrangian
measure on �. Moreover,

E� (w, z)=
∫
�

dL� (w, z) , ∀w, z ∈D�,E .

Proof. The proof follows the lines of the proof of [18, Proposition 2.3.]. Let us set, for w ∈D�,E ,
Lh
� (w)=Lh

� (w, w). We deduce from (3.2), (3.9), (3.12), and (3.13) that the sequence
(Lh

� (w) (�)
)

h
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is a uniformly bounded sequence. Then, observing that, for every w ∈D�,E and every ϕe1 ∈D�,E ∩
C0

(
�, R2

)
; e1 = (1, 0),∫

�
ϕdLh

� (w) = ρh
∑

p,q∈Vh
|p−q|=3−h/2

ϕ (p) |w (p)− w (q)|2

= ρh
∑

p,q∈Vh
|p−q|=3−h/2

ϕ (p)+ ϕ (q)
2

|w (p)− w (q)|2

= E h
� (ϕw, w)− 1

2
E h
�

(
ϕe1, |w|2 e1

)
,

(3.14)

we deduce, taking into account the regularity of the form E� (., .), that

lim
h→∞

∫
�

ϕdLh
� (w)= E� (ϕw, w)− 1

2
E�

(
ϕe1, |w|2 e1

)
. (3.15)

On the other hand, according to [28, Proposition 1.4.1], the energy form E� (w), which is a Dirichlet
form of diffusion type, admits the following integral representation:

E� (w)=
∫
�

dL� (w) ,

where L� (w) is a positive Radon measure which is uniquely determined by the relation∫
�

ϕdL� (w)= E� (ϕw, w)− 1

2
E�

(
ϕe1, |w|2 e1

)
, ∀ϕ ∈ C0 (�) .

Thus, combining with (3.15), the sequence
(Lh

� (w)
)

h
converges in the sense of measures to the

measure L� (w). Observing that, for every w, z ∈D�,E ,

Lh
� (w, z)= 1

2

(Lh
� (w + z)−Lh

� (w)−Lh
� (z)

)
,

we deduce that the sequence
(Lh

� (w, z)
)

h
weakly converges in C

(
�, R2

)∗ to the measure L� (w, z).

As E� (., .) is a closed Dirichlet form on L2
Hd

(
�, R2

)
, we have, according to [25, Chap. 6, Theorem

2.1], the following result:

Lemma 3 There exists a unique self-adjoint non-positive operator �� on L2
Hd

(
�, R2

)
with domain

D� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
w =

(
w1

w2

)
∈ L2

Hd

(
�, R2

)
;

�� (w)=
(
�1,� (w)
�2� (w)

)
∈ L2

Hd

(
�, R2

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭ ⊂D�,E

dense in L2
Hd

(
�, R2

)
such that, for every w ∈D� and z ∈D�,E ,

E� (w, z)= −
∫
�

�� (w) .z
dHd

Hd (�)
.

4 Compactness results

In this section, we establish some compactness results which will be useful for the proof of the main
results.

4.1 A priori estimates

Lemma 4 For every uh ∈ H
(
�h, R3

)
such that

sup
h

Fh

(
uh

)
<+∞,
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we have, under the hypothesis (2.25), the following estimates:

1. sup
h

∑
α,β=1,2

1

εh

∫
�h

((
∂uh

α

∂xβ

)2

+
(
∂uh

3

∂x3

)2

+ (
uh
α

)2

)
dx<+∞,

2. sup
h

∑
α=1,2

1

εh

∫
�h

((
εh

∂uh
α

∂x3

)2

+
(
εh

∂uh
3

∂xα

)2

+ (
εhuh

3

)2

)
dx<+∞.

Proof. From the Korn inequality for clamped plates (see for instance [21, Subsection 2.1]), we deduce
that ∑

α,β=1,2

∫
�h

((
∂uh

α

∂xβ

)2

+
(
∂uh

3

∂x3

)2

+ (
uh
α

)2

)
dx

+ ∑
α=1,2

∫
�h
ε2

h

((
∂uh

α

∂x3

)2

+
(
∂uh

3

∂xα

)2

+ (
uh

3

)2

)
dx

≤ C
∑

i,j=1,2,3

∫
�h

(
eij

(
uh

))2
dx.

(4.1)

Since

Fh

(
uh

) ≥μhεh

∑
i,j=1,2,3

1

εh

∫
�h

(
eij

(
uh

))2
dx,

we deduce, using the hypothesis (2.25), that

sup
h

∑
i,j=1,2,3

1

εh

∫
�h

(
eij

(
uh

))2
dx ≤ C sup

h
Fh

(
uh

)
, (4.2)

which, in view of (4.1), proves the claim.
We have now the following estimates:

Lemma 5 For every sequence
(
uh

)
h

such that uh ∈ H
(
�h, R3

)
and

sup
h

Fh

(
uh

)
<+∞,

we have, under the hypothesis (2.20), the following estimates:

1. sup
h

∑
α=1,2

p,q∈Vh
|p−q|=3−h/2

ρh

(
1

2rh

∫ rh

−rh

(
uh
α (p, x3)− uh

α (q, x3)
)

dx3

)2

<+∞,

2. sup
h

1

2rh

∑
α=1,2

∫ rh

−rh

∫
�

∣∣uh
α

∣∣2
dmhdx3 <+∞; mh being the measure defined in (3.11),

3.
1

2rh

∫ rh

−rh

∫
�

∣∣εhuh
3

∣∣2
dmhdx3 ≤ C

(
3

8

)h

; C being a positive constant independent of h.

Proof. 1. Observing that (
e11

(
uh

))2 +2
(
e12

(
uh

))2 + (
e22

(
uh

))2

=
(
∂uh

1

∂x1

)2

+ 1

2

(
∂uh

2

∂x1

)2

on S1
h

and (
e11

(
uh

))2 +2
(
e12

(
uh

))2 + (
e22

(
uh

))2

=
(
∂uh

2

∂x2

)2

+ 1

2

(
∂uh

1

∂x2

)2

on S2
h,
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we deduce that ∫
Th
σ h

ij

(
uh

)
eij

(
uh

)
dsdx3

≥ 2μ∗
h

(∫
Th
(e11 (uh))

2 +2 (e12 (uh))
2 + (e22 (uh))

2 dsdx3

)
≥μ∗

h

(∫ rh/2

−rh/2

∫
S1

h

(
∂uh

1

∂x1

)2

+
(
∂uh

2

∂x1

)2

dsdx3

)

+μ∗
h

(∫ rh/2

−rh/2

∫
S2

h

(
∂uh

2

∂x2

)2

+
(
∂uh

1

∂x2

)2

dsdx3

)
.

(4.3)

Observing that, for
[
p, q

] ⊂ Sβh ; β = 1, 2,∫
[p,q]

(
∂uh

α

∂xβ

)2

ds ≥ 3h

(∫
[p,q]

∂uh
α

∂xβ
ds

)2

= 3h
(
uh
α (p, x3)− uh

α (q, x3)
)2 ,

we deduce from (4.3), using the hypothesis (2.20), that∫
Th
σ h

ij

(
uh

)
eij

(
uh

)
dsdx3

≥ 3hrhμ
∗
h

∑
α=1,2

p,q∈Vh
|p−q|=3−h/2

1

2rh

∫ rh/2

−rh/2

(
uh
α (p, x3)− uh

α (q, x3)
)2

dx3

≥ 3hrhchμ
∗ ∑

α=1,2
p,q∈Vh

|p−q|=3−h/2

1

2rh

∫ rh/2

−rh/2

(
uh
α (p, x3)− uh

α (q, x3)
)2

dx3

≥μ∗ρh
∑
α=1,2

p,q∈Vh
|p−q|=3−h/2

(
1

2rh

∫ rh

−rh

(
uh
α (p, x3)− uh

α (q, x3)
)

dx3

)2

.

(4.4)

Hence,

suph μ
∗ρh

∑
α=1,2

p,q∈Vh
|p−q|=3−h/2

(
1

2rh

∫ rh

−rh

(
uh
α (p, x3)− uh

α (q, x3)
)

dx3

)2

≤ suph

∫
Th
σ ∗h

ij

(
uh

)
eij

(
uh

)
ds

≤ suph Fh

(
uh

)
<+∞.

(4.5)

2. Let p fixed in Vh. Let us denote (qm)m=1,...,Nv
h

the point of Vh such that q1 = p, qNv
h
= a1, and

|qm − qm+1| = 3−h/2, for m = 1, ..., Nv
h − 1. As uh ∈ H1

�h

(
�h, R3

) ∩ H1
(
Th, R3

)
, we have, in particular,

uh
(
qNv

h

) = uh (a1)= 0. Then, using some convexity argument,∑
α=1,2

1

2rh

∫ rh

−rh

(
uh
α (p, x3)

)2
dx3

=
∑
α=1,2

1

2rh

∫ rh

−rh

⎛⎝Nv
h−1∑

m=1

(
uh
α (qm, x3)− uh

α (qm+1, x3)
)⎞⎠2

dx3

≤ C
∑
α=1,2
θ ,q∈Vh

|θ−q|=3−h/2

1

2rh

∫ rh/2

−rh/2

(
uh
α (θ , x3)− uh

α (q, x3)
)2

dx3,

https://doi.org/10.1017/S0956792523000025 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000025


850 M. El Jarroudi et al.

C being a positive constant independent of h. This implies, by summing over all p ∈ Vh, that

1

Nv
h

∑
α=1,2
p∈Vh

|p−q|=3−h/2

1

2rh

∫ rh

−rh

(
uh
α (p, x3)

)2
dx3

≤ Cρh
∑
α=1,2
θ ,q∈Vh

|p−q|=3−h/2

1

2rh

∫ rh/2

−rh/2

(
uh
α (θ , x3)− uh

α (q, x3)
)2

dx3,

from which we deduce, using (4.5), that

sup
h

1

2rh

∑
α=1,2

∫ rh

−rh

∫
�

∣∣uh
α

∣∣2
dmhdx3 <+∞. (4.6)

3. Observing that

uh
3

(
x′, z

) − uh
3

(
x′, 0

) =
∫ z

0

∂uh
3

∂x3

dx3, (4.7)

we deduce the following inequality

(
uh

3

(
x′, z

))2 ≤ C

((
uh

3

(
x′, 0

))2 + rh

∫ rh

−rh

(
∂uh

3

∂x3

)2

dx3

)
. (4.8)

Then, integrating (4.8) over Th, we obtain the inequality∫
Th

(
uh

3

)2
dsdx3 ≤ Crh

(∫
Sh

(
uh

3

(
x′, 0

))2
ds + rh

∫
Th

(
e33

(
uh

))2
dsdx3

)
,

from which we deduce that

1

|Th|
∫

Th

(
uh

3

)2
dsdx3 ≤ C

(
3

8

)h ∫
Sh

(
uh

3

(
x′, 0

))2
ds

+ Crh

(
3

8

)h ∫
Th

(
e33

(
uh

))2
dsdx3. (4.9)

On the other hand, using (4.7), we have that

εh

∫
Sh

(
uh

3

(
x′, 0

))2
ds ≤ C

∫ εh

−εh

∫
Sh

(
uh

3 (x)
)2

dsdx3

+ Cε2
h

∫
�h

(
e33

(
uh

))2
dsdx3. (4.10)

Combining (4.9) and (4.10), we get

1

|Th|
∫

Th

(
εhuh

3

)2
dsdx3 ≤ C

(
3

8

)h

εh

∫
�h

(
uh

3 (x)
)2

dx

+ Cε3
h

(
3

8

)h ∫
Th

(
e33

(
uh

))2
dsdx3

+ Cε2
hrh

(
3

8

)h ∫
Th

(
e33

(
uh

))2
dsdx3, (4.11)
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from which we deduce, using Lemma 4, that

1

|Th|
∫

Th

(
εhuh

3

)2
dsdx3 ≤ C

(
3

8

)h

. (4.12)

On the other hand, using the same arguments as in (4.7)–(4.11), we deduce that

1

Nv
h

∑
α=1,2
p∈Vh

1

2rh

∫ rh

−rh

(
εhuh

3 (p, x3)
)2

dx3 ≤ C

|Th|
∫

Th

(
εhuh

3

)2
dsdx3

+ Crhε
2
h

(
3

8

)h ∫
Th

(
e33

(
uh

))2
dsdx3,

(4.13)

then, combining with (4.12), we obtain that

1

2rh

∫ rh

−rh

∫
�

(
εhuh

3

)2
dmhdx3 ≤ C

(
3

8

)h

. (4.14)

4.2 Convergence of displacements

Let ϕ ∈ C∞
c (ω× (−1, 1)). Then,

lim
h→∞

1

εh

∫
�h

ϕ
(
x′, x3/εh

)
dx = lim

h→∞
1

εh

∫
ω

∫ εh

−εh
ϕ

(
x′, x3/εh

)
dx

=
∫
ω

∫ 1

−1

ϕ
(
x′, z

)
dx′dz.

This suggests the following notion of convergence with respect to dimension reduction:

Definition 6 Let uh ∈ L2 (�h). We say that the sequence (uh)h converges to u ∈ L2 (ω× (−1, 1)) with
respect to dimension reduction and write

uh

dr
⇀ u L2 (ω× (−1, 1)) ,

if

lim
h→∞

1

εh

∫
�h

uh (x) ϕ
(
x′, x3/εh

)
dx =

∫
ω

∫ 1

−1

u
(
x′, z

)
ϕ

(
x′, z

)
dx′dz,

for every ϕ ∈ C∞
c (ω× (−1, 1)).

We have the following compactness result:

Lemma 7 Let uh ∈ L2 (�h) such that sup
h

(
1

εh

∫
�h

u2
h (x) dx

)
<+∞. Then, there exists a subsequence

of (uh)h, still denoted (uh)h, and a function u ∈ L2 (ω× (−1, 1)), such that

uh

dr
⇀ u L2 (ω× (−1, 1)) .

Proof. Let us consider the sequence of measures (ςh)h defined on ω× (−1, 1) by

ςh = uh (x)

εh

1�h (x) δx3/εh (dx3) dx.

As

〈ςh, ϕ〉 = 1

εh

∫
�h

uh (x) ϕ
(
x′, x3/εh

)
dx,
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for every ϕ ∈ Cc (ω× (−1, 1)), |�h| = 2εh |ω|, and

sup
h

(
1

εh

∫
�h

u2
h (x) dx

)
<+∞,

we deduce, using the Cauchy-Schwarz inequality, that, for every h ∈N,

|ςh (ω× (−1, 1))| = 1

εh

∣∣∣∣∫
�h

uh (x) dx

∣∣∣∣
≤ C

(
1

εh

∫
�h

u2
h (x) dx

)1/2

≤ C,

where C is a positive constant independent of h. The sequence (ςh)h is thus of bounded variation, hence
weakly converges, up to some subsequence, to a measure ς . Moreover, for every ϕ ∈ C∞

c (ω× (−1, 1)),

∫
ω

∫ 1

−1
ϕ (x) dςh = 1

εh

∫
�h
ϕ (x′, x3/εh) uh (x) dx

≤
(

1

εh

∫
�h

u2
h (x) dx

)1/2 (
1

εh

∫
�h
ϕ2 (x′, x3/εh) dx

)1/2

≤ C

(
1

εh

∫
�h
ϕ2 (x′, x3/εh) dx

)1/2

,

from which we deduce, by passing to the limit as h tends to ∞, that∫
ω

∫ 1

−1

ϕ
(
x′, z

)
dς ≤ C ‖ϕ‖L2(ω×(−1,1)) .

It follows, according to Riesz’ representation theorem, that there exists u ∈ L2 (ω× (−1, 1)) such that
ς = u (x′, z) dx′dz. This means that, up to some subsequence,

uh

dr
⇀ u L2 (ω× (−1, 1)) .

Proposition 8 Let uh ∈ H
(
�h, R3

)
such that suph Fh

(
uh

)
<+∞. Then, under the assumption (2.25),

there exists a subsequence of
(
uh

)
h
, still denoted as

(
uh

)
h
, such that

1. uh
α

dr
⇀Uα L2

(
ω× (−1, 1) , R3

)
; α = 1, 2,

εhuh
3

dr
⇀U3 L2

(
ω× (−1, 1) , R3

)
,

2. U3 = u3 (x′) is independent of z ∈ (−1, 1),
∫ 1

−1
Uα (x′, z)= uα (x′); α= 1, 2, with Uα (x′, z)=

−z
∂u3

∂xα
(x′)+ uα (x′), u = (u1, u2) ∈ H1

0

(
ω, R2

)
, and u3 ∈ H2

0 (ω).

Proof. 1. The two convergences follow from Lemmas 4 and 7.
2. Since

sup
h

1

εh

∫
�h

eij

(
uh

)
eij

(
uh

)
dx<+∞,

it follows from Lemma 7 that there exists χij ∈ L2 (ω× (−1, 1)); i, j = 1, 2, 3, such that, up to some
subsequence,

eij

(
uh

) dr
⇀χij L2 (ω× (−1, 1)) ; i, j = 1, 2, 3. (4.15)

Let ϕ ∈ C∞
c (ω× (−1, 1)). Then, for α = 1, 2, we have

1

εh

∫
�h

eα3

(
uh

)
ϕ

(
x′, x3/εh

)
dx = − 1

εh

∫
�h

⎛⎜⎜⎝
uh
α

2εh

∂ϕ

∂z
(x′, x3/εh)

+uh
3

2

∂ϕ

∂xα
(x′, x3/εh)

⎞⎟⎟⎠ dx (4.16)
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and

1

εh

∫
�h

e33

(
uh

)
ϕ

(
x′, x3/εh

)
dx = − 1

εh

∫
�h

uh
3

εh

∂ϕ

∂z

(
x′, x3/εh

)
dx. (4.17)

Multiplying by εh in (4.16) and passing to the limit, taking into account (5.15), we obtain

lim
h→∞

∫
�h

eα3

(
uh

)
ϕ (x′, x3/εh) dx = lim

h→∞
− 1

2εh

∫
�h

uh
α

∂ϕ

∂z
(x′, x3/εh) dx

+ lim
h→∞

− 1

2εh

∫
�h
εhuh

3

∂ϕ

∂xα
(x′, x3/εh) dx

= −1

2

∫
ω

∫ 1

−1

(
Uα

∂ϕ

∂z

)
(x′, z) dx′dz

−1

2

∫
ω

∫ 1

−1

(
U3

∂ϕ

∂xα

)
(x′, z) dx′dz

= 0,

which implies that ∫
ω

∫ 1

−1

(
∂Uα

∂z
+ ∂U3

∂xα

)
ϕ

(
x′, z

)
dx′dz = 0; α = 1, 2, (4.18)

for every ϕ ∈ C∞
c (ω× (−1, 1)). Multiplying by ε2

h in (4.17) and passing to the limit, taking into account
(4.15), we obtain that

lim
h→∞
εh

∫
�h

e33

(
uh

)
ϕ (x′, x3/εh) dx = lim

h→∞
− 1

εh

∫
�h
εhuh

3

∂ϕ

∂z
(x′, x3/εh) dx

= − ∫
ω

∫ 1

−1

(
U3

∂ϕ

∂z

)
(x′, z) dx′dz

= 0.

This yields ∫
ω

∫ 1

−1

∂U3

∂z
ϕ

(
x′, z

)
dx′dz = 0, (4.19)

for every ϕ ∈ C∞
c (ω× (−1, 1)). It follows from (4.19) that

∂U3

∂z
= 0 in D′ (ω× (−1, 1)), hence, accord-

ing to [27, Lemma 4.1], U3 (x′, z)≡ u3 (x′). In view of (4.18)–(4.19), it follows from Schwarz Lemma
that there exists uα ∈ L2 (ω); α= 1, 2, such that

Uα

(
x′, z

) = −z
∂u3

∂xα

(
x′) + uα

(
x′) ; α= 1, 2. (4.20)

On the other hand, according to Lemma 4, we have

sup
h

∑
α,β

1

εh

∫
�h

(
∂uh

α

∂xβ

)2

dx<+∞,

from which we deduce, taking into account Lemma 7, that, up to some subsequence,

∂uh
α

∂xβ

dr
⇀ gβ

α
∈ L2 (ω× (−1, 1)) , α, β = 1, 2. (4.21)
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Let ϕ ∈ C∞
c (ω× (−1, 1)). Then, using (4.21),

lim
h→∞

1

εh

∫
�h

∂uh
α

∂xβ
ϕ (x′, x3/εh) dx = ∫ 1

−1

∫
ω

gβ
α
ϕ (x′, z) dx′dz

= − lim
h→∞

1

εh

∫
�h

uh
α

∂ϕ

∂xβ
(x′, x3/εh) dx

= − ∫ 1

−1

∫
ω

Uα

∂ϕ

∂xβ
(x′, z) dx′dz

= ∫ 1

−1

∫
ω

∂Uα

∂xβ
ϕ (x′, z) dx′dz,

(4.22)

which implies that gβ
α
= ∂Uα

∂xβ
. Moreover, using (4.20), we have

∫ 1

−1

∫
ω

(
∂Uα

∂xβ
(x′, z)

)2

dx′dz

=
(∫

ω

(
∂2u3

∂xβ∂xα
(x′)

)2

dx′
) ∫ 1

−1
z2dz

+ 2
∫
ω

(
∂uα
∂xβ

(x′)

)2

dx′ + 2

(∫
ω

(
uα
∂2u3

∂xβ∂xα

)
(x′) dx′

) ∫ 1

−1
zdz

= 2

3

∫
ω

(
∂2u3

∂xβ∂xα
(x′)

)2

dx′ + 2
∫
ω

(
∂uα
∂xβ

(x′)

)2

dx′,

from which we deduce that
∂uα
∂xβ

∈ L2 (ω) and
∂2u3

∂xβ∂xα
∈ L2 (ω). Taking ϕ ∈ C∞ (ω), we deduce from the

above computations that

lim
h→∞

1

εh

∫
�h

∂uh
α

∂xβ
ϕdx = 2

∫ 1

−1

∫
ω

∂Uα

∂xβ
ϕdx′dz

= −2
∫ 1

−1

∫
ω

Uα

∂ϕ

∂xβ
dx′dz

+ 2
∫ 1

−1

∫
∂ω

Uανβϕdsdz,

(4.23)

where ν is the outward unit normal to ∂ω. Moreover, as uh
α
= 0 on �h; α= 1, 2,

lim
h→∞

1

εh

∫
�h

∂uh
α

∂xβ
ϕdx = lim

h→∞
− 1

εh

∫
�h

uh
α

∂ϕ

∂xβ
dx

= −2
∫ 1

−1

∫
ω

Uα

∂ϕ

∂xβ
dx′dz.

(4.24)

Combining (4.23) and (4.24), we conclude that
∫
∂ω

Uανβϕds = 0; hence, Uα = 0 on ∂ω× (−1, 1) and
uα = 0 on ∂ω ; α= 1, 2. Taking into account (4.21), it follows that (u1, u2) ∈ H1

0

(
ω, R2

)
. Similarly, as

uh
3 = 0 on �h, we deduce, according to Lemma 4, that, for ϕ ∈ C∞ (ω) and α= 1, 2,

lim
h→∞

1

εh

∫
�h

∂
(
εhuh

3

)
∂xα

ϕdx = 2
∫
ω

∂u3

∂xα
ϕdx′

= lim
h→∞

− 1

εh

∫
�h

uh
3

∂ϕ

∂xα
dx

= −2
∫
ω

u3

∂ϕ

∂xα
dx′.

(4.25)
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This implies that
∫
∂ω

u3ναϕds = 0; hence, u3 = 0 on ∂ω. On the other hand, using (4.20), we deduce

that
∂u3

∂xα
= 0 on ∂ω; α= 1, 2; thus, u3 ∈ H2

0 (ω).

Let M (
R3

)
be the space of Radon measures on R3. We have the following result:

Lemma 9 Let vh ∈ L2 (�)∩ L2 (Th), such that

sup
h

1

2rh

∫ rh

−rh

∫
�

v2
hdmhdx3 <+∞,

where mh is the measure defined in (3.11). Then, there exists a subsequence of (vh)h, still denoted (vh)h,
such that

vh

1Th (x)

2rh

mhdx3

∗
⇀

h→∞
v1� (s)

dHd (s)⊗ δ0 (x3)

Hd (�)
in M (

R
3
)

,

with v (s, 0) ∈ L2
Hd (�).

Proof. According to Lemma 1, the sequence (mh)h weakly converges in C (�)∗ to the measure m =
1� (s)

dHd (s)

Hd (�)
. One can then easily check that, for every ϕ ∈ C0

(
R3

)
,

lim
h→∞

∫
R3

ϕ (x)
1Th (x)

2rh

dmhdx3 = 1

Hd (�)

∫
�

ϕ (s, 0) dHd (s). (4.26)

Since suph

1

2rh

∫ rh

−rh

∫
�

|vh|2 dmhdx3 <+∞, the sequence
(

vh

1Th (x)

2rh

mhdx3

)
h

is uniformly bounded

in variation, hence ∗-weakly relatively compact. Possibly passing to a subsequence, we can suppose

that the sequence
(

vh

1Th (x)

2rh

mhdx3

)
h

converges to some χ . Let ϕ ∈ C0

(
R3

)
, we have, using Fenchel’s

inequality

lim inf
h→∞

1

2rh

∫ rh

−rh

∫
�

|vh|2 dmhdx3

≥ lim inf
h→∞

(∫
R3 vhϕ

1Th (x)

2rh

dmhdx3 − 1

2

∫
R3 ϕ

2
1Th (x)

2rh

dmhdx3

)
≥ 〈χ , ϕ〉 − 1

2Hd (�)

∫
�
ϕ2 (s, 0) dHd (s).

As the left hand side of this inequality is bounded, we deduce that

sup

{
〈χ , ϕ〉 ; ϕ ∈ C0

(
R

3
)

,
1

Hd (�)

∫
�

ϕ2 (s, 0) dHd (s)≤ 1

}
<+∞,

from which we deduce, according to Riesz’ representation Theorem, that there exists v, such that v ∈
L2
Hd (�) and χ = v1� (s)

dHd (s)⊗ δ0 (x3)

Hd (�)
.

Proposition 10 Let
(
uh

)
h
; uh ∈ H

(
�h, R3

)
, be a sequence such that

sup
h

∫
Th

σ ∗h
ij

(
uh

)
eij

(
uh

)
dsdx3 <+∞.
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Then, under the assumption (2.20), there exists a subsequence, still denoted
(
uh

)
h
, such that

1. uh
α

1Th (x)

2rh

mhdx3

∗
⇀

h→∞
vα1� (s)

dHd (s)⊗ δ0 (x3)

Hd (�)
, with vα (s) ∈ L2

Hd (�); α = 1, 2,

2. εhuh
3

1Th (x)

2rh

mhdx3

∗
⇀

h→∞
0.

Proof. According to Lemma 52,3, we have, up to some subsequence,

uh
α

1Th (x)

2rh

mhdx3

∗
⇀

h→∞
vα1� (s)

dHd (s)⊗ δ0 (x3)

Hd (�)
; α = 1, 2,

εhuh
3

1Th (x)

2rh

mhdx3

∗
⇀

h→∞
0,

with vα ∈ L2
Hd (�); α = 1, 2.

5 The main result

In this section, we state the main result of this work. According to Propositions 8 and 10, we introduce
the following topology τ :

Definition 11 We say that a sequence
(
uh

)
h
; uh ∈ H

(
�h, R3

)
, τ -converges to (u, v); v = (v1, v2), if u is

independent of z ∈ (−1, 1), uα (x′)= ∫ 1

−1
Uα (x′, z) dz; α = 1, 2, and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uh
α

dr
⇀Uα L2

(
ω× (−1, 1) , R3

)
; α = 1, 2,

εhuh
3

dr
⇀ u3 L2

(
ω× (−1, 1) , R3

)
,

uh
α

1Th (x)

2rh

mhdx3

∗
⇀

h→∞
vα1� (s)

dHd (s)⊗ δ0 (x3)

Hd (�)
in M (

R3
)

; α = 1, 2,

εhuh
3

1Th (x)

2rh

mhdx3

∗
⇀

h→∞
0 in M (

R3
)

.

We state our main result of the �-convergence in the topology τ of the sequence of functionals Fh to
the functional F∞ defined in (1.1) as follows:

Theorem 12 If γ ∈ (0, +∞) then, under the assumptions (2.20) and (2.25),

1. (lim − sup inequality) For every (u, v)∈ H
(
ω, R3

)
, there exists a sequence

(
uh

)
h
; uh ∈ H

(
�h, R3

)
,

such that
(
uh

)
h
τ -converges to (u, v) and

lim sup
h→∞

Fh

(
uh

) ≤ F∞ (u, v) .

2. (lim inf inequality) For every uh ∈ H
(
�h, R3

)
such that

(
uh

)
h
τ -converges to (u, v), we have

(u, v) ∈ H
(
ω, R3

)
and

lim inf
h→∞

Fh

(
uh

) ≥ F∞ (u, v) .

Let us write the associated homogenised problem obtained at the limit as h −→ ∞.

Corollary 13 Problem (2.28) admits a unique solution uh which, under the hypotheses of Theorem 12,
τ -converges to (u, v) ∈ H

(
ω, R3

)
such that

lim
h→∞

Fh

(
uh

) = F∞ (u, v)
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and (u, v) is the solution of the problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ηαβ,β (u) = f̃α; α = 1, 2, in ω,
∂2
αβ (u3)

∂xα∂xβ
= f̃3 in ω,

−μ∗�α,� (v) = μγAαα (s) (uα − vα) ; α = 1, 2, in �,[
ηαβ (u) νβ

]
�

= πμγ

Hd (�) (ln 2)2
Aαα (s) (uα − vα)Hd on �,[


αβ (u3) νβ
]
�

= 0 on �,

[
∂
αβ (u3)

∂xα
νβ

]
�

= πμγ

Hd (�) (1 + κ) (ln 2)2
u3 on �,

u = 0 on ∂ω,

v = 0 on � ∩ ∂ω,

where ν is the unit normal on � and f̃i (x1, x2)=
∫ 1

−1
fi (x1, x2, x3) dx3; i = 1, 2, 3.

Proof. One can easily check that problem (2.28) has a unique solution uh ∈ H1
0

(
�, R3

) ∩ H1
(
Th, R3

)
.

Now, observing that

Fh

(
uh

) − 2
∫
�h

f .uhdx ≤ Fh (0)= 0,

we deduce, using the fact that lim
h→∞

ch = +∞, and the inequalities (4.1) and (4.2) of the proof of
Lemma 4, that ∑

α,β=1,2

1

εh

∫
�h

(
uh
α

)2
dx + 1

εh

∫
�h

(
εhuh

3

)2
dx

≤ Fh (uh)≤ 2
∫
�h

f .uhdx

≤ 2

(
1

εh

∫
�h

|f |2 dx

)1/2 (
1

εh

∫ 2

�h

∣∣εhuh
∣∣2

dx

)1/2

≤ C

(
1

εh

∫ 2

�h

∣∣εhuh
∣∣2

dx

)1/2

,

from which we deduce, in particular, that suph Fh

(
uh

)
<+∞. Then, in view of Propositions 8, 10, and

Theorem 12, we deduce, according to [11, Theorem 7.8]), that the sequence
(
uh

)
h
τ -converges to the

solution (u, v) ∈ H
(
ω, R3

)
of the problem

min
(ξ ,ζ )∈H(ω,R3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫
ω
ηαβ (ξ) eαβ (ξ) dx′ +μ∗ ∫

�
dL� (ζ )

+ πμγ

Hd (�) (ln 2)2
∫
�

Aαα (s) (ξα − ζα)2 dHd (s)

+ πμγ

Hd (�) (ln 2)2
∫
�

A33 (s) ξ 2
3 dHd (s)

+ ∫
ω

αβ (ξ3)

∂2ξ3

∂xα∂xβ
dx′

−2
∫
ω

f̃iξidx′,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(5.1)

and

lim
h→∞

Fh

(
uh

) = F∞ (u, v) .
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The trace of an element of H1
(
ω, R2

)
on ω ∩� exists for Hd-almost-every x ∈ω ∩� and belongs

to the Besov space B2
d/2

(
�, R2

)
defined by

B2
d/2

(
�, R2

) =

⎧⎪⎨⎪⎩
v :� −→R2;

∫
�

|v (x)|2 dHd (x)

+∫
�

∫
�

|x−y|<1

|v (x)− v (y)|2

|x − y|2d dHd (x) dHd (y) <+∞

⎫⎪⎬⎪⎭ , (5.2)

see [24, Theorem 6]. More details on Besov spaces Bp,q
α (K), α > 0, 1 ≤ p, q ≤ ∞, defined for a large

class of closed subsets K of RN including fractal subsets, can be found in [22, Chapters 5 and 6]. In
our case K =�, α = d/2, and p = q = 2. The trace Theorem [24, Theorem 6] can be applied to a more
geometrically complex domain which, supplied with a positive Borel measure, is a d-set preserving
Markov’s inequality [24, pp. 193–195]. Typical examples of d-sets are self-similar fractals (see for
instance [24, pp. 194]). According to [22, Theorem 3, p. 39], if K ⊂ RN is a d-set with d>N − 1, then
K preserves Markov’s inequality. In particular, the Sierpinski carpet � is a d-set preserving Markov’s
inequality where d is the fractal dimension of � given in (1.4). Then, using Lemma 3, we obtain from
(5.1) that v ∈D�� and for every (ξ , ζ ) ∈ H

(
ω, R3

)
,∫

ω

(−ηαβ,β (u)− f̃α
)
ξαdx′ − μ∗

Hd (�)

∫
�

(
�α,�v

)
ζαdHd

+ πμγ

Hd (�)

∑
α=1,2

∫
�

Aαα (s) (uα − vα) (ξα − ζα) dHd (s)

+ πμγ

Hd (�)

∫
�

A33 (s) u3ξ3dHd (s)

+ ∫
ω

(
∂2
αβ (u3)

∂xα∂xβ
− f̃3

)
ξ3dx′

+
〈[

αβ (u3) νβ

]
�

,
∂ξ3

∂xα

〉
B2−d/2(�,R3),B2

d/2(�,R3)

−
〈[
∂
αβ (u3)

∂xα
νβ

]
�

, ξ3

〉
B2−d/2(�,R3),B2

d/2(�,R3)

+ 〈[
ηαβ (u) νβ

]
�

, ξα
〉
B2−d/2(�,R3),B2

d/2(�,R3)
= 0,

. (5.3)

where B2
−d/2

(
�, R3

)
is the dual space of B2

d/2

(
�, R3

)
(see [23, p. 291]).

6 Proof of the main result

This section is devoted to the proof of the main results. We first study a local problem which is related
to boundary layers due to the local interactions between the constituent materials. The solution of this
local problem is crucial in constructing appropriate test functions in order to pass to the limit in the
original problem.

6.1 Local problems

We consider here some local problems associated with boundary layers in the vicinity of the ribbons.
We denote wm; m = 1, 2, the solution of the following boundary value problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

div σ (wm) (y) = 0 ∀y ∈R2+

wm (y1, 0) = (δ1m, δ2m) ∀y1 ∈ ]−1, 1[ ,
σi2 (wm) (y) = 0 ∀y ∈ (R \ ]−1, 1[)× {0} ,

wm
m (y) = − ln |y|

ln 2
when |y| → ∞, y2 > 0,∣∣wm

p

∣∣ (y) ≤ C when
{

p = 2 if m = 1,
p = 1 if m = 2,

(6.1)
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where σij (wm)= λekk (wm) δij + 2μeij (wm) ; i, j = 1, 2 and

R
2+ = {

y = (y1, y2) ∈R
2; y2 > 0

}
.

The displacement wm; m = 1, 2, which belongs to the space H1
loc

(
R2+, R2

)
, is given (see for instance

[12, 14, 29]) by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1
1 (y) = −1 + κ

4πμ

∫ 1

−1
θ (t) ln

(√
(y1 − t)2 + y2

2

)
dt

+ 1

4πμ

∫ 1

−1
θ (t)

2y2
2

(y1 − t)2 + y2
2

dt,

w1
2 (y) = − (1 − κ)

4πμ

∫ 1

−1
θ (t) arctan

(
y2

y1 − t

)
dt

+ 1

4πμ

∫ 1

−1
θ (t)

2y2 (y1 − t)

(y1 − t)2 + y2
2

dt

(6.2)

and ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w2
1 (y) = (1 − κ)

4πμ

∫ 1

−1
θ (t) arctan

(
y2

y1 − t

)
dt

+ 1

4πμ

∫ 1

−1
θ (t)

2y2 (y1 − t)

(y1 − t)2 + y2
2

dt,

w2
2 (y) = − (1 + κ)

4πμ

∫ 1

−1
θ (t) ln

(√
(y1 − t)2 + y2

2

)
dt

− 1

4πμ

∫ 1

−1
θ (t)

2y2
2

(y1 − t)2 + y2
2

,

(6.3)

where

θ (t)=

⎧⎪⎨⎪⎩
4μ

(1 + κ) ln 2

1√
1 − t2

if t ∈ ]−1, 1[ ,

0 otherwise.
(6.4)

One can check that wm (y); m = 1, 2, is also the solution of problem (6.1) posed in the half-plane R2−:

R
2− = {

y = (y1, y2) ∈R
2; y2 < 0

}
.

We introduce the following scalar problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�w (y) = 0 ∀y ∈R2+,
w (y1, 0) = 1 ∀y1 ∈ ]−1, 1[ ,
∂w

∂y2

(y1, 0) = 0 ∀y1 ∈R \ ]−1, 1[ ,

w (y) = − ln |y|
ln 2

as |y| → ∞, y2 > 0.

(6.5)

The solution of (6.5) is given by

w (y)= − 1

π ln 2

∫ 1

−1

ln
(√
(y1 − t)2 + y2

2

)
√

1 − t2
dt. (6.6)

Observe that w (y) is also the solution of problem (6.5) posed in the half-plane R2−. We now state
the following preliminary result in this subsection:

Proposition 14 ([12, Proposition 7]). One has

1. lim
R→+∞

1

ln R

∫
B(0,R)∩R2± σij (wm) eij

(
wl

)
dy = δml

2μπ

(1 + κ) (ln 2)2
,
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2. lim
R→+∞

1

ln R

∫
B(0,R)∩R2± |∇w|2 dy = π

(ln 2)2
, where D (0, R) is a disk of radius R centred at the origin.

We define the rotation matrix R (
xk

h

)
; xk

h = (
xk

1h, xk
2h

)
being the centre of Sk

h; k ∈ Ih, by

R (
xk

h

) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

IdR3 if nk = ±e2,⎛⎜⎝ 0 1 0

1 0 0

0 0 1

⎞⎟⎠ if nk = ±e1,
(6.7)

where IdR3 is the 3 × 3 identity matrix and nk is the unit normal to the line segment Sk
h, in the plane xOy.

Let ϕk
h; k ∈ Ih, be the truncation function defined on R2 by

ϕk
h (x)=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4

(
3−2h − 4R2

k,h (x)
)

3−2h+1
if 3−h/4 ≤ Rk

h (x)≤ 3−h/2,

1 if Rk
h (x)≤ 3−h/4,

0 if Rk
h (x)≥ 3−h/2,

(6.8)

where Rk
h (x)=

√((
x − xk

h

)
.nk

)2 + x2
3. We define, for k ∈ Ih,

Dk
h (sh)=

{((
x − xk

h

)
.nk, x3

) ∈R
2; Rk

h (x) < 3−h/2, ∀x ∈R
3
}

(6.9)

and the cylinder

Zk
h =R (

xk
h

)
Sk

h × Dk
h (sh) ; k ∈ Ih. (6.10)

We then set

Zh =
⋃
k∈Ih

Zk
h . (6.11)

Let k ∈ Ih. We set  k
h (x)= ϕk

h (x)R
(
xk

h

)
and define the function wmk

h (x); m = 1, 2, 3, by

w1k
h (x)= k

h (x)

⎛⎜⎜⎜⎝e1 − 1

ln rh

⎛⎜⎜⎜⎝
1 − w

(
x3

rh

,

(
x − xk

h

)
.nk

rh

)
0
0

⎞⎟⎟⎟⎠
⎞⎟⎟⎟⎠ , (6.12)

w2k
h (x)= k

h (x)

⎛⎜⎜⎜⎜⎜⎜⎝e2 − 1

ln rh

⎛⎜⎜⎜⎜⎜⎜⎝
0

1 − w1
1

(
x3

rh

,

(
x − xk

h

)
.nk

rh

)

w1
2

(
x3

rh

,

(
x − xk

h

)
.nk

rh

)
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ (6.13)

and

w3k
h (x)= k

h (x)

⎛⎜⎜⎜⎜⎜⎜⎝e3 − εh

ln rh

⎛⎜⎜⎜⎜⎜⎜⎝

0

w2
1

(
x3

rh

,

(
x − xk

h

)
.νk

rh

)

w2
2

(
x3

rh

,

(
x − xk

h

)
.νk

rh

)
⎞⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎠ . (6.14)

where ei = (δ1i, δ2i, δ3i). We define now the local perturbations wm
h ; m = 1, 2, 3, through

wm
h (x)= wmk

h (x) , ∀k ∈ Ih, ∀x ∈ω× (−1, 1) . (6.15)
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Lemma 15 If γ ∈ (0, +∞) then, under the assumption (2.25), for every ! ∈ C1
(
ω× [−1, 1] , R3

)
and

!h = (!1,!2,!3/εh), we have

lim
h→∞

(∫
Zh

σ h
ij

(
wl

h!
h
m

)
eij

(
wl′

h!
h
l

)
dx

)
= πμγ

Hd (�) (ln 2)2

∫
�

A (s) ! (s) .! (s) dHd (s) ,

where A (s) is the matrix defined in (1.6).

Proof. Let us introduce the local variables y = (y1, y2) with{
y1 = x3/rh,

y2 = (
x − xk

h

)
.nk/rh.

(6.16)

Then, using the smoothness of !, the assumption (2.25), and Proposition 14, we obtain that

lim
h→∞

∫
Zh
σ h

ij

(
wl

h!
h
m

)
eij

(
wl′

h!
h
l

)
dx

= lim
h→∞

∑
k∈Ih

∫
Zk

h
σ h

ij

(
wlk

h

)
eij

(
wl′k

h

)
!h

m!
h
l dx

= lim
h→∞

b

3h

8h
εh ln2 rh

∫
D

(
0, 3−h

2rh

)
\D(0,1)

σij

(
wl

)
eij

(
wl′) dy

×
(

Nv
h∑

k=1

a

bNv
h

(R (
xk

h

)
!

)
m

(R (
xk

h

)
!

)
l

(
xk

1h, xk
2h

))
= πμγ

Hd (�) (ln 2)2
∫
�

(
DiagR (s) ! (s)

)
m
(R (s) ! (s))l dHd (s)

= πμγ

Hd (�) (ln 2)2
∫
�
Rt (s)DiagR (s) ! (s) .! (s) dHd (s) ,

(6.17)

where D

(
0,

3−h

2rh

)
is the disk of radius

3−h

2rh

centred at the origin, D(0,1) is the disk of radius 1 centred at

the origin, Diag = Diag
(

1,
2

(1 + κ) ,
2

(1 + κ)
)

, and R (s) is the rotation matrix defined by R (s) = IdR3

on the face of � which is perpendicular to the vector e2 and by R (s)=
⎛⎝ 0 1 0

1 0 0
0 0 1

⎞⎠ on the face of �

which is perpendicular to the vector e1. Observing that in (6.17)

Rt (s)DiagR (s)=R (s)DiagR (s)= A (s) ,

we obtain the desired result.

6.2 Proof of Theorem 12

The proof of Theorem 12 is given in two steps.

6.2.1 Step 1: Lim-sup inequality
Here we prove the lim-sup property of the �-convergence stated in Theorem 12. We first construct a
test function on each line segment Sk

h; k ∈ Ih, with extremities pk
h = (

pk
h1, pk

h2

)
, qk

h = (
qk

h1, qk
h2

)
, and centre

xk
h = (

xk
h1, xk

h2

)
. Let (v1, v2, v3) ∈ C2

c

(
ω, R3

)
. We consider the sequence

(
vh,k

)
h

of test functions defined,
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for every x = (x1, x2) ∈ Sk
h, by

vh,k
1 (x

′) = v1

(
xk

1h, xk
2h

) + 3hϑ
1,k
h (x′)

∣∣v1

(
pk

h

) − v1

(
qk

h

)∣∣ ,

vh,k
2 (x

′) = v2

(
xk

1h, xk
2h

) + 3hϑ
2,k
h (x′)

∣∣v2

(
pk

h

) − v2

(
qk

h

)∣∣ ,

vh,k
3 (x

′) = v3

(
xk

1h, xk
2h

)
,

(6.18)

where ϑ i,k
h (x

′); i = 1, 2, 3, is defined by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϑ
1,k
h (x′) =

√
μ∗

h

2

(
x1 − pk

h,1

) + (
x1 − qk

h,1

)√
λ∗

h + 2μ∗
h

−
(
x2 − pk

h,2

) + (
x2 − qk

h,2

)
√

2
,

ϑ
2,k
h (x′) =

√
μ∗

h

2

(
x2 − pk

h,2

) + (
x2 − qk

h,2

)
2
√
λ∗

h + 2μ∗
h

−
(
x1 − pk

h,1

) + (
x1 − qk

h,1

)
√

2
.

(6.19)

Let us now introduce the intervals J
pk

h
h and J

qk
h

h which are centred at the points pk
h and qk

h, respectively,
such that

Sk
h ∩ J

pk
h

h = [
pk

h, pk
h + lh

)
, Sk

h ∩ J
qk

h
h = (

qk
h − lh, qk

h

]
, (6.20)

where lh =
(

lh

lh

)
so that lim

h→∞
3hlh = 0. Let ψ k

h be a C∞
c

(
Sk

h ∪ J
pk

h
h ∪ J

qk
h

h

)
-mollifier such that

ψ k
h =

⎧⎨⎩ 1 on Sk
h\J

pk
h

h ∪ J
qk

h
h ,

0 on J
pk

h
h ∪ J

qk
h

h \ ((
pk

h, pk
h + lh

) ∪ (
qk

h − lh, qk
h

))
.

(6.21)

We define the test function vh
0 on Th by

vh =ψ k
h vh,k on Tk

h , ∀k ∈ Ih. (6.22)

We have the following result:

Lemma 16 Under the assumption (2.20) we have

1. vh
α

1Th (x)

2rh

mhdx3

∗
⇀

h→∞
vα1� (s)

dHd (s)⊗ δ0 (x3)

Hd (�)
in M (

R3
)
; α= 1, 2,

2. εhvh
3

1Th (x)

2rh

mhdx3

∗
⇀

h→∞
0 in M (

R3
)
,

3. lim
h→∞

∫
Th
σ ∗h

ij

(
vh

)
eij

(
vh

)
dx=μ∗ lim

h→∞
ρh

∑
α=1,2

p,q∈Vh ,

[p,q]∈Sαh

(vα (p)− vα (q))
2.

Proof. 1. Let ϕ ∈ C0

(
R3

)
. Then,

lim
h→∞

∫
R3

ϕvh
α

1Th (x)

2rh

mhdx3 = lim
h→∞

∑
k∈Ih

1

Ne
h

v
(
xk

h1, xk
h2

)
ϕ

(
xk

h1, xk
h2, 0

)
+ lim

h→∞

∑
α=1,2
k∈Ih

ϑ
α,k
h

(
xk

h1, xk
h2

)
Ne

h

ϕ
(
xk

h1, xk
h2, 0

)
.
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According to [17, Theorem 6.1], we have

lim
h→∞

∑
k∈Ih

1

Ne
h

v
(
xk

h1, xk
h2

)
ϕ

(
xk

h1, xk
h2, 0

) = lim
h→∞

∑
p∈Vh

v (p) ϕ (p, 0)

Nv
h

= 1

Hd (�)

∫
�

v (s) ϕ (s, 0) dHd (s) .

Observing that, for every h ∈N∗ and every k ∈ Ih,∣∣vα (
pk

h

) − vα
(
qk

h

)∣∣ ≤ C
∣∣pk

h − qk
h

∣∣ ,

and
∣∣pk

h − qk
h

∣∣ = 3−h/2, we deduce that
∣∣ϑα,k

h

(
pk

h

)∣∣ ≤ 3−h and

lim
h→∞

∑
α=1,2
k∈Ih

ϑ
α,k
h

(
xk

h1, xk
h2

)
Ne

h

ϕ
(
xk

h1, xk
h2, 0

) = 0.

2. We immediately obtain that

εhv
h
3

1Th (x)

|Th| dx
∗
⇀

h→∞
0 in M (

R
3
)

.

3. We have, after straightforward computations, that

σ ∗h
ij

(
vh,k

)
eij

(
vh,k

) = (
λ∗

h + 2μ∗
h

) (
∂vh,k

1 (x
′)

∂x1

)2

+μ∗
h

(
∂vh,k

2 (x
′)

∂x1

)2

,

for Sk
h ∈ S1

h, and

σ ∗h
ij

(
vh,k

)
eij

(
vh,k

) = (
λ∗

h + 2μ∗
h

) (
∂vh,k

2 (x
′)

∂x2

)2

+μ∗
h

(
∂vh,k

1 (x
′)

∂x2

)2

,

for Sk
h ∈ S2

h. Then, according to (6.18) and (6.19), we have that

σ ∗h
ij

(
vh,k

)
eij

(
vh,k

) =μ∗
h32h

(∣∣v1

(
pk

h

) − v1

(
qk

h

)∣∣2 + ∣∣v2

(
pk

h

) − v2

(
qk

h

)∣∣2
)

,

on each Sk
h. We deduce from this, using the hypothesis (2.20), that

lim
h→∞

∫
Th
σ ∗h

ij

(
vh

)
eij

(
vh

)
dsdx3

=μ∗ lim
h→∞

ch

∑
k∈Ih ,α=1,2

rh3h
∣∣vα (

pk
h

) − vα
(
qk

h

)∣∣2

=μ∗ lim
h→∞
ρh

∑
k∈Ih ,α=1,2

∣∣vα (
pk

h

) − vα
(
qk

h

)∣∣2

=μ∗ lim
h→∞
ρh

∑
α=1,2

p,q∈Vh
|p−q|=3−h/2

|vα (p)− vα (q)|2 .

Let u ∈ C4
c

(
ω, R3

)
and (v1, v2, v3) ∈ C3

c

(
ω, R3

)
. We define the sequence

(
uh

00

)
h

of scaled Kirchhoff-
Love displacements by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
uh

00

)
α
(x) = uα (x1, x2)− x3

εh

∂u3

∂xα
; α = 1, 2,(

uh
00

)
3
(x) = u3 (x1, x2) /εh

−x3

λh

2μh + λh

(
∂u1

∂x1

+ ∂u2

∂x2

)
+ x2

3

2εh

λh

2μh + λh

�x′u3.

(6.23)

https://doi.org/10.1017/S0956792523000025 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792523000025


864 M. El Jarroudi et al.

We then compute ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

eαα
(
uh

00

) = ∂uα
∂xα

− x3

εh

∂2u3

∂x2
α

; α = 1, 2,

e12

(
uh

00

) = e12 (u)− x3

2εh

(
∂2u3

∂x1∂x3

+ ∂2u3

∂x2∂x3

)
,

eα3

(
uh

00

) = − λh

2μh + λh

x3

(
∂2u1

∂x1∂xα
+ ∂2u2

∂x2∂xα

)
+ x2

3

2εh

λh

2μh + λh

∂ (�x′u3)

∂xα
; α = 1, 2,

e33

(
uh

00

) = − λh

2μh + λh

(
∂u1

∂x1

+ ∂u2

∂x2

)
+x3

εh

λh

2μh + λh

�x′u3,

(6.24)

from which we deduce, using the expression (2.18) of the stress tensor in �h\Th, that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ h
αα

(
uh

00

)
eαα

(
uh

00

) = 2μhλh

2μh + λh

(e11 (u)+ e22 (u))
2

+2μh (e11 (u))
2 + 2μh (e22 (u))

2

+
(

x3

εh

)2 2μhλh

2μh + λh

(�x′u3)
2

+O (1)
x3

εh

,

σ h
12

(
uh

00

)
e12

(
uh

00

) = 4μh (e12 (u))
2

+4

(
x3

εh

)2

μh

(
∂2u3

∂x1∂x2

)2

+ O (1)
x3

εh

,

σ h
3α

(
uh

00

)
e3α

(
uh

00

) = O (εh) ; α = 1, 2,

σ h
33

(
uh

00

)
e33

(
uh

00

) = 0,

(6.25)

where O (1) is a function of u and its derivatives up to order 3. We now define the sequence of test
functions

(
uh

0

)
h

in �h by

uh
0 = uh

00 − wl
h

((
uh

00

)
l
− (

vh
)

l

)
. (6.26)

We are now in a position to prove the first assertion of Theorem 12.

Proposition 17 If γ ∈ (0, +∞) then, under the assumptions (2.20) and (2.25), for every (u, v) ∈
H

(
ω, R3

)
, there exists a sequence

(
uh

)
h
; uh ∈ H1

(
�h, R3

)
, such that

(
uh

)
h
τ -converges to (u, v) and

lim sup
h→∞

Fh

(
uh

) ≤ F∞ (u, v) .

Proof. Let (u, v) ∈ H
(
ω, R3

)
. Let us consider the sequence (un, vn)n, such that un ∈ C4

c

(
ω, R3

)
, vn ∈

C2
c

(
ω, R3

)
, un −→

n→∞
u H1

(
ω, R3

)
-strong, un

3 −→
n→∞

u3 H2 (ω)-strong, and
(
vn

1, vn
2

) −→
n→∞

v strongly with

respect to the norm (3.5). Let us consider the sequence
(
uh,n

0

)
h,n

constructed in (6.26) for un and vn through

uh,n
0 = uh,n

00 − wl
h

((
uh,n

00

)
l
− (

vh,n
)

l

)
. (6.27)
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Then, uh,n
0 ∈ H1

�h

(
�h, R3

)
, and, according to Lemmas 15, 16, observing that the measure |Zh| of the

set Zh tends to zero as h tends to ∞, the sequence
(
uh,n

0

)
h
τ -converges to

(
un, vn

1, vn
2

)
as h tends to ∞. Let

us write Fh

(
uh,n

0

)
as

Fh

(
uh,n

0

) = ∫
�h\Zh

σ h
ij

(
uh,n

0

)
eij

(
uh,n

0

)
dx

+ ∫
Zh
σ h

ij

(
uh,n

0

)
eij

(
uh,n

0

)
dx + ∫

Th
σ ∗h

ij

(
vh,n

)
eij

(
vh,n

)
dx.

(6.28)

Then, observing that ∫ εh

−εh

x3

εh

dx3 = 0 and
∫ εh

−εh

(
x3

εh

)2

dx3 = 2

3
εh,

we have, using (6.25), that

lim
h→∞

∫
�h\Zh

σ h
ij

(
uh,n

0

)
eij

(
uh,n

0

)
dx = ∫

ω
ηαβ (u

n) eαβ (u
n) dx′

+ ∫
ω

αβ (u3)

∂2u3

∂xα∂xβ
dx′.

(6.29)

It follows from Lemma 15 that
lim
h→∞

∫
Zh
σ h

ij

(
uh,n

0

)
eij

(
uh,n

0

)
dx

= lim
h→∞

∫
Zh

(
σ h

ij

(
wl

h�
h,n
l

)
eij

(
wl

h�
h,n
l

))
dx

= πμγ

Hd (�) (ln 2)2
∑
α=1,2

∫
�

Aαα (s)
(
un
α
− vn

α

)2
dHd (s)

+ πμγ

Hd (�) (ln 2)2
∫
�

A33 (s)
(
un

3

)2
dHd (s) ,

(6.30)

where �h,n
l = (

uh,n
0

)
l
− (

vh,n
)

l
. On the other hand, using Lemma 16 and Proposition 2, we have

lim
h→∞

∫
Th
σ ∗h

ij

(
vh,n

)
eij

(
vh,n

)
dx = πμ∗ lim

h→∞
ρh

∑
α=1,2

p,q∈Vh ,

[p,q]∈Sαh

(
vh,n
α (p)− vh,n

α (q)
)2

= μ∗E�
(
vn

1, vn
2

)
= μ∗ ∫

�
dL�

(
vn

1, vn
2

)
.

(6.31)

Therefore, combining (6.28)–(6.31), we obtain that

lim
h→∞

Fh

(
uh,n

0

) = ∫
ω
ηαβ (u

n) eαβ (u
n) dx′ +μμ∗ ∫

�
dL�

(
vn

1, vn
2

)
+ ∫

ω

αβ (u3)

∂2u3

∂xα∂xβ
dx′

+ πμγ

Hd(�)(ln 2)2

∑
α=1,2

∫
�

Aαα (s)
(
un
α
− vn

α

)2
dHd (s)

+ πμγ

Hd(�)(ln 2)2

∫
�

A33 (s)
(
un

3

)2
dHd (s)

= F∞ (un, vn) .

(6.32)

The continuity of F∞ implies that lim
n→∞

lim
h→∞

Fh

(
uh,n

0

) = F∞ (u, v). The topology τ being metrisable,

we deduce, according to the diagonalisation of [2, Corollary 1.18], that the sequence
(
uh

)
h
= (

uh,n(h)
0

)
h
;

lim
h→∞

n (h)= +∞, τ -converges to (u, v) and

lim sup
h→∞

Fh

(
uh

) ≤ F∞ (u, v) .
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6.2.2 Step 2: Lim-inf inequality
In this part, we prove the second assertion of Theorem 12. Let us define the functional Gh on L2

(
Sh, R2

)
through

Gh (ψ)=
{E h

� (ψ ,ψ) if z ∈ H1
(
Sh, R2

)
,

+∞ otherwise.
(6.33)

We consider the topology τg defined in the following:

Definition 18 A sequence
(
ψ h

)
h
; ψ h ∈ H1

(
Sh, R2

)
, τg-converges to ψ if

ψ h1Sh

(
x′) mh

∗
⇀

h→∞
ψ1� (s)

dHd (s)

Hd (�)
in M (

R
2
)

and ψ ∈ L2
Hd

(
�, R2

)
,

where mh is the measure defined in (3.11).

We have the following convergence:

Proposition 19 The sequence (Gh)h �-converges in the topology τg to the functional G∞ defined by

G∞ (ψ)=
{E� (ψ ,ψ) if ψ ∈D�,E ,

+∞ otherwise,

Proof. According to [11, Theorems 8.5, 11.10], there exist a subsequence
(
Ghk

)
k

of the sequence
(Gh)h and a non-negative quadratic form E∗

�
such that

(
Ghk

)
k
�-convergences in the topology τg to the

functional G∗
∞ (ψ) defined by

G∗
∞ (ψ)=

{E∗
� (ψ ,ψ) if ψ ∈D�,E∗ ,

+∞ otherwise,

where D�,E∗ is the domain of E∗
�
. Using [11, Proposition 6.8 and Proposition 12.16], we deduce that E∗

�

is a closed form on L2
Hd

(
�, R2

)
and D∗

�
is a Hilbert space with the scalar product associated to the norm

‖z‖D∗
�

=
{
E∗
� (z)+ ‖z‖2

L2
Hd (�,R2)

}1/2

.

Using [20, Proposition 10.2 -Theorem 10.4], we can obtain the characterisation of
(E∗
�
, D�,E∗

)
as

E∗
�

= E� and D�,E∗ =D�,E ; thus G∗
∞ = G∞. On the other hand, using the test function (6.22), the fact

that the topology τg is metrisable, and a diagonalisation argument, we can prove that

� − lim sup
h→∞

Gh = G∞,

in the topology τg. Therefore, the whole sequence (Gh)h �-converges in the topology τg to the functional
G∞.

We now prove the second assertion of Theorem 12.

Proposition 20 If γ ∈ (0, +∞) then, under the assumptions (2.20) and (2.25), for every sequence
(
uh

)
h
;

uh ∈ H
(
�h, R3

)
, such that

(
uh

)
h
τ -converges to (u, v), we have (u, v) ∈ H

(
ω, R3

)
and

lim inf
h→∞

Fh

(
uh

) ≥ F∞ (u, v) .

Proof. Let
(
uh

)
h
; uh ∈ H

(
�h, R3

)
, such that

(
uh

)
h
τ -converges to (u, v). We suppose that suph Fh

(
uh

)
<

+∞; otherwise, there is nothing to prove. Then, according to Proposition 8, u = (u1, u2) ∈ H1
0

(
ω, R2

)
and u3 ∈ H2

0 (ω). Let us define uh = (
uh

1, uh
2

)
by

ũ
h = 1

2rh

∫ rh

−rh

(
uh (., x3)

)
dx3. (6.34)
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Then, according to Lemma 51, we have

μ∗ suph E h
�

(̃
u

h
, ũ

h
)

=μ∗ suph

∑
α=1,2

p,q∈Vh
|p−q|=3−h/2

ρh

(
1

2rh

∫ rh

−rh

(
uh
α (p, x3)− uh

α (q, x3)
)

dx3

)2

≤ suph

∫
Th
σ h

ij

(
uh

)
eij

(
uh

)
ds<+∞.

(6.35)

On the other hand, since

uh 1Th (x)

2rh

mhdx3

∗
⇀

h→∞
v1� (s)

dHd (s)⊗ δ0 (x3)

Hd (�)
in M (

R
3
)

,

the sequence
(̃

u
h
)

h
τg-converges to v and, according to (6.35) and to Proposition 19,

G∞ (v)≤ lim inf
h→∞

Gh

(̃
u

h
)
<+∞. (6.36)

Thus, v ∈D�,E and

lim inf
h→∞

∫
Th

σ h
ij

(
uh

)
eij

(
uh

)
ds ≥μ∗E� (v, v) . (6.37)

Let us consider the sequence (un, vn)n, such that un ∈ C4
c

(
ω, R3

)
, vn ∈ C2

c

(
ω, R3

)
, un −→

n→∞
u

H1
(
ω, R2

)
-strong, un

3 −→
n→∞

u3 H2 (ω)-strong, and
(
vn

1, vn
2

) −→
n→∞

v strongly with respect to the norm (3.5).

Let
(
uh,n

0

)
h,n

be the sequence constructed in (6.27). We have from the definition of the subdifferentiability
of convex functionals ∫

�h\Th
σ h

ij

(
uh

)
eij

(
uh

)
dx ≥ ∫

�h\Th
σ h

ij

(
uh,n

0

)
eij

(
uh,n

0

)
dx

+2
∫
�h\Th

σ h
ij

(
uh,n

0

)
eij

(
uh − uh,n

0

)
dx.

(6.38)

We have for the second integral in the right-hand side of the inequality (6.38)∫
�h\Th

σ h
ij

(
uh,n

0

)
eij

(
uh − uh,n

0

)
dx

= ∫
�h\Zh

σ h
ij

(
uh,n

0

)
eij

(
uh − uh,n

0

)
dx

+ ∫
Zh
σ h

ij

(
uh,n

0

)
eij

(
uh − uh,n

0

)
dx.

(6.39)

Then, due to the structure of the sequence
(
uh,n

0

)
h
, we have∫

Zh
σ h

ij

(
uh,n

0

)
eij

(
uh − uh,n

0

)
dx = ∫

Zh
σ h

ij (u
n) eij

(
uh − uh,n

0

)
dx

− ∫
Zh
σ h

ij,j

(
wl

h

(
un − vh,n

)
l

) (
uh − uh,n

0

)
i
dx.

(6.40)

Since |Zh| tends to zero as h tends to ∞, we have that

lim
h→∞

∫
Zh

σ h
ij (u

n) eij

(
uh − uh,n

0

)
dx = 0. (6.41)
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Using the definition (6.15) of the local perturbation wl
h; l = 1, 2, 3, and the expressions (6.2), (6.3),

and (6.6), we obtain the following estimate:∣∣∣∫Zh
σ h

ij,j

(
wl

h

(
un − vh,n

)
l

) (
uh − uh,n

0

)
i
dx

∣∣∣
≤ Cn

∑
α

⎧⎪⎪⎨⎪⎪⎩
(∫

Zh

∣∣(uh
α
− (

uh,n
0

)
α

)∣∣2
dx

)1/2

×
(

1 +
(∫

Zh

∣∣∇wl
h (x)

∣∣2
dx

)1/2
)

⎫⎪⎪⎬⎪⎪⎭
+Cn

⎧⎪⎪⎨⎪⎪⎩
(∫

Zh

∣∣(uh
α
− (
εhuh,n

0

)
3

)∣∣2
dx

)1/2

×
(

1 +
(∫

Zh

∣∣∇wl
h (x)

∣∣2
dx

)1/2
)

⎫⎪⎪⎬⎪⎪⎭ ,

(6.42)

where Cn is a positive constant which may depend of n, which implies, using the fact that∫
Zh

∣∣∇wl
h (x)

∣∣2
dx is bounded, that

lim
h→∞

∫
Zh

σ h
ij,j

(
wl

h

(
un − vh,n

)
l

) (
uh − uh,n

0

)
i
dx = 0. (6.43)

According to (6.30), we have

lim
h→∞

∫
Zh
σ h

ij

(
uh,n

0

)
eij

(
uh,n

0

)
dx

= πμγ

Hd (�) (ln 2)2
∑
α=1,2

∫
�

Aαα (s)
(
un
α
− vn

α

)2
dHd (s)

+ πμγ

Hd (�) (ln 2)2
∫
�

A33 (s)
(
un

3

)2
dHd (s) .

(6.44)

Using the construction of unh
0 , we deduce that

lim
h→∞

2
∫
�h\Zh

σ h
ij

(
un,h

0

)
eij

(
uh − un,h

0

)
dx

= 2
∫
ω
ηαβ (u

n) eαβ (u − un) dx′ + 2
∫
ω

αβ (u3)

∂2
(
u3 − un

3

)
∂xα∂xβ

dx′.
(6.45)

Combining (6.37)–(6.45), we deduce that

lim inf
h→∞

Fh

(
uh

) ≥ ∫
ω
ηαβ (u

n) eαβ (u
n) dx′ + ∫

ω

αβ

(
un

3

) ∂2un
3

∂xα∂xβ
dx′

+2
∫
ω

αβ (u3)

∂2
(
u3 − un

3

)
∂xα∂xβ

dx′ + 2
∫
ω
ηαβ (u

n) eαβ (u − un) dx′

+ πμγ

Hd (�) (ln 2)2
∑
α=1,2

∫
�

Aαα (s)
(
un
α
− vn

α

)2
dHd (s)

+ πμγ

Hd (�) (ln 2)2
∫
�

A33 (s)
(
un

3

)2
dHd (s)+ E� (v) .

(6.46)

Letting n tend to +∞ in the right-hand side of (6.46), we conclude that

lim inf
h→∞

Fh

(
uh

) ≥ F∞ (u, v) .
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