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Introduction. In his article (22), de Possel laid the foundations for an 
abstract theory of differentiation of set functions, the term "abstract" being 
meant in the sense of Fréchet-Nikodym, that is, without reference to a 
euclidean, metric, or topological background. In 1.1, we adopt, substantially, 
his notion of derivation basis. De Possel considered two Vitali properties for a 
derivation basis. The strong or classical Vitali property asserts the existence 
of an enumerable disjointed p.p. covering family; it implies the full differentia
tion theorem for integrals, that is, the existence almost everywhere of the 
derivative and its equality with a Radon-Nikodym integrand. The weak 
Vitali property asserts the existence of a p.p. covering family with arbitrarily 
small overlap ; it is equivalent to the density property or the full differentiability 
of Lipschitzian integrals. One of us, in (10) and (11), introduced in Morse's 
setting of (14), two variations of the weak Vitali property. In the pseudo-
strength the overlap refers to any Radon measure; the 2(p)-overlap property 
(p > 1) involves the pth power of the excess of covering function. The pseudo-
strength implies the existence almost everywhere of the derivative of any 
Radon measure. The ?(p)-overlap property does the same for the integrals of 
§(?)-functions (p~l + q~l = 1)- In §1, these Vitali properties are transferred 
to a general derivation basis B. The missing topology is replaced by the 
pretopology (21) which is derived from B. Individual and class differentiation 
theorems are established for integrals and Radon measures. The technique at 
first follows de Possel's trend. Section 2 deals with the following converse 
problem: Do full differentiation assertions for sigma-additive set functions 
imply covering properties of Vitali types? It suffices to refer to the proof of 
the Zygmund theorem in (29), and of the Zygmund-Marcinkiewitz-Jessen 
theorem in (25) concerning the interval basis, to realize that not all differentia
tion proofs rest on Vitali properties. By an adaptation of de Possel's proof of 
his equivalence theorem, we show that the full differentiability of integrals 
or Radon measure is equivalent to a Vitali property (2.2). Here again we 
proceed from individual to class assumptions. We prove (2.4) that the full 
differentiability of integrals of 8((Z)-functions (q > 1) implies the 8(p,)-overlap 
property for p' < p, when S is a ©-basis. Thus the interval basis possesses 
the ?(p)-overlap property for any (finite) p > 1. In the classical proof by 
Carathéodory of the Lebesgue differentiation theorem for the cube basis, 
the preliminary Vitali theorem is deduced from a halo property of cubes, 
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namely: If for any cube F0 (nucleus), H(Vo) (halo) denotes the union of those 
cubes V which are not greater than V0 and intersect F0, then the dilatation, 
that is, the ratio of the measure of the halo to the measure of V0, is uniformly 
bounded for all F0, in fact equals 3W, where n denotes the dimension of the 
euclidean space. Halo properties differ by the requirements for the B-sets 
constituting the halo, mainly by the incidence requirements; in the example 
just given, the non-vacuity of V-V0 was demanded. In (1), Busemann and 
Feller gave, for the special euclidean bases considered by them, a weak halo 
property equivalent to the density property. In 2.5, we give an individual 
differentiability criterion of Busemann-Feller type, thus shedding light on a 
second converse problem: Do full differentiation properties for cr-additive 
set functions imply halo properties? In this connection we mention that a halo 
property of Busemann-Feller type creeps into the proof of 2.4. Morse, in his 
fundamental memoir (14), formulated halo conditions, securing the strong 
Vitali property for his blankets. He assumes that the 5-sets are closed ; but he 
also shows that his differentiation theorems remain valid when this assumption 
is dropped. In §3 we prove that in our setting, the pointwise halo condition 
implies the Vitali property for integrals or Radon measures (3.2). We give 
two examples (3.3 and 3.4), where the surrender of the closeness of the 5-sets 
leads to the substitution in the assertions of the new Vitali property (pseudo-
strength) in place of the strong Vitali property. In §4 we tackle the differentia
tion of functions X defined on the jB-sets. Our main tool is the Vitali integration 
to transform the "interval" function X into a set function which is expected 
to turn out to be an integral x// on the measurable sets. When this proves true, 
then the differentiability study of X reduces to that of ^ and our methods of 
§1 are applicable. Our results contain as a special case those published by 
Morse in (14) on the differentiation of addivelous functions. The authors wish 
to acknowledge with thanks helpful suggestions made by K. O. Househam 
in the course of many discussions. 

§1. DIFFERENTIATION OF a-ADDITIVE SET FUNCTIONS UNDER COVERING 

ASSUMPTIONS OF VITALI T Y P E 

1.1. Setting. R denotes a set of points, which is our universe. S denotes the 
Boolean c-algebra1 of all subsets of R. 

For two sets X and Y belonging to S, X 3 F means ordinary inclusion, 
permitting the equality X = Y. 

We use both the lattice-theoretical symbols W, P\, U, (1, and the algebraic 
symbols + , —, and ., in Stone's sense. However, we generally use the latter 
only when Stone's and Hausdorff's (set-theoretical) meaning coincide. 

M denotes a Boolean c-algebra of subsets of R with R as unit ; /x represents a 
fixed (x-finite measure defined on M ; ju* is the completion in S of ju, defined on 
M*. Also, \l represents the outer measure derived from JJI (or, equivalently, 

definit ion of Boolean <r-algebras and other related terms may be found in (4, pp. 19-26). 
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from /**), defined on S, namely j2 (S) = inf ju (M), where the infimum is taken 
over all sets M such that S C. M and M € M. Similarly, we define ft on S 
by ju(S) = sup n{M), where the supremum is taken over all sets M such that 
SD M and M £M. 

N denotes the family of the /z-nullsets, which is a cr-ideal in M (regarded as a 
Boolean c-ring) ; N* is the family of the /x*-nullsets, which is a o--ideal in S 
(envisaged as a Boolean o--ring). 

By X D F (mod N) we shall mean Y - X-Y £ N; X = Y (mod N) will 
be understood to mean that Stone's difference X — F = [(X — X-F) + 
( F - Z - 7 ) ] 6 N. 

For S Ç S, a y,-cover S of 5 is any M-set for which £ 3 5, and jl(S-M) = 
n(S-M) for any I f M. Similarly (3, p. 68), a ^-kernel S of 5 is any M-set 
such that 5 C 5 , and JX(S-M) = /z(S-M) for any M G M. 

Two sets S' and 5 " are said to be /**-entangled if they have positive outer 
measure and common ju-cover. 

We define a derivation basis B as follows. We assume that to each point x 
of a fixed subset £ of R, there correspond sequences, in the sense of Moore-
Smith, of M-sets of finite positive measure, called constituents, which are said 
to converge to x, and are denoted generically by Mt(x). Further, we assume 
de Possel's heredity (or Fréchet's convergence) axiom2; namely, every (co-
final) subsequence of an x-converging sequence itself converges to x. The 
family of the sequences ML{x) is our derivation basis B. The elements of B 
are thus converging sequences, together with corresponding convergence 
points. (This notion involves a basic measure At. The correspondence of 
converging sequences to points is called prebasis by Haupt and Pauc in (9). 
A prebasis defines a pretopology (21, §2). Some pretopological notions involve 
a (7-ideal of nullsets). The definition just given does not exclude the possibility 
that two distinct points correspond to the same converging sequence. We 
denote by D the family of sets occurring in the sequences Mt(x) for all 
x G E. If X is a numerical function defined on the D-sets, and x Ç Ey then we 
define 

n * w v r r A(MtQr))1 
D x W ^ s u p L h m s u p - ^ ^ - ^ J , 

where the expression in brackets denotes the limit superior for any one 
x-converging sequence Mt(x), and the supremum is taken among all sequences 
converging to x. In exactly similar fashion we define 

n w x • J~r • rHMjXx)}] D* X(x) = inf hm inf ; , , ; :: . 

We call D*\(x) and D*\(x) the upper and lower B-derivates at x, respectively. 
If D*\(x) — D*\(x) (finite or infinite), we say that the B-derivative D\(x) = 

2This is introduced in (22, p. 397). The limitation to ordinary sequences i = 1, 2, . . . is 
irrelevant throughout de Possel's paper. 
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D*\(x) = D*\(x) exists at x, or that X is B-differentiable at x. If the sequences 
M t(x) are subsequences of one universal sequence (14), then we can drop 
the prefixes "sup" and "inf" in the expressions for D*\(x) and D*\(x). 

By subbasis of B, we mean any subfamily 5 * of B, containing all subse
quences of any of its sequences, retaining the corresponding convergence 
points. The family of the constituents occurring in the B*-sequences is called 
the spread of J§*; the set of points D(B*), each of which is a convergence point 
of at least one i?*-sequence, is called the domain of 5*. The spread V = V(X) 
of any subbasis J§* with D(B*) D X (mod N*) is called a B-fine covering of 
X. A B-nne covering V = Y(X) of a set X may also be defined as a family 
of constituents containing, for almost every x (that is, everywhere but on an 
N*-set) in X, the sets of at least one sequence Ml (x). 

The importance of the latter notion for the theory of differentiation results 
from the following considerations. If X C [D*\ > a], then the family of those 
constituents M satisfying \(M) > afi(M) is a B-frne covering of X. The 
same is true if "£)*" is replaced by " Z V and " > " by u < " in the preceding 
sentence. 

In the second definition of a 5-fine covering, the requirement of the existence 
of at least one sequence ML(x) may be replaced by the following stronger one: 
Every x-converging sequence admits of a subsequence, the sets to which 
belong to V. When this condition holds, we shall say (21, p. 74) that V is a 
full B-fine covering of X. This new requirement is equivalent to the apparently 
stronger one: For every x-converging sequence S consisting of the sets Mt 

there exists an index i = i (5) such that i > i implies Mt £ V. The inter
section of two full 5-fine coverings of X is again a full 5-fine covering of X; 
the intersection of a 5-fine covering of X and a full 5-fine covering of X is a 
j§-fine covering of X. 

With the same notation as above, the family of those constituents M 
satisfying X(M) > aix(M) is a full 5-fine covering of any set X C [D*\ > a]. 
The same is true if "D*" and " > " are replaced by "D*" and " < " , respectively, 
in the foregoing sentence. 

A point x is termed totally interior (with respect to B) to a subset X of R, 
if, for every x-converging sequence S consisting of the sets Mt, there exists 
(18) an index i — i (5, x), such that i > i implies Mt C X. We represent 
by I{X) the set of points x which are totally interior to X. I(X) need not be a 
subset of X. (In the case of a blanket F, I{X) is F O X in Morse's notation 
(14, p. 217).) If G is such a subset of R that E-G C 1(G), (mod N*), then G 
is called an external Q-open set (with respect to B and N*). We use G as a 
generic name; G will denote their family. 3) refers to Denjoy, who introduc
ed the internal £)-open sets under the name ensembles-enveloppes, for his special 
bases, and used them as approximation sets (2; 21, p. 84). 

From the above follows the G-pruning principle: If V is a 5-fine covering 
of X, and if the external 33-open set G includes X (mod N*), then the family 
VG of the V-constituents in G is still a B-fine covering of X. 
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Remarks. In Morse's differentiation theory (14), the space R is a metric 
space, with, however, the slight relaxation that two distinct points may have 
zero distance apart. R is provided with a Carathéodory outer measure <j>, 
finite on bounded sets. To each point of a subset A of R there corresponds a 
family F{x) of sets such that every (spherical) neighborhood of x includes 
an F(x)-set. The function F is called a blanket. (Blankets are special cases of 
prebases (9).) In all blankets studied by Morse and Hayes (10; 11; 12; 13; 
14), the sets occurring in the families F(x) are Borelian. In order to subsume 
Morse's blankets under the general derivation bases, we must reduce the do
main A of definition of F to the set E of points x without O-sequences, that is, 
sequences Mu M2, • • • , Mt, . . . with Mt G F (x), <j>{Mx) = 0 (i = 1, 2, . . .), 
which converge metrically to x; under Morse's assumptions, the set A-E of 
points x with O-sequences is a 0-nullset (14, p. 218). Then we correlate to each 
M in F(x) the index p = p(M, x) = diameter (M \J {x}), and define the 
x-converging sequences as subsequences of the universal sequence Mp (x). The 
restriction of <j> to the Borelian sets is taken as our fundamental measure AI. 

1.2. Comparison lemmas. For 5 C R, we denote by S M the family of sets 
S-M, where M G M, and by fxs the restriction of /z to S-M; thus, for M G M, 

Hs(S'M) = fi(S'M) = fx(S-M). 

For X C S, we have JU S (Z) = /z(X). A real-valued function h defined on 5 
is said to be \i ̂ -measurable if the Lebesgue sets [h < a] (— oo < « < œ) 
belong to 5-M. 

LEMMA 1.21 We suppose that: 
(Al) / and g are real-valued functions defined on P and Q, respectively, 

where Q C P C R. 
(A'2) Whenever A and B are /**-entangled sets of finite outer measure for 

which A \J B C Q, then there exist no two numbers a and /3 such that a < 13, 

A C | / < « L a n d S C \g > ft. 
Thenf> g (mod N*) on Q, that is, Q-\f < g] Ç N*. 

Proof. We assume the assertion to be false; thus fl(Q-[f < g]) > 0. There 
exist two (rational) numbers a and /3 such that &(Q-[f < a < 0 < g]) > 0. 
We take for A and J5 two equal subsets of positive finite outer measure of 
[f < a < 0 < g\Q. Clearly A C [f < a]-Q, B C [0 < g]-Q, A = B. Since 
jl(A) = /z(J5) > 0, we have a contradiction with (Ar2). 

LEMMA 1.22. We assume that (Al) holds and in addition: 
(A"2) Whenever A and B are any two /**-entangled sets of finite outer 

measure for which A U B C (?> then there exist no two numbers a and $ 
such that a < 0, 4 C [jf > 0], and B C [g < a]. 

Thenf < g (mod N*) on Q, that is, Q-[f > g] Ç N*. 

Proof. Replace/and g in Lemma 1.21 by —/and — g, respectively. 
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LEMMA 1.23. We assume (Al) holds and also: 
(A2) There exist no two ju*-entangled sets A and B of finite outer measure 

with 4 U 5 C Q such that the convex closure of f{A) and g(B) have positive 
distance apart.3 

Then f = g (mod N*) on Q, that is, Q-[f 7e g] £ N*; also the restriction 
f\Q °ff t° Qi and g> are °°th M*Q-measurable. 

Proof. It is readily seen that (A'2) and (A"2) together are equivalent to 
(A2); application of Lemmas 1.21 and 1.22 completes the proof of the first 
part. 

We attend to the second part. Since /x is cr-finite, R = \J Rni where Rn £ M 
and n(Rn) < <» for n = 1, 2, . . . . Hence Q = U Qn, where Qn = Q-Rn. 
Since the ju*Qn-measurability of g\Qn (restriction of g to Qn), for all w, implies 
the ju*Q-measurability of g\Q = g, we can limit ourselves to the case where 
/X(Q) is finite. We assume that the p*Q-measurability of g does not hold; 
hence, there exists a (rational) number ô such that D — [g < 8] is not /*%-
measurable. We denote by D and D a /x%-cover and a ju%-kernel of .D, re
spectively. We let D' = D — D, D" = D — D. The jii%-non-measurability 
of D implies that M*Q(P') = fl(Df) and n*Q(D") = p.(D") are both positive. 
Thus, for a suitable ft > 5, the set S = [g > P]-D" is of positive outer measure. 
The difference 

D° = Ï) - D = D' + D" e Q • M*; 

hence there exists a ju* Q-cover S of S which is included in D°, so that S — S-D' + 
SD". Since f = g (mod N*) in Ç, then D = [f < 8]-Q (mod N*); defining 
A = £•£>'.[/< 8], then 4 = £•£>' (mod N*). Due to the definition of D", 
jX*Q(D") = 0, thus S-D" contains no ju*^-measurable set of positive /*%-
measure. Since S = A + ASZ>" (mod N*) and A C S, it follows that $ is a 
/i*Q-cover for ^4. Let B = S. Then 4 and B are ^* ̂ -entangled, hence ju*-
entangled. If a denotes a (rational) number between 3 and /3, we have .4 C 
[/ < a], B C [g > jS], contradicting (A'2), implied by (A2). 

COROLLARY 1.24. If P = Q = R (mod N*), (Al) a»d (A2) imply f = g 
(mod N*) and the iâ-measurability off and g. 

Remarks. Lemmas 1.21 and 1.22 will be used w h e n / is a Radon-Nikodym 
At*-integrand and g a derivate. They are analogous to de Possel's lemma 
(22, p. 394). Lemma 1.23 can be used when /and g are the (extreme) dérivâtes. 
If we know somehow that both / and g are jti*-measurable, we can formulate 
(A'2) and (A"2) considering only /^-measurable sets A and B. The /x*-
entanglement condition then means A = B (mod N*) and ju* {A ) = /x*(B) > 0. 

3This formulation, which may seem unnecessarily sophisticated for numerical functions, is 
intended for the more general case where f and g take their values in a separable Banach 
space. 
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1.3. The individual Vitali assumption. 

PRELIMINARY DEFINITIONS 1.31.By M-function we shall mean a real-valued 
function defined on M ; by M-measure, a non-negative c-additive M-function ; 
by signed M-measure, a a-additive M-function of variable sign. 

jjL-finiteness means finiteness on the M-sets of finite measure. Hence, a /*-
finite ii-integral is a ju-integral \[/(M) = Jjuf(x) dp, finite on the M-sets of finite 
measure. 

We say that the property (Ga) holds if and only if R is the union of enumer-
ably many G-sets G°n such that jZ(G°n) < < » , w = l , 2 , . . . . 

If such a sequence G°n exists, then a set X is said to be bounded if it is 
included in one of the sets G°n. Thus, our notion of boundedness depends 
upon the special sequence of G-sets occurring in the formulation of (G>). 

When (Ga) holds, we adopt the following definitions. A Radon ^-integral 
is any (indefinite) /^-integral ^(M) = fxf(x) d\x, bounded in the sets G°n; 
that is, there exists, for n = 1, 2, . . . , a number /3(n) such that if M Ç M 
and M C G°n, then |#(Af)| < £ ( » ) . A Radon measure is an M-measure bounded 
in the sets G°n] a signed Radon measure is a (r-additive M-function bounded 
in the sets G°n. A a-bounded function is any real-valued function defined on R 
and bounded on each set G°n. 

We state some useful classical decomposition theorems. Any /i-finite signed 
M-measure is the sum of a /x-finite integral and a finite singular part. Any 
signed Radon measure is the sum of a Radon ju-integral and a singular part. 
Also, any signed Radon measure \p is the difference of two Radon measures 
r//+ and \p~] the sum r = \p+ + \p~ is the total variation of ^. If (G>) is not as
sumed, "Radon" can be replaced by "/z-finite". 

Henceforth, when any concept involving boundedness is considered, it 
will be tacitly understood that (G>) is presupposed. 

Remarks. In the formulation of Lemmas 1.21, 1.22, and 1.23, the phrase 
"of finite outer measure" may be replaced by "bounded," when (Ga) holds. 

In the subsequent sections we state "full differentiation theorems" for 
functions yp of the type just described, namely, theorems asserting the exis
tence almost everywhere (that is, mod N*) on E of the ^-derivative D\f/ and 
its coincidence on E with a Radon-Nikodym ju*-integrand. We avoid the use 
of such terms as liR-N derivative" (4, p. 133) and "pseudo-dérivée" (22, 
p. 396), reserving "derivate" and "derivative" for functions defined by means 
of a convergence process, either pointwise, as usual, or globally, as in (2) 
under "L-dérivée." In the (G>) case such an assertion will be proved if we 
establish it for any G°n as universe and the GVpruned basis as derivation 
basis. The sets G°n play the part of autonomous domains of differentiation. 
Thus, assuming (G>), we reduce the case of a finite basic measure n, in which 
the Radon assumption on \p implies /j-finiteness. 

We do not assume the sets G°n to be n- or £i*-measurable, so the ju-covers of 
subsets of G°n, in particular, of EG°n, need not be included in G°n (mod N*) 
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(see Proposition 1.48). The constituents of the GVpruned basis, being /x-
measurable, are included (mod N*) in any measure kernel of G°n. 

Actually, for our purposes, a weaker form of (G„) suffices, as follows: There 
exist enumerably many sets R°n of finite outer measure such that R = 
\J I(R°n) (mod N*). This property is weaker, since I(R°n) need not be a G-
set. A set X is then said to be bounded if for some n, X C I(R°n)- Similarly, 
i^Vpruning of a B-fine covering V of a set X means discarding all V-sets not 
included in R°n. The remaining V-sets form a jS-fine covering of X-I(R°n). 

DEFINITIONS 1.32. By M-family we mean an enumerable family of sets, 
each with an associated multiplicity (27, p. 277). Equivalently, an M-family 
may be defined by any sequence of sets, the multiplicity associated with a set 
coinciding with its number of appearances in the sequence. In the latter 
formulation, abstraction is made of the order of appearance of any set. Certain 
advantages arise from the use of M-families instead of ordinary families in 
the work to follow. For instance, the frequency (defined a few lines farther on) 
is additive: thus, if E and F are M-families and G is the M-family obtained 
by uniting them, then $ E + <£F = <£G. However, it is only subadditive for 
ordinary families. Also, any /x-measurable function on R, taking only positive 
integral values, may be regarded as the frequency function of a measurable 
M-family covering R. Awkward limitations occur if we restrict ourselves to 
families without repetition. In natural fashion, we may define the limit of a 
sequence Ei, E2, . . . , En} . . . of M-families as the M-family E, if it exists, 
such that lim </>E„ = <£E- SO defined, E has an overlap (defined just below) 
which is conveniently represented by use of the Lebesgue convergence 
theorem. 

If E is an M-family, then aE will denote the union of the sets occurring in E. 
By E-frequency 0E(x) at the point x we shall mean the number of E-sets 
(possibly » ) to which x belongs ; by E-excess function we shall mean that 
function eE defined on aE by eE(x) = <£E(x) — 1. We define 0E = [eE(x) > 0] 
= [ #E(# ) > 1]» a n d call dE the E-overlap set. 

Henceforth we assume that the E-sets belong to M. Then </>E and eE are 
/i-measurable. If \p is any M-measure, we define the ^-overlap of E by 

w(E, \p) = I eE(x) d\p. 
*/crE 

In case \//(aE) is finite, we note that 

C0(E, *) = £ Me^(M) - ,KcrE). 

In the particular case \f/ — /JL, the foregoing equations define the ^-overlap of 
E, which is of somewhat special importance (8, p. 193). 

If X C R> M is a /x-cover for X, and x// is any M-measure, then the -^-overflow 
of E with respect to X and M is defined as \f/(aE — M-aE). If \p is /x-absolutely 
continuous, then the quantity just defined will not depend upon the particular 
jit-cover My but will be the same for every set X, and the terminal phrase 
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"and M" may be dropped. In particular, if \p = /z, then ju(o-E — X-aTL) is 
the fi-overflow of E with respect to X. 

If X C J?, then we define the fi-defect of covering of X as the number 
p(X — X-CTE), and we denote this by the notation 7(E, X, /x). E is said to 
be an e-covering in measure of X if 7(E, X, n) < e; it is said to be an 0-
covering in measure of X if X C o-E (mod N*). 

DEFINITIONS 1.33. If ^ denotes a non-negative M-measure, we say that 
the basis B possesses the Vitali ^-property if, and only if, for any X C E of 
finite outer measure, any B-fine covering V of X, any ju-cover M of X, and any 
e > 0, there exists an (enumerable) M-family E of V-sets such that, for 
S = crE: 

(VI) X - X-S e N* (E is an 0-covering of X) ; 
(V2) \p(S - S-M) < e (the ^-overflow of E with respect to X and M is 

less than c) ; 
(V3) co(E, i/0 < e (the ^-overlap of E is less than e). 

(K. O. Househam has suggested the term \p-redundancy of E with respect to 
X and M for the sum of the ^-overflow and the i/'-overlap.) 

In case only (VI) and (V3) hold, we say that S possesses the reduced Vitali 
^property. 

Remarks. If B possesses the Vitali property corresponding to \f/, then it 
evidently possesses the Vitali property corresponding to all \pr < \j/\ that is, 
the Vitali ^-property has a hereditary character. In particular, if ^ is a Radon 
or a ju-finite M-measure, B possesses the Vitali property corresponding to the 
/i-absolutely continuous part of \f/. 

Some equivalent formulations of the Vitali ^-property are possible. The 
requirement (VI) may be replaced by an e-covering condition; simultaneously, 
"enumerable" may be replaced by "finite." That such an e-covering version 
implies the original version can be shown by an exhaustion process. The 
requirement that X be of finite outer measure may be dropped. In the (G>) 
case, the phrase "of finite outer measure" may be replaced by "bounded". 

DEFINITION 1.34. We define the upper [i-approximation property of the M-sets 
by the G-sets (abbreviated (UG)) as follows: Corresponding to any M-set of 
M of finite measure, and any rj > 0, there exists (21, p. 83) a G-set G for which 
M C Gand/Z(G - M) < rj. 

We note that (UG) implies (G„). (UG) is not altered if the condition "of 
finite measure" is waived. 

PROPOSITION 1.35. If (UG) holds, yp is a non-negative y-finite (resp., Radon) 
^-integral, and B possesses the reduced Vitali ^-property, then B enjoys the 
Vitali \[/-property. 

Proof. We let X denote any subset of E of finite outer measure (resp., 
bounded), V any B-fme covering of X, e any positive number. We use (UG) 
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to find a G-set G ' D Î with jl(Gf — X) < 1. Since \p is /i-absolutely contin
uous and \[/(X) is finite, there exists rj = t\{X,\p, e) > 0 such that \yp{X) — $(M)\ 
< e whenever M Ç M, M C.G' and /x(M — X) < 77, where M — X denotes 
Stone's difference. Invoking (UG), and the fact that the product of two 
3>open sets is again 2)-open, we find a G-set G with G' D G Z) X and &(G — X) 
< 77. We apply the reduced Vitali i/'-property to the G-pruned family VG, to 
obtain an M-family E satisfying (VI) and (V3). Since the E-sets lie in G, 
we have n(S - S-X) < M(G - G-X) < 97. Thus ^(5) < ^ (Z) + e, whence 
iKS - 5-X) < e; (V2) holds, as required. 

DEFINITION 1.36. We say that Haupt's adaptation property holds if and only 
if there exists a crd-family G° of G-sets which is a Borel generator for M 
(that is, M is the smallest o-ô-family including G°) (5, p. 173). 

PROPOSITION 1.37. Haupt's adaptation property implies the following 
{which includes (UG)): For any Radon measure x//, any M-set My and any 
e > 0, there exists a G-set G such that G Z) M and \p(G — M) < e. 

Proof. For the case \p(R) < » , the proof is given in (7, p. 27). We shall 
establish the theorem assuming \f/(R) = 00. We introduce the sequence 
G°u G°2, . . . , G°n, . . . , associated with the property (G>), and for any set 
M G M and any positive integer n, we define \j/n(M) = \p(G°n-M). 

We let ei, e2, . . . , enj . . . denote a sequence of positive numbers whose sum 
is less than e. If M Ç M, then we may apply the theorem to \f/n, since \pn(R) < °° , 
to find a G°-set G'n such that M C G'n and 

MG'n ~M) = KG°n • (Ci - M)) < ^ 

The set G°n'G'n = G'^ is thus a G-set (not necessarily a G°-set) including 
G°n'My such that $(G"n — G0

n-M) < en. We let 5 denote the union of the sets 
G " n ; t h e n S D M, and 

5 - M = UG"n - UG°W • M C U(G"„ - G°n • M), 

hence 

^ ( 5 - M ) < E ^(G"« - G°n -M) <e. 

Since 5 is a G-set, the proposition is proved. 

Remarks. The property described in Proposition 1.37 is called the universal 
upper approximation property for G°-sets. It holds (16, pp. 244—245) in the 
special case where R is a metric space, \j/ is a classical finite Radon measure, 
and G° is the family of the open sets. 

PROPOSITION 1.38. If yp is a ^finite M-measure, Haupt's adaptation property 
and the reduced Vitali ^-property both hold, then the Vitali ^-property holds. 

Proof. This follows closely the proof of Proposition 1.35, except that we 
take a ju-cover M of X, and use Proposition 1.37 directly to find a G-set 
G 3 M with \p(G — M) < e. As before, we find an M-family E satisfying 
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(VI) and (V3), with members lying in G. Thus #(S - S-M) < \[s{G - M) < e, 
and (V2) holds. 

1.4. The individual full differentiation theorem for Radon or pt-finite 
/i-integrals. 

PROPOSITION 1.41. If yp is a non-negative Radon {or ^-finite) ^-integral 
jf(x) dp, and B possesses the Vitali ii-property, then D*\p > /(mod N*) on E. 

Proof. According to the Remarks following Definition 1.31, we need treat 
only the case where \p is /z-finite. We shall obtain a contradiction from the 
assumed existence of two /z*-entangled subsets A and B of E of finite outer 
measure and two numbers a, 13 such that a < {$, A C. [f > (3], B C. [g < a], 
where g = D*\p. Since [f > 0] £ M, A' = Â-[f > /3] is a /x-cover of A; since 
IJL(Â) > 0, we have 
1.411 W) > Pv(A'). 

On the other hand, the family V of the constituents V satisfying 

1.412 f(V) <av(V) 

is a B-fine covering of B C [g < a]. Thus, by virtue of the Vitali /x-property, 
for any natural number n, there exists an M-family JLn of V-sets Vni, such that 
if Sn = o-E», then 

1.413 B - B- Sn 6 N * ; M ( 5 „ - £ „ • £ ) < 2"w;/x - overlap of Ew is less than 2~n. 

Using 1.413 and 1.412 we obtain 

1.414 *(5) < *(&) < Z ^(7,0 < « E M(7»<) < «(MCS.) + 2"n), 

and lim fi{Sn) = ju(5). Combining, we obtain 

1.415 4,(B) < an(B), 

which, since yp(A') — \p{B) and a < /3, is a contradiction of 1.411. From 
Lemma 1.22 follows the assertion/ < g (mod N*). 

Remarks. If an e-covering version of the Vitali /z-property is used in place 
of the 0-covering version, then the first statement in 1.413 is replaced by 
JU(J5 — B-Sn) < t)n, and because of the /-i-absolute continuity of \p, r\n can be so 
chosen that yp{B) < \p(Sn) + 2~w; 1.414 has to be altered accordingly. 

An example of a blanket possessing the Vitali /^-property, and a function 
g Ç £(p) for every p > 1, such that its integral \p has D\p = œ everywhere, is 
known (11, p. 293). 

PROPOSITION 1.42. If \p is a non-negative Radon {or n-finite) jx-integral 
jf{x) dp, and B possesses the Vitali ^-property, then D*\f/ < /(mod N*) on E. 

Proof. As in the preceding proposition, we may and do assume that \p 
is ju-finite. We assume that A and B are two /i*-entangled sets of finite outer 
measure, a and f$ two numbers such that a < (3, A C [/ < «], B C [g > 0], 
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where g = D*\p. Since [f < a] C M , A' = Â-[f < a] is a Ai-cover for A-
Since fx(Â) > 0, we obtain 

1.421 4,[A') < afx(A'). 

The family V of the constituents V satisfying 

1.422 t(V)>fo(V) 

is a B-fine covering of B C [g > P]- We use the Vitali ^-property to determine 
for each natural number n an M-family En of V-sets Vni such that if Sn = aEn, 
then 

1.423 B - B • Sn e N*; *(Sn - 5n • 5 ) < 2_w; ^ -overlap of Ew is less than 2"n. 

The ^-overlap condition yields 

HSn) > T,t(Vni) -2~n; 
i 

hence, using 1.422, 

*(&) > &T, n(Vni) - 2~n > p»(Sn) - 2~\ 
i 

This last and 1.423 together yield, for n — 1 , 2 , . . . , 

1.424 *(B) + 2~n > ft* (5) - 2~n\ 

hence \{/(B) > Pn(B), which contradicts 1.421, since a < (3 and \p(A') = \p(B). 
Thus, Lemma 1.21 applies and D*\f/ < / (mod N*) on E. 

Remark. With the e-covering version of the Vitali ^-property, we replace 
the first statement in 1.423 by n(B -_B-Sn) < 2~n, hence fi(Sn) > ix(B) - 2~n, 
and in 1.424, we replace »(B) by fx(B) - 2~n. 

THEOREM 1.43. If \p is a non-negative Radon {or ix-finite) \x-integral and B 
possesses the Vitali \x-property and the Vitali \p-property, then the B-derivative 
D\f/ exists almost everywhere on E and is equal, mod N*, to f\E, where f denotes 
any Radon-Nikodym n*-integrand of \p. 

Proof. This is an immediate consequence of Propositions 1.41 and 1.42. 

DEFINITION 1.44. An M-function \p is said to be majorized or dominated 
by the M-f unction *° if \*(M)\ < *°(M) for every M Ç M. 

We note that a signed Radon measure (resp., /x-finite M-measure) dominated 
by a //-integral is itself a ^-integral; also a finitely additive M-function domina
ted by a Radon measure (resp., /x-finite M-measure) is a signed Radon measure 
(resp., signed ju-finite M-measure). 

THEOREM 1.45. If \[/° is a non-negative Radon (or ^-finite) fi-integral and S 
possesses the Vitali fi-property and the Vitali \p°-property, then for any signed 
Radon measure (or fi-finite signed M-measure) \p dominated by \p°, the B-derivative 
D\f/ exists p.p. on E and is equal to the E-restriction of a Radon-Nikodym integrand 
of*. 
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Proof. This follows immediately upon decomposing \[/ into ^ and \f/~ 
and using the hereditary character of the Vitali ^-property. 

THEOREM 1.46. If if/0 is a non-negative Radon id-integral, B possesses the 
Vitali fx-property and the Vitali \j/°-property, \p is a signed Radon measure, and 
there corresponds to each G°n a positive finite number n(n) such that \\p{M)\ < ic(n)-
\p°(M) for any M-set M C G°n (yp°-Lipschitz condition), then D\[/ exists almost 
everywhere on E and is equal to the E-restriction of a Radon-Nikodym integrand 
off. 

Proof. Apply Theorem 1.45 to each G°n used as an autonomous domain of 
.^-differentiation, with K(n)-\p° as majorant. 

Remark. If we know that the extreme dérivâtes are /^-measurable, then 
from the Remarks under Corollary 1.24, it follows that Theorems 1.43, 1.45, 
and 1.46 remain valid, if, in the definition of the Vitali property, X is taken 
from M. 

DEFINITION 1.47. The special case of the Vitali property, wherein \p = fx, 
is the so-called weak Vitali property, and a basis B possessing it is called a 
weak derivation basis. 

Remarks. By Theorem 1.46, such a basis differentiates (in de Possel's 
sense) the uniformly /x-Lipschitzian integrals; explicitly, if ^ is a cr-additive 
M-function for which \\p(M)\ < * n{M) for M 6 M, where K is a constant, 
then D\p exists almost everywhere on E and is equal to the ^-restriction of a 
Radon-Nikodym integrand of \p. In de Possel's version, a weak derivation 
basis differentiates the integral of any essentially bounded /^-measurable 
function, and in the Radon case, the integrals of functions which are measur
able and essentially bounded on each G°n. Five equivalent properties defining 
these bases in the case E — R (mod N*) are given in (22, pp. 403—405). 

PROPOSITION 1.48. If each B-fine covering of any subset X of E admits an 
enumerable subfamily covering X (mod N*), then for any G-set G, we have 
EG C G (mod N*) or equivalently EG C G (mod N*). If in addition, E = R, 
then the G-sets are /^-measurable. 

Proof. The family W of the ^-constituents included in G is a B-fme covering 
of E-G^jthus there exists an M-family E C W with EG C <rE (mod N*). 
Hence EG C <rE (mod N), and RG C G (mod N*). If E = R, then G C G 
(mod N*), hence G = G (mod N*). 

1.5. The individual full differentiation theorem for Radon measures. 

LEMMA 1.51. If f is a Radon measure (or a ^-finite M-measure), B possesses 
the Vitali ^-property, Q C E, JJ, (Q) < <», 0 < rj < œ, and there exists a B-fine 
covering V of Q such that for all Y-sets V, 

1.511 HV) >rnx(V) 

then \p(M) > r\ p(Q) for any I f M with Q C M. 
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Proof. The Remarks following Definitions 1.31 permit us to consider only 
the case of a /x-finite M-measure. We may also assume /JL(M) < co. We let e 
denote an arbitrary positive number, let T denote a /x-cover of Q for which 
Q C T C M, and invoke the Vitali ^-property to obtain an M-family E of 
sets Vu i = 1 , 2 , . . . , for which, putting o-E = S, we have 

1.512 Q - Q-S e N*; ^-overlap of E is less than e; ^ ( 5 - ST) < e. 

From 1.511 and the first two conditions of 1.512 we obtain 

HS) > S HVt) ~ e > r, • £ n(Vt) -e>V A* (5) - e > n/Z(Q) - e; 
i i 

this result, combined with the last inequality of 1.512, yields 

t(M) > HT) > HT-S) > f(S) - e > V H(Q) - 2e, 

which, since e is arbitrary, gives the desired relation. 

THEOREM 1.52. If \p is a Radon measure {or a ^-finite M-measure) and B 
possess the Vitali /x- and ^-properties, then \p possesses almost everywhere in E 
a B-derivative D\p which is equal to a Radon-Nikodym integrand of \f/. 

Proof. We decompose \[/ into the /x-regular part ypr and the /x-singular part 
\[/s, denoting by iVo an N-set on which \f/s is concentrated, that is, \f/s(R — No) = 0. 
B possesses the Vitali /x- and i/'-properties, hence, in accordance with the 
Remarks under Definitions 1.33, B also has the Vitali /x- and i/vproperties. 
Due to Theorem 1.43, we need prove only that D*\ps = 0 (mod N*). 

We let An = [D*$8 > n~l]-(R - N0). The family of 5-constituents V for 
which yps{V) > n~l ix(V) is a J3-fine covering of An. In accordance with Lemma 
1.51, ^s{M) > n~l jl(An) for any M G M with An C M\ in particular, this 
holds for M = R — N0, thus 0 > n~l Jl{An), hence fl(An) = 0, and An is an 
N*-set. Now 

[D*f8 > 0] • (R - No) = U [ z / > , > n'1] • (R - N0) = [)An, 
n n 

which is therefore also an N*-set. Finally, 

[D**s > 0] = [D**, > 0]-N0 + [D**, > 0].(R - N0) 

is an N*-set, and the proof is complete. 

The following results are immediate consequences of Theorems 1.52, 
1.45, and 1.46. 

THEOREM 1.53. If \//0 is a Radon measure (resp., ^-finite M-measure) and B 
possesses the Vitali fi- and \[/°-properties, then B differentiates any signed Radon 
{resp., fjL-finite) M-measure dominated by jf/°. 

THEOREM 1.54. If \p° is a Radon measure, B possesses the Vitali /x- and \f/°-
properties, and \f/ is such a signed Radon measure that there corresponds to any 
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G°n a positive (finite) number n(n) such that \\f/(M)\ < K(n)-\l/°(M) for any 
M-set M C G°n, then B differentiates ^. 

The remark following Theorem 1.46 applies here also. 

1.6. Class differentiation theorems. 

DEFINITION 1.61. If B possesses the Vitali ^-property for every non-
negative Radon (resp., /^-finite) /x-integral \f/, then we say that B has the 
Vitali property for non-negative Radon (resp., ix-finite) ^-integrals. 

THEOREM 1.62. If B has the Vitali property for non-negative Radon (resp., 
^-finite) [i-integrals, then B differentiates every Radon (resp., fi-finite) ^-integral. 

Proof. This follows from Theorem 1.43. 

DEFINITION 1.63. If B possesses the Vitali ^-property for every Radon 
(resp., /z-finite) M-measure \p, then we say that B has the Vitali property for 
Radon (resp., fx-finite) M-measures. 

THEOREM 1.64. 7/ B has the Vitali property for Radon (resp., \x-finite) 
M-measures, then B differentiates every Radon (resp., fx-finite) M-measure.4 

Proof. This follows from Theorem 1.52. 

Remark. De Possel (23; 24) defines a "système dérivant généralisé" as a 
correspondence to each point x of a filter Fx of non-negative /x-measurable 
summable real functions/, vanishing outside a measurable set of finite measure 
(depending o n / ) , and with JRfdjx > 0, \p denotes any function on M into a 
Banach space, enumerably additive and of bounded variation. The derivative 
D\f/(x) is defined as 

l\mFx(JRfdt/ jfdn). 

Conditions are stated for Fx to differentiate Lipschitz, /z-absolutely continuous, 
and general functions \p. 

DEFINITIONS 1.65. We shall introduce a chain of properties between the 
Vitali /x-property and the Vitali property for non-negative Radon ju-integrals, 
under the assumption that (G>) holds. We let p and q denote two numbers, 
both greater than 1, for which p~l + q~l = 1. By ^-functions we shall mean 
those Radon /z-integrals \f/ of the form \p(M) = JMf(x) dix, for M G M, where 
/ is such a function that for any given positive integer n, jM\f(oo)\qdix is (uni
formly) bounded on the M-sets M included in G°n; by 8(<z)-functions we shall 
mean those functions / which are integrands of ju(<?)-functions. We shall say 
that B is an S(p)-basis if and only if for each subset X C E of finite outer 

4In case B is a blanket, the Vitali property for classical Radon measures is the "pseudo-
strenglh" of (10), which also is referred to as "Vitalische-Hayes'sche Eigenschaft" in 
(21, p. 91). The existence p.p. of the derivative of any classical Radon measure is 
established in (10). 
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measure, each 5-fine covering V of X, and each e > 0, there exists an M-
family E of V-sets for which, putting o-E = S, 

(I) E is an 0-covering of X; 
(II) the jit-overflow of E with respect to X is less than e; 

(III) js{e^(x)}pdfx < e (the ^v)-overlap of E is less than e). 
Statements (I), (II), and (III) are meaningful for p — 1; we accordingly 

define an S(1)-basis as one having properties (I), (II), and (III), with p = 1. 
We define as ff-functions all integrals of ju-measurable functions which are 
essentially bounded on each set G°n. 

Remarks. Comparison with Definitions 1.33 shows that for any p > 1, 
(I) and (II) are the same as (VI) and (V2), while (III) is at least as strong as 
(V3) for yp = fjL] hence every S^-basis, p > 1, possesses the Vitali ju-property, 
and, in accordance with the Remarks following Definition 1.47, differentiates 
the //"-functions. The following is an extension of this result. 

THEOREM 1.66. If p > 1 and B is an S{p)-basis, then B differentiates the {JL(Q)-

functions. 

Proof. We let B denote any 5(p)-basis. From the property (G>), it follows 
that we may restrict our proof to the case where the domain E of B lies within 
one set G°N\ that is, E may be assumed to be bounded. Furthermore, it follows 
from the remarks just above, and from Theorem 1.45, that we need prove only 
that for each non-negative Malfunction \p, defined by $(M) = f^f^-d/j. for 
M G M, B possesses the Vitali ^-property. 

Accordingly, we let X denote any subset of E (necessarily of finite outer 
measure), V any 5-fine covering of X, and e any positive number. We put 
G°N = G and define e as any positive number such that 

1.661 ( e ' ) 1 / ? ( j G { / ( x ) r - ^ ) 1 / ? < e . 

From the At-absolute continuity of \p on the M-subsets of G, it follows that there 
exists a positive number rj for which 

1.662 l^(Af) -f(M")\ < e 

whenever JJI(M' - M") < 77, where M' Ç M, M" G M, M' C G, M" C G, 
and M' — M" denotes Stone's difference. We may and do assume that rj < e. 

We may assume V to be G-pruned. We use the S(p)-properties of B to find 
an M-family E of V-sets for which, putting 5 = cE C G, we have 

1.663 X -X- S £N*; »(S - S-X) <r, f {eB(x)}p • du < r,. 
J s 

Evidently E satisfies (VI) of Definition 1.33. From the first relation in 
1.663 and Proposition 1.48, we see that S C G (mod N*) and X C G (mod N*) ; 
hence, because of 1.662, 

IlKS) -*(X-S)\ < e; 
therefore ^ ( 5 - S-X) < e, and (V2) holds. 
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Using Holder's inequality, 1.661, and the last relation in 1.663, we have 

J eE(x)d\^= \ eE(x)f(x) dp 
t /cE *J S 

<VUP($Jf(x)yd»y«<e. 
Hence (V3) holds, and the proof is complete. 

Remark. In (11), there is given an example of an S(p)-basis (p > 1) and a 
function which is a fxiQ/)-function for each q', q' < p/(p — 1), whose derivative 
is infinite everywhere. In this example, as in all counter-examples known to us 
in the theory of differentiation, a derivate is infinite on a set of positive meas
ure. In this connection it is interesting to observe that Zygmund's proof (29) 
depends upon the summability of the dérivâtes, which prevents a "flight to 
infinity" on a set of positive measure. 

THEOREM 1.67. In the definition of an S(p)-basis, the 0-covering condition 
may be replaced by an e-covering condition; simultaneously E may be required 
to be finite. 

Proof. Since we are merely relaxing the initial definition of an 5(27)-basis, 
we have to prove only that any S(p)-basis under the €-covering definition is an 
«S(p)-basis under the 0-covering definition. We thus assume that for any subset 
X C E of finite outer measure, any 5-fine covering V of X, and any e > 0, 
there exists a finite family F of V-constituents such that 

1.671 H(X-X-aF) <e; fx(a¥ -X-a¥) <e; f {eF(x)}pJ/z < e. 

We take a subset X of E of finite outer measure, a S-fine covering of X, 
and a positive number e. We choose a sequence of positive numbers, 771, 
772, . . • , Vni • • • whose sum is less than e. 

We shall determine inductively a sequence of finite families Fi, F2, . . . , 
Fn, . . . of V-constituents, such that, for n = 1, 2, . . . : 

(a) F 1 C F 2 C . . . C F W ; 

(b) n(X-X'aFn) <Vn; 

(c) fx(aFn - X • crFn) < E ^ ^ = fn; 

(d) f {eFn(x)}^M< Zi»« = r». 
•/ffF» 1=1 

The existence of a family Fi satisfying (b), (c), and (d), for n = 1, follows 
from our hypotheses as expressed in 1.671. We assume the existence of a 
nested sequence of families Fi, F2, . . . Fni satisfying (a), (b), (c), and (d), 
and proceed to find Fn+i also satisfying them. 
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We put aFn = S, X - X-S = Y\ then Y = X - X-S is a M-cover for F. 
From (d) and the fact that /x(5) < <» it follows that 

( {4>v.(pc)}Pdn < «>; 

thus we may find a positive number 7 = 7(77̂ +1) such that 

1.672 f {d>Fn(x)Vdvi<Vn+i/2p 

whenever M is an M-set, M C S, and n(M) < y. We may and do assume 
that 7 < Vn+i/2". 

Again recalling 1.671, we find a finite subfamily H of V for which, putting 
<rH = T, 

1.673 »(Y-Y-T) <y;y.(T- Y • T)< y; f M*)} 'd / i < 7-

Noting that ST C T — Y-T, using 1.672, and the second relation of 1.673, 
we obtain 

1.674 f { 0 F n ( x ) } ^ M < ^ + i / 2 p . 
J S>T 

We define ¥n+1 = F r e U H and let *Fn+1 = U. We observe that X - X U = 
? - F T and (£/ - X-Z7) C (S - X-5) + ( r - F - r ) , whence from 1.673 
and (c), we obtain 

M(Z - X • U)< y < r,n+1; n(U - X • U) < f„ + y < f, + Vn+1 = 22 Vt, 

which establishes (b) and (c) as applied to Fn+i. 
Next, 

1.675 f {eVu+l(x)}Pdv = f {€F„+1(*)}*dM + f {eF n + 1(x)}p^. 

Since J7 — T C S, and eFw+i = €Fw on U — T, then by (d), 

1.676 f Î6F n + 1(x)}^M< f{eF n(x)}^/i <fn . 
*JTJ—T *J S 

Using 1.673, 1.674, and Minkowski's inequality, we also obtain 

J {€F.+I(*0}*<*/* = I {*F„C*0 + <feO0 - l}pdii 
rp %) rp 

< [ ( fofoMydv)1* + ( Jr{*H(*) - ir^)1 j 

< Vn+U 

Putting this last inequality and 1.676 into 1.675, we establish (d) as applied 
to Fn+i. 
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Finally, we define 

E = UFW . 
n=l 

It is clear from (a), (b), (c), and (d) that E is an M-family of V-constituents 
satisfying conditions (I), (II), and (III) of Definitions 1.65, which completes 
our proof. 

Remarks. No change in the definition of an S(p)-basis results if X is required 
to be a bounded subset of E. For then any subset Y C E of finite outer meas
ure may be decomposed into a countable sum of bounded disjoint subsets of E, 
for each of which the 5(p)-property holds, and by the method of the preceding 
theorem a countable family F of V-sets may be found which is an 0-covering 
of F, with ?(2°-overlap and (/z, F)-overflow of F both as small as desired. 

If, in the proof of Theorem 1.66, we adopt the e-covering version for the 
definition of £(2?)-bases, the first relation in 1.663 is replaced by fx(X-X-S) < e. 
The Vitali ^-property is established in the e-covering version. 

1.7. Relation to Younovitch's differentiation theorem. Younovitch 
(28, Theorem I I I ) assumes that E = R, \x is complete, and JJL(R) is finite. 
The sets consisting of a single point belong to M. The basis B is a special 
de Possel basis such that each point x there corresponds to one ordinary 
sequence Ai(x), A2(x),..., An(x),... of "neighborhoods" such that x Ç An(x). 
The x-converging sequences are the subsequences of the basic sequence A i (x), 
A2(x), . . . ,An(x), 

YOUNOVITCH'S DIFFERENTIATION THEOREM 1.71. B differentiates the 
(finite) /^-integrals if there exists a positive constant a such that: 

(Yl) Corresponding to any set M in M of positive ^-measure, any B-fine 
covering V of M, and any posiive e, there exists a finite disjoint subfamily Vly 

V2, . . . , Vn, satisfying the inequalities 

1.711 Z M ( F 2 - Vi>M) <6, AM' E Vi) >an(M). 

In addition, each set Vu i = 1 , 2 , . . . , n, must belong to the basic sequence 
corresponding to a point pt of M; that is, for a certain index nu 

Vi = Am(pi). 

The second inequality of 1.711 may be expressed by saying that the ex
haustion power of the Vt with respect to M is greater than a. 

Remarks. If \p denotes a non-negative ju-integral, (Yl) holds, and M, V, 
and e are regarded as prescribed, then we can, by suitable finite iteration 
of the exhaustion process under ^-overflow control, produce a finite system 
qi, . . . , qk of points of M and indices «i, . . . , nk such that 
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(1) the /x-defect of covering of M by the sets 

Aj = Ani(qj) 

is less than e; 
(2) the i/'-excess of covering of M by the sets A3 is less than e; 
(3) the ^-overlap of the sets A3 is less than e. 

Consequently, (Yl) implies the Vitali property for integrals, (i) expressed in 
the e-covering version, (ii) with reference to anchorage points, (iii) restricted 
to M-measurable sets. As noted previously, the e-covering version with finite 
M-family E is equivalent to our original one. Actually, by infinite iteration of 
the exhaustion process outlined above, we can obtain an (enumerable) 
M-family satisfying (2) and (3), and covering M (mod N). 

Younovitch, like de Possel, formulates Vitali-covering properties with 
reference to points, thus strengthening the Vitali assumptions. Condition 
(iii), however, appears to be substantially weaker than the Vitali property 
for ^-intégrais. If, by any means, one can prove under Younovitch's assump
tions that the (extreme) dérivâtes are /z-measurable (see Remark after Theo
rem 1.46), or that any B-fine covering of a set X is a 5-fine covering of any 
measure cover for X, then Younovitch's theorem follows from Theorem 1.62. 
Younovitch's note, unfortunately, contains neither proofs nor even a hint of 
them. 

§2. T H E CONVERSE PROBLEM; COVERING PROPERTIES DEDUCED FROM 

DIFFERENTIATION PROPERTIES OF <T-ADDITIVE SET FUNCTIONS 

2.1. De PossePs equivalence theorem. (22, pp. 403-405). 

DEFINITION 2.11. A derivation basis B possesses the density property if it 
differentiates the integrals of the characteristic functions of /x-measurable 
sets, that is, if, for any M-set M, the density of x, defined as the limit of 
l*(Mt(x)-M)/n(M,.(x)), exists and equals CM (characteristic function of M) 
almost everywhere on E. 

THEOREM 2.12. The density property and the Vitali ^-property are equivalent. 

Proof. As noted in the Remarks after Definition 1.47, the Vitali /x-property 
implies the density property. We have to prove the converse. 

We assume that the density property holds and let X denote a subset of 
E of finite outer measure, V a 5-fine covering of X, and e a positive number. 
We select a, 0 < a < 1, so that 

2.121 0 < (a"1 - 1) n(X) < e. 

If Y is any subset of X such that /z(F) > 0, then we define V(F , a) as the 
family of V-sets V for which 

2.122 viY-V) >av{V)% 

and fly as the supremum of the numbers fi(V), for V Ç V(F , a). 
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Now, from the density property, if /z(F) > 0, it follows that the density 
of F equals 1 for at least one point y Ç F. Hence there exists at least one 
^-converging sequence in S whose constituents belong to V and satisfy 2.122. 
The family V(F, a) is thus non-vacuous, hence MF > 0. In case Y (Z X and 
;z(F) = 0, we put HY = 0. 

We fix a number K, 0 < K < 1. By the definition of nx, there exists a V-set 
Vu such that 

M ( ^ I ) > « f e , M( -? -7 I ) >*H(V1). 

We let Xi = X, X2 = Xi — VyXi. From this point we proceed inductively, 
assuming that sets Vt have been defined in V for i = 1, 2, . . . , n, satisfying 
the relations 
2.123 n(Xt-Vt) > ap(Vt), fi(Vt) > KfiXt} 

where 

Xi+1 =X1-X1- U Vj. 

In case ji(Xn+i) — 0, we stop the process; in case fi(Xn+i) > 0, we define a 
new V-constituent Vn+i such that 

M(Pn+i) > ^ l n + 1 » j 2 ( Z n + i - Vn+i) > an(Vn). 

The process just described leads to the construction of an M-family E 
consisting of a finite or infinite sequence of sets Vt taken from V, satisfying 
2.123 (i = 1, 2, . . .). Since also the sets XfVi are disjoint (mod N*), we 
have 

(x- U 7 < ) > M ( U ^ - V < ) 

= Z/i(Xi- Vt)>aJjlx{Vi); 
i i 

consequently, 

2.124 I M W < «"V(x • U F J . 

Putting S — o-E and combining 2.121 with 2.124, we obtain 

2.125 {^vWt) - v(SYI + v(S - S-X) = Z M ( F 0 - M ( 5 - Z ) 

< ( a " 1 - l)fx(S'X) < € . 

Hence conditions (V2) and (V3) of Definition 1.33, with \p = n, hold. 
To show that (VI) holds for our family E, we note that if the sequence of 

sets Vi is finite, then for some positive integer N, we have E = 
{ Vi, V2, . . . , VN] and n(XN+i) = 0. Thus ji(X — X-crE) = 0, as required by 
(VI). If the sequence is infinite, then from 2.123 and 2.124 we see that 

*]E MX» < 2 v(Vt) < ap(X) < oo ; hence lim fxXi = 0. 
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We let Xœ = X - X- U Vt. Since Xœ C Xn and hence V(Xœ, a) C V(Xn, a), 
for» = 1, 2, . . . , then 

This means that aE = [} VfZ) X (mod N*), as required, and the proof is 
complete. 

Remarks. If we wish, as does de Possel, to "anchor" the Vn to points of X, 
we can extract Vn from an ^-converging sequence, whose constituents belong 
to Y(Xni a), and such that xn £ Xn. 

As is known (25, p. 129), in any Euclidean space the interval basis possesses 
the density property, therefore, by Theorem 2.12, it is a weak derivation 
basis. There exists (17) an example of a summable function / in the plane 
whose indefinite integral is 7-differentiable {strongly differentiate), although 
the integral of \f\ is not. 

2.2 A necessary and sufficient condition for a weak derivation basis to 
differentiate a ix-fmite M-measure (Radon measure) \p. We assume that B 
is a weak derivation basis; that is, B possesses the Vitali ju-property. 

We let / denote a /x-measurable, non-negative, almost everywhere finite 
function with domain R;byfn we shall mean that function for which fn{x) = 0 
if f(x) > n and/w(x) =f{x) if f{x) < n. We further define rn{x) =f{x) —/n(x), 
andfor ikf Ç M, 

HM) = f / (* )d / i ; MM)= (fn{x)dn; Pn{M)= ( rn{x) dp. 

Since fn is a ju-measurable bounded function, B differentiates its integral 
\f/n; that is, D\f/n exists almost everywhere in E and equals fn(mod N*). We 
have 

hence 
D V = /» + ^*P, (mod N*) 

on E. In accordance with the definition of fn and the finiteness (mod N*), 
we have lim fn — f almost everywhere on E. This leads to the following 
result. 

LEMMA 2.21. A necessary and sufficient condition for a weak derivation 
basis to differentiate \p is 

lim [D*Pn > 0] = 0. 

In particular, if Jl{E) is finite, this is equivalent to the condition that 
lim jû[Z)*pw > e] = 0 for each positive e. 

COROLLARY 2.22. If B differentiates the non-negative \x-integral \p, it differ
entiates any M.-measure \f/f for which xp' < \p. 
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This result can be extended to any ju-finite (resp., Radon) M-measure \p. 
In fact, for M G M, 

HM) = ts(M)+ f/(*)<*/*, 
•)M 

where / represents the Radon-Nikodym integrand of \(/. We suppose that 
\//' is any M-measure, \f/' < \p. Then 

p(M) = y,(M)+ f f(x)d» 
*J M 

is the corresponding decomposition for \f/'. 
If No denotes an N-set for which i/8(R — N0) = 0, then \p is /x-absolutely 

continuous on the M-subsets of R — No, consequently, so is yp'', therefore 
*'S(R - No) = 0, 

VT(M) = t'(M-(R - No)) < *(M-(R - No)) = MM), 
f'8(M) = p(M-No) < t(M'No) = f8(M). 

Thus \pr
r and ^ ' s are dominated by ipr and \f/s, respectively. The assumption 

that B differentiates \p means that D\f/ = / (mod N*) on E, hence D\f/r = f 
(mod N*) on E, and D$s = 0 (mod N*) on E. Since D*x//'s < D**ps, then 
D\f/f

 s exists and equals zero (mod N*) on E. Thus, we have the following 
general result. 

THEOREM 2.23. If a weak derivation basis B differentiates the ^-finite (resp., 
Radon) M-measure ip, then S differentiates any fi-finite (resp., Radon) M-
measure dominated by \p. 

COROLLARY 2.24. If a weak derivation basis differentiates the total variation 
T of a signed n-finite (Radon) M-measure \p, it differentiates \p itself. 

As a special case, if the weak basis S differentiates the integral J\f(x)\dfi, 
where / is a ^-bounded measurable function, then B differentiates ff(x)djj,. 

LEMMA 2.25. If the weak derivation basis B differentiates the n-finite Radon 
M-measure \p, M C M , and r = \f/ + fi, then the T-density 

T r(M.(*)) 
exists almost everywhere on E and equals CM {characteristic function of M). 

Proof. We let / denote the Radon-Nikodym integrand of ^. Then, for 
M' e M, 

rM(M') = T(M' • M) = f(M' • M) + /.(Jlf • M) 

= f /(*) du + ts(M' • M) + ix{M' • M) 
JM'-M 

= f (fix) + 1) du + *.(Jlf'- M) 
*J M'-M 

= f CM(x)(f{x) + \)dn + ts{M''M), 
%) M' 
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where \ps is the /-t-singular part of \p. Since B differentiates r, lim r(Mt(x))/ 
fi(M,(x)) exists and equals f(x) + 1 for /x*-almost all x Ç E. But B also 
differentiates rM, so that 

lim r(Aft(x) • M)/n(M,(x)) 

exists and, by above, is equal to CM(%)(f(x) + 1) for /z*-almost all x G E. 
Hence, by division, lim T(ML(X)'M)/T(M,(X)) exists and equals CM for 
ju*-almost all x £ E. 

LEMMA 2.26. If B, \f/, and r are as in the preceding lemma, X is a subset of 
E of finite outer measure, Afi is a measure-cover of X, V is a B-fine covering of 
Xj e is a positive number, and 0 < a < 1, then there exists a finite or infinite 
sequence of Y-sets Vn for which 

2.261 U F w DX(modN*) , £ r(Vn) < T(M- U Vn)/a. 
n n \ n / 

Proof. For any M-set such that jl(M-E) > 0, we define V(r, Af, a), as the 
family of V-sets F for which 

2.262 T{M- V) > ar(V), 

and JU(T, i f ) as the supremum of the numbers n(V) for F Ç V (r, Af, a). 
From Lemma 2.25, it follows that there is at least one point x G M-E at which 
the r-density of AT equals 1, hence V(r, Af, a) is non-vacuous, and /x(r, AT) > 0. 
In case Af G M and p(Af-£) = 0, we define /*(r, Af) = 0. 

From this point on the proof follows closely that of Theorem 2.12, with r 
replacing ju and the measure covers having to be specially selected, since r 
need not be /x-absolutely continuous. By a process similar to that of Theorem 
2.12, for fixed K, 0 < K < 1, we determine inductively a finite or infinite 
sequence Vu V2, . . . of V-sets with properties as follows. We put Xi — X, 
and for any positive integer n > 1, 

n 

Xn+i — Xi — Xi • U V i, 
i=l 

Mn+i denotes a measure cover of Xn+i contained in 

Mn-Mn- Û Vt. 

If ji(Xn+i) > 0, then Vn+i is so chosen from V that 

2.263 T(Mn+iVn+1) > ar(Vn+1)f n(Vn+1) > m{r, Mn+1). 

If /z(Xn+i) = 0, the process stops. 
Our choice of the sets Mn ensures that the sets Mn-Vn are strictly disjoint; 

hence, using 2.263, we have 

2.264 r(Afi) > T ( M I • U 7B) > r ( U Mn • Fn) 

= Er(Afw. 7n) > « E r ( U 
which is the second relation of 2.261. 
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If Vn is a finite sequence, then ji(Xn) = 0 holds for some integer N, and the 
first relation of 2.261 clearly holds. If Vn is infinite, we let Xœ = X - X- KJ Vn\ 
we may, and do, choose a /z-cover Mœ of Xœ, contained in H Mn. From 2.263 
and 2.264 we have lim /*(>, Mn) = 0. Since Mœ C Mn, we have V(r, MœJ a) C 
V(r, Jbfn, a), and M(T, M J < M(T, Afn) for n = 1, 2, . . . ; thus /Z(T, AfJ = 0, 
and p(Mœ-E) = 0. But Xœ C Mœ-E\ hence /Z(Xœ) = 0, and the first condition 
of 2.261 holds. 

THEOREM 2.27. If a weak derivation basis B differentiates the y-finite (Radon) 
M-measure \f/, then B possesses the Vitali ^-property. 

Proof. Taking X, M\, V, and e as in the statement of Lemma 2.26, we 
select a so that 
2.271 0 < (a-1 - 1) T(MI) < e, 

and choose an M-family E in accordance with Lemma 2.26, satisfying 2.261. 
For 5 = o-E, the (r, Mi) -redundancy of covering is given by 

\T,r(Vn)-T(S)l +T(S-S-M!) = T/r(Vn)-r(S'M1)t 

which, by 2.261 and 2.271, is less than e. Thus the r-overlap of E and the 
(T, M\)-overflow of E are less than e, so that the Vitali r-property holds. 
Since \p < r, the Vitali ^-property also holds. 

Remark. If desired, the sets Vn may be "anchored" to points of Xn, as in 
the de Possel theorem. 

Combining Theorem 2.27 and Theorem 1.52, we obtain the following 
criterion of differentiability of an individual M-measure. 

THEOREM 2.28. A necessary and sufficient condition for a weak derivation 
basis B to differentiate the ^-finite (Radon) ISl-nieasure \p is the validity of the 
Vitali ^/-property. 

THEOREM 2.29. The Vitali property for fi-finite (resp., Radon) ^-integrals is 
equivalent to the B-differentiability of every /jL-finite (resp., Radon) fi-integral; 
the Vitali property for ^-finite (resp., Radon) M.-measures is equivalent to the 
B-differentiability of every ix-finite (resp., Radon) M-measure. 

Proof. This follows from Theorem 1.52, Theorem 2.12, and Theorem 
2.27. 

2.3. Relation to Younovitch's equivalence theorem. We return to the setting 
of 1.7 in the following discussion. 

Younovitch formulates a Vitali /^-property (Y2) exhibiting the features 
(i), (ii), and (iii) in the Remarks under 1.71, and asserts its equivalence with 
the density property. That is, under his assumptions, Younovitch proves 
Theorem 2.12 with a weakened Vitali /z-property in which X is required to 
belong to M. We have been unable to prove this; otherwise, Younovitch's 
theory would be a special instance of ours. 
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Younovitch also formulates a criterion for the differentiation of /-i-integrals, 
which are necessarily finite since n(R) < °° for his space R. This will be 
stated after some preliminary definitions are given. 

If 25 is a decomposition of the space R into a sequence of disjoint ^-measur
able sets Ru R2, . . . , so that R = W Rv, then £) is Y-summable if and only if 

Z vix{Rv) 
V 

is finite. For any positive integer k and any positive number €, Z7M(S), k, e) 
denotes the set of points x in R for which there exists a sequence 

Ani{x) 

satisfying the relation 
OO 

Y, vn(R, ' Ani(x)) > efx(Ani(x)). 
v=k 

Younovitch's basis B is said to have the property (Y3) if and only if for each 
F-summable decomposition 3) of R and each positive number e, 

lim/Z{C/M(SD, jfe, e)} = 0. 
k 

(Younovitch does not place a bar over /z, evidently regarding the bracketed 
set as /x-measurable, which seems to confirm the conjecture of 1.71 that he 
establishes the /z(==/-i*)-measurability of the derivatives of /x-integrals). 

YOUNOVITCH'S CRITERION 2.31. (Y2) and (Y3) together are equivalent to 
the 5-differentiability of every (finite) /^-integral. 

Assuming (Y2) to be equivalent to the Vitali ju-property, this result can be 
proved from the theorems of 2.1, as will now be indicated. Corresponding to 
the decomposition occurring in the formulation of (Y3), we define a function 
(/> by 0(x) — v for x G Rv, v = 1, 2, . . . ; # is the frequency function of the 
M-family C consisting of the sets 

Sv= \JR{. 

C is a covering of R. The F-summability of the decomposition means the 
finite integrability of cf> = <t>c over R] conversely, any /z-measurable function 
on R taking only positive integral values may be regarded as the frequency 
function of a measurable M-family covering R. 

We apply the considerations of 2.2 to / = 0. We have 

X) vy-{Rv • Ani(x)) = pk(Ani(x)). 
v=k 

Younovitch's set C/"M(S)f k, e) satisfies the relations 

[D*pk >e]D £/M(2), k, e) D [D*pk > €]. 

From Lemma 2.21, assuming the Vitali /z-property, it follows that condition 
(Y3) is equivalent to D*\(/ = D*ty = / (mod N*) for the integrals of measurable 
frequency (or multiplicity) functions / . 
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By Theorem 2.12, the Vitali ^-property is equivalent to the differentiability 
property when the measurable function / takes only a finite number of values, 
or even only the values 0 and 1. These latter functions are the characteristic 
functions of /x-measurable sets. 

Combining, we see that Younovitch's theorem amounts to the assertion 
that a necessary and sufficient condition for the validity of the differentiability 
of ^-integrals is its validity for the integrals of /^-measurable functions taking 
only positive integral values. 

It remains to be shown only that a weak derivation basis differentiating 
the integrals of /z-measurable frequency functions differentiates all /x-integrals 
$(M) = J V O ) du. This follows using the decomposition yf/(M) = \j/+(M) + 
\[/~(M), and for non-negative / , the representation f(x) = [n](x) + e(x)> 
where [n](x) takes only positive integral values and —1 < e(x) < 0. Any 
weak derivation basis differentiates the integrals of the functions e. 

2.4. A converse theorem for bases differentiating the /*((Z)-functions. In 
what follows, we assume that the basis B is a general derivation basis and 
that R has the property (G>). 

E denoting an M-family of jS-constituents, r and a positive numbers, we 
let E(a, r) denote the family of E-sets V for which 

f {ex(x)}rdn>av(V), 

and we further let o"a,r(E) denote the union of the sets E(a,r). Clearly, if 
r' > r", then E(a, r') D E(a, r"), and trtt,r,(E) D er«.r»(E). 

LEMMA 2.41. If H represents the M-family of the ^-constituents V for 
which 

J {eE(x)\rdv<cm{V); 

that is, if H = E — E(a, r), then 

W
('+1,(H)<«Z^), 

where o>(r+1)(H) denotes the &r+1)-overlap of H. 

Proof. 

co('+1)(H) = f {eH(x)} r + 1^ = ( {Mx)-l}r+% 

< I U B ( « ) - l\T<S>n(x)dix 

In the preceding considerations, if r = 0, we shall interpret {<t>^{x) — l } r 

as the function defined on o-E, taking the value 0 if eE(#) = 0, or the value 
1 if €E(#) > 1; that is, the restriction to o-E of the characteristic function 
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Ce-E of the E-overlap set 0E (see Definitions 1.32). E(a, 0) is the family of the 
E-sets F for which ju(F-0E) > an(V). 

The above lemma remains true when r = 0, since 

co(1)(H) = co(H,/*) = f | * H W -l) dix 

DEFINITION 2.42. We say that the basis B has the property (Hp), for 
p > 1, if and only if for any bounded set X Ç_ E, any 5-fine covering V of X, 
any s* > p(X), any e* > 0, and any a* > 0, there exists a finite M-family 
G of V-sets such that 

2.421 P(X-X- aG) < e*; £ M(F) < 2*; M(<r«* ,_i(G)) < €*. 

Remarks. Without the third condition, we have the Vitali /x-property in 
the e-version, and for bounded subsets of E, which, as noted earlier, is equiva
lent to the original definition of the Vitali ^-property. 

We see that if p' > p", then (HP>) implies (Hp„). 

LEMMA 2.43. If B is an S(z)-basis, z > 1, and if B does not possess the pro
perty (Hp'), where p' > 1, then there exists a bounded set X0 C E, a bounded 
G-set Go D Xo, a B-fine covering Vo of Xo, and positive numbers a0, eo such that 
for every M-family F of Y0-sets satisfying the relations 

2.431 /z(Xo - ^o • aF) < €0, n(aF - Xo • o-F) < eo, co(2) (F) < e, o-F C Go, 

we have 

/z{<w_i(F)} > 2e0. 

Proof. If G is a bounded G-set, X C EG, V is a B-ûne covering of X, 
a and e are both positive numbers, then we call the entity (X, G, V, a, e) 
an admissible quintuple. Since B is an 5(2)-basis, for any such quintuple there 
exist M-familes F of V-sets for which p.(X — X-aF) < e, v(aF - X-aF) < e, 
co(2)(F) < € and o-F C G. For such families F we thus have 

£ M(T0 = M(*F) + W(F, /*) < /*(*F) + co(2)(F) < p(X) + 2e. 

For any fixed admissible quintuple, we let r) denote the infimum, among all 
such families F, of the numbers fjL(aa,P'-i(F)). It follows that if, for each 
admissible quintuple, the corresponding rj were zero, then B would have the 
property (HP'), contrary to hypothesis. Thus, for some admissible quintuple 
(Xo, Go, Vo, «o, €o), the corresponding r)0 is a positive number, and for each 
finite M-family F of V0-sets satisfying the relations 2.431, we have 

2.532 /i{o«.p'-i(F)} >m>0. 

Now if F is any M-family which satisfies the relations obtained from 2.431 
merely by replacing e0 by any smaller positive number, then F necessarily 
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satisfies the unchanged relation 2.431. Thus, we may assume that e0 has been 
chosen so small that 0 < e0 < ^ o , which, in the light of 2.432, completes the 
proof. 

Henceforth, any quintuple (Xo, Go, V0, a0, e0) satisfying the conditions of 
Lemma 2.43 will be called a privileged quintuple. 

LEMMA 2.44. If the basis S possesses the property (Hp), where p > 1, then 
S is an S(p)-basis. 

Proof. By virtue of the Remarks following Theorem 1.67, it suffices to 
show that the 5(p)-properties hold when X is any bounded subset of E. Thus, 
we take a bounded set X (Z E, a B-fine covering V of X, choose e > 0, and 
select z* so that U(X) < z* < fl(X) + ^e. We let e* = Je and choose any 
positive a* with a:*2* < e. 

We use the property (Hp) to find a finite M-family G of V-constituents 
such that 2.421 holds. We define F as the family of G-sets V for which 

f {eG(x)}p-%<a*»(V). 

If Y = X-aG, then F covers Y - 7-a-«*,^i(G). Hence, by 2.421, and the 
definition of e*, we have 

2.441 p(X-X- aF) <p(X-X- <TG) + M((7«*,p-i(G)) < 2e* = e/2; 

that is, F is an e-covering of X. 
Using Lemma 2.41, with r = p — 1, and taking account of the second 

relation in 2.421 and the choice of a*, we obtain 

coW(F) < a * £ p{V) < a* £ „ (7 ) < a V < e. 
VeF VtG 

Finally, from conditions 2.421 we have 

M(«rF - X • <rF) < n(<rG - X • oG) = n(X - X • aG) + n(aG) - n(X) 

<n(X-X-aG) + J E M ( F ) - M ( X ) [ <«, 
(VeG ) 

which completes the proof that S is an 5(p)-basis. 

DEFINITION 2.45. We assume R to be a measure space as described in 1.1. 
We suppose that U is a given family of M-sets of finite positive measure, 
8 a positive finite function defined on U. We define E as the set of points x 
for which there exists at least one ordinary sequence of sets Vn G U with lim 
à(Vn) = 0 and x G Vn for n = 1, 2, We define the ®-basis [U, ô] by 
associating with each x £ E the totality of ordinary sequences of sets Mt(x) 
(i = 1, 2, . . .) for which x 6 Mt(x), Mt(x) Ç U, and lim ô(M,(x)) = 0. From 
our assumptions it follows that the domain of [U, ô] is E and the spread is a 
subfamily of U. The function ô is called the index of uniform contraction. 
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For any fixed t\ > 0, we denote by V, the subfamily of V consisting of the 
V-sets F for which 8(V) < rj. 

For a family (or an M-family) F of V-sets V, we define the 5-fineness 
or ô-norm v(F) as sup 5(F), for V G V. 

Remarks. Denjoy (2) considered bases more general than those just 
defined, insofar as the requirement "x G Mt(x) for each i" is replaced by 
"x G E(Mt) for each i," where E(V) is defined for each 5-constituent F as a 
subset of R, not necessarily /x-measurable, containing V. However, the con
traction requirement is lim /x(Af t) = 0 (19). Nevertheless, we name the bases 
introduced here after Denjoy since his memoir points to their specific pro
perties. Following Haupt, they are called "U-Basen" in (21, p. 71), for reasons 
there explained. 

Once 8 is fixed, a £)-subbasis of [U, 8] is uniquely defined by its spread 
T C U; its domain D[T, 8] (abbreviated <D[T]) is no longer an arbitrary 
subset of D[U] as is the case with a general subbasis. For instance, if B is an 
5(1)-basis, the domain of any 3)-subbasis of B is a /x*-measurable set. 

A 2?-fine covering V of X is characterized as a subfamily of U with D[V]DZ 
(mod N*). 

LEMMA 2.46. If B is a Q-basis [U, 8], p' > z > 1, and B is an S{z)-basis 
but not an S(pf)-basis, then there exists a bounded G-set Go and a set Xo, with 
Go'E D Xo, a B-fine covering V0 of Xo, positive numbers a0 and e0, and a se
quence, Fi, F2, . . . , Fn, . . . of finite M-families of Yo-sets for which 

2.461 lim v(Fn) = 0, Sn = aFn C Go; 

2.462 H(X0 - Xo ' Sn) < 6o, co(2)(Fw) < e0/2
n+\ M(^0,P '-i(Fn) > 2e0. 

Proof. By Lemma 2.44, B does not possess the property (Hv
f), and we may 

apply Lemma 2.43 t find a privileged quintuple (Xo, Go, Vo, «o, e0). Since S 
is an 5(2)-basis, we define Fn as a finite M-family of Vi/ra-sets included in G0, 
satisfying the first two relations in 2.462. The last relation in 2.462 holds by 
our choice of a privileged quintuple, and 2.461 is clearly valid. 

) 
LEMMA 2.47. We let B denote an S™-basis which is also a Q-basis [U, <5]. 

We define p0 as the supremum of numbers p such that S is an S(p)-basis; we 
assume that po < °°. We so define qo that po~l + qo~l = 1 if po > 1; otherwise 
q0 = co if p0 — 1. Then for any number q, 1 < q < q0, there exists a non
function \̂ o, a positive number a0, and a subset Co of E of positive outer measure 
such that: 

2All MM) = f f0(x) du for M G M, and f |/0(*) | ty* < «> ; 
J M J R 

2.472 f0(x) = 0 for each x G C0; 

2.473 D*^o > OLO > 0 for each x G Co. 
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Proof. We so define p that p~l + q~l = 1. Our hypotheses on q ensure that 
po < P < °°. In case p0 > 1, we clearly have 

0 < q(p0 - 1) < qo(po ~ 1) = po] 

hence we can choose a number £' so that 

0 < q{p' - 1) < po < p' < p. 

Even in case po = 1, this last inequality may be satisfied for a suitable choice 
oîp'. 

In either case, we so define q' that (p')~l + (g')"1 = lï clearly, then, 
q < q' < go- We let z denote the larger of the two numbers q{p' — 1) and 
1. 

From our assumptions, it follows that B is an 5(2)-basis but not an S(pf)-
basis. Lemma 2.46 asserts the existence of a privileged quintuple (X0, G0, Vo, 
«o, €o) and a sequence Fi, F2, . . . Fnj . . . of finite M-families of Vo-sets satisfy
ing 2.461 and 2.462. We let 

Sn = o-F», On = 0Fn(Fw-overlap set), D = U On, 
n 

Hn = ov^'-iCF»), Qn = Hn— Hn- D, Co = lim sup Qn, 

en(x) = eFw(x) if x £ Onj en(x) = 0, x iOn. 

We have 

/*(£)< Z M(0.) < Z «(F,)< Z "(Z)(F«) < «o. 
n % n 

Since n(Hn) > 2 e0 for each w, then /x(Qw) > e0 for all w. Since the sets Qn are 
subsets of the set Go of finite outer measure, then M (Co) > eo. 

We define 

2.474 f0(x) = £ M*)}* ' " 1 , f o ( I ) = ( fo(x)dui, I f M . 
w «J Af 

Now /o is non-negative and vanishes on i? - D, hence on C0 C (R — D); 
this verifies 2.472. 

From the definition of / 0 and Minkowski's inequality, we have 

(Jai/o(*)r^)lrt< ç(Js{e.(*)}<*'"1>'^j"< ç(JB(aB(x)}2^)1/5 

= Z {W
(S,(F„)}1/J< Z ( # r Y " = eo1''- ZP B + \ 

where p = 2~1/ff. Since g > 1, then p < 1, and the sum of the geometrical 
series is finite; thus 2.471 holds. 

We denote by Fn(a0, pf — 1) the family of those sets V Ç Fn for which 

2.475 j {en(x)}p'-1dn>aon(V); 

thenHn = o-Fn(a0,£' - 1). 
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To each point x Ç Co C lim sup Hn there corresponds a sequence of natural 
numbers nù such that 

* € W J W € F B i ( a 0 , ^ - 1 ) . 
The sequence of the sets F(w^) is an x-contracting sequence of B, thus x £ -E, 
and Co C •£. 

From 2.474 and 2.475 it follows that 

v(V(nj)) > a0, 

from which we obtain 2.473. 

THEOREM 2.48. If B is a T)-basis which differentiates the fxw-functions, where 
1 < q < oo, and if p is so defined that p~l + q~l — 1, then B is an S(p,)-basis 

for each number pr such that 1 < pf < p. 

Proof. Since q > 1, and 5 differentiates the /z(e)-functions, then B must 
differentiate the /x(co)-functions, that is, the integrals of ju-measurable functions 
which are bounded on each set G°n. By Theorem 2.12, B is an 5(1)-basis. 
Next, we define po and go as in Lemma 2.47. In case p0 = °° , it is clear that B 
is an S^')-basis and the theorem holds. In case 1 < po < oo, Lemma 2.47 
tells us that for each number qr such that 1 < q' < go, there exists at least 
one ^(ff,)-function which B fails to differentiate. Our hypotheses thus compel us 
to conclude that q > go, hence p < po, from which the statement of the theo
rem is seen to be true. 

Remarks. Theorem 2.48 is not a clear-cut converse theorem because it 
does not say that B is an 5(2?)-basis. We conjecture that a ©-basis can be 
constructed, which is an 5(2?/)-basis for each p' < p, yet fails to be an S{p)-
basis. 

According to Zygmund (29, pp. 143-144), the interval basis in the plane 
differentiates the /JL(Q)-{unctions for q > 1. Therefore, by Theorem 2.48, it is 
an 5(p)-basis for all finite p > 1. There exists a blanket (10, pp. 294-295) 
which is an 5(1)-basis but is not an 5(p)-basis for any p > 1. The two bases 
just mentioned are extreme cases in the continuous chain of 5(p)-bases. 

2.5 An individual differentiability criterion of Busemann-Feller type. 
Throughout this section we assume that B is a ©-basis and that (G„) holds. 

DEFINITION 2.51. For M G M, we denote by M the element (soma) of 
9ft = M / N corresponding to M; that is, the M-coset of N. If Z is any sub
family of M, and 3 is its image by mapping M —> M, then we define the union 
(mod N) of the Z-sets, namely cr*(Z), as any set corresponding to the union 
or join of the ^ - ^ m e n t s in M/N, regarded as a complete lattice (26, pp. 378-
380). The lattice relation is so defined that Z' > Z" holds if and only if for 
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every Z' 6 Z, and Z" G Z", the relation Z' D Z" (mod N) holds. The union 
<r* (Z), defined modulo N, is thus characterized by the property that every 
M-set which includes each Z-set (mod N) includes <r*(Z) (mod N). There 
exist enumerably many Z-sets Zi, Z2, . . . , Zw, . . . such that 

U Z n = (7*(Z) (modN). 

If all the Z-sets are included (mod N) in an M-set of finite measure, then 
<7*(Z) is any M-set of minimal measure including each Z-set (mod N). 

DEFINITION 2.52. If M denotes a bounded M-set (nucleus), rj a positive 
number, a a number such that 0 < a < 1, then, similarly to Busemann and 
Feller (1, p. 230), we define the halo aatV(M) as the union (mod N) of the 
5-constituents V for which n(M-V) > afi(V) and d(V) < t). 

DEFINITION 2.53. If \f/ is an M-measure, M G M, a > 0, and rj > 0, then 
we denote by o-a^,,(ikf) the union (mod N) of the constituents V for which 
^(ilf-F) > afx(V) and 5(F) < 77. The set (ra^,,(M) is called a ^-Aafo. 

Remarks. The modification of the Busemann-Feller definition involving 
the strict union is due to the possible non-measurability of the strict union in 
our more general sense. 

The term "halo" was first used by K. O. Househam in his talks in Capetown, 
1950, on A. P. Morse's differentiation theory, to denote Morse's set A:/? 
(14, p. 208). We diverge from the colloquial use of the term by permitting 
our halos to have points in common with the nucleus or even to include the 
nucleus. However, all our halo conditions control the proper halo; that is, 
the part of the halo outside the nucleus, thus retaining the basic meaning of the 
term. 

The relation between <ra,r(E), defined in 2.4, and the notion just defined may 
be written cra>r(E) = <ra#tV(M), provided M = 0(E), \f/ is the indefinite integral 
of that function coinciding with {€E}r on 0E, zero elsewhere, and rj = J>(E). 

THEOREM 2.53. If S is a T)-basis and an S(1)-basis, and $ is a non-negative 
fjL-integral, then a necessary and sufficient condition that B differentiate \p is the 
following halo evanescence condition: For any bounded non-increasing sequence 
of M-sets Mn, with lim v(Mn) = 0, any non-increasing sequence rjn of positive 
numbers with lim rjn = 0, and any a > 0, we have 

^{ l im ((Ta^nAMn))} = 0. 
n 

Proof. We first establish the sufficiency. We show that the halo evanescence 
property implies the Vitali ^-property in the e-covering version. We let X 
denote a bounded subset of E, V a 5-fine covering of X, e a positive number. 
We shall prove the existence of an M-family E of V-sets which is an e-covering 
of X, with ^-overflow with respect to X, and ^-overlap, both less than e. 
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For a suitable N, we have X C G°N (recall Definitions 1.31). Pruning V if 
necessary, we may assume that all the V-sets lie in G°N. Since B is an 5(1)-basis 
and a SD-basis, then corresponding to each positive integer n, there exists an 
M-family En of V-sets such that if Sn = crEn then 

2.531 SnDX(modN*), fx(Sn -Sn-X)< 2~n-\ co(En, M) < 2~n~\ v(En) < 1/n. 

Putting 

0n = 0En, Dn = 0 04> 

we have /z(O0 < 1/2W+1, /*(£>») < 1/2". 
Next we define a = e/(jû(X) + 1). We denote by Hn the family of those 

Ew-sets V for which 

2.532 HV'On) <cv(V). 

We have 

2.533 co(Hn, ^) = I e H . ( x ) ^ < I feB(x)# 

= Z *(^- a x « Z M(F) < «Ms.) + co(En, M)) 
7eH« FeH„ 

< a(/z(X) + 2"w"1 + 2""-1) < a(/z(*) + 1) = e. 

Now En is an 0-covering of X. The constituents in En — HW are included in 
<Ta,t,i/n(On), (mod N*) ; therefore Hn covers 

X - X • (r«,*,i/n(0»)(mod N ), 

and consequently 

2.534 oiIn D {X - X • <ra^1/n(DH)} (mod N*). 

Since the sets -Dw are all included in the set G°N of finite outer measure, and 
form a non-increasing sequence with lim n(Dn) = 0, we may invoke the halo 
evanescence property to conclude that 

n 

There exists a positive number rj such that for any M-set M C G°N, for 
which fx(M) < 77, we have \p(M) < e. We fix n so that 

2.535 ju(<^,i/n(A0) < 1?, 2"*-1 < rj. 

We may and do further assume that rj < e. Then the family E = Hw corres
ponding to this index n satisfies the e-covering condition due to 2.534 and 2.535. 
Using the second relation in 2.531 and the fact that <JE C Sn C G°Nl we have 
\f/(aE — crE-X) < e; that is, the ^-overflow of E with respect to X is less than 
€. Finally, the ^-overlap of E is less than e by virtue of 2.533. 

We now attend to the proof of the necessity. We consider an arbitrary 
non-increasing sequence of bounded M-sets Mi, M2l . . . , Mn . . . with lim 
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n(Mn) = 0, an arbitrary non-increasing positive sequence 8h 82l . . . , 8n . . . , 
with lim 8n = 0, and an arbitrary a > 0. We put 

Hn = o-a^fôn(ikfn), H = Il i7n. 
n 

Since the halo ^«^.«(Af) is a non-decreasing function of 6, it follows readily 
that for any pair of positive integers n, v, we have 

HQ aa,^Sn(Mv); 

hence, for each such *>, 

2.536 ffcl aa,4,jn(Mv). 
n 

For each such pair of positive integers n, vy there exist enumerably many 
constituents 

V1 V2 Vj 

v n, vi v n.Pi • • • J V n, vi - • • 

such that 
2.537 8(VU < «., *(V* , • M,) > a/*(V£0, 

5»., = U f £ , = ov^.j,, (Mv) (modN). 
j 

Corresponding to each point x of the set 
* O 

±1 v == I I 0 W ) j», 
n 

there exists a sequence of 5-constituents Wn satisfying the relations 

2.538 x e Wn, 8(Wn) < dn, *(Wn • M,) > afi(WH). 

We let / denote the integrand of x//, so define r that 

^0*0 = f(x) if ^ € Af„ rv(x) = 0 if x # M,, 

and let 

pv(M) = I rF(a) 6̂ /x, 

for I f M. We deduce from 2.538 that 

2.539 D*p,(x) > a 

for each x Ç H*v. 
Since 5 is an 5(1)-basis and differentiates \p> then by Theorem 2.23, B 

differentiates the non-negative Radon integrals dominated by \p for almost 
all x Ç E. Hence, from 2.539, rv(x) > a almost everywhere in H*v. But 
rv(x) = 0 for each x € Mvy thus H*v C Mv (mod N*), which, by 2.537, 
means that 

0 Oa.f.a.CJO C Af,(modN*); 
n 

using 2.536, we observe that H C Afp (mod N*). Since v is arbitrary and lim 
n(Mv) = 0, we conclude that fi(H) = 0, which completes the proof. 
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§3. EXAMPLES OF BASES POSSESSING THE VITALI PROPERTY FOR RADON 

MEASURES 

Throughout this section the setting of 1.1 is adopted. 

3.1 Preliminary definitions. 

DEFINITION 3.11. By external ^-closed set we shall mean the ^-complement 
of a G-set; A will denote the family of all such sets. 

DEFINITION 3.12. We say that A is a {Morse) disentanglement function 
if and only if A is a positive finite function defined on the spread (family of 
the constituents) of the basis B (14, p. 207). 

DEFINITION 3.13. If a is a fixed number greater than 1, A is a disentangle
ment function, and V0 is a 5-constituent, then the Morse halo H(A, a, V0) is 
the union of those constituents V which intersect F0, and for which A(V) < 
aA(Fo). The halo dilatation p(A, a, V0) is defined as the ratio /z(iJ(A, a, V0))/ 
*(Vo). 

DEFINITION 3.14. We shall say that the basis B has the strong Vitali 
property (abbreviated (S.V.)) if and only if for each e > 0, each set X C E of 
finite outer measure, and each 5-fine covering V of X there exists an (enumer
able) M-family E of V-constituents such that, for S = aE: 

(S.V.I) I - I - S e N * ; 
(S.V.2) M (S - S-X) < e; 
(S.V.3 str.) the E-constituents are pairwise disjointed. 

If, in (S.V.3 str.) we replace the strict disjunction by 0-disjunction, that is, 
disjunction mod N*, we obtain the strong Vitali property mod N*; if we discard 
(S.V.2), we have the reduced strong Vitali property (abbreviated R.S.V.). 
Recalling the Definitions 1.65, we find it convenient to designate as an 
5(oo)-basis, any basis having the property (S.V.) mod N*. 

The straightforward proofs of the following are omitted. 

PROPOSITION 3.15. (S.V.) mod N* implies the Vitali property for fx-finite 
jjL-integrals. 

PROPOSITION 3.16. (R.S.V.) and Haupt's adaptation property together imply 
the Vitali property for Radon measures. 

DEFINITION 3.17. We say that B has the generalized Morse halo property 
(14, p. 213, Def. 6.4) if and only if there exists a > 1 and a disentanglement 
function A for which 

sup{lim sup[A(M t(x)) + p(A, a, M\{x))]} < <*> 

for /^-almost all points x Ç E. Here, as in 1.1, the limit superior is taken for a 
sequence M,{x) and the supremum is taken over all x-converging sequences. 
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Remarks. The strong Vitali properties lack the flexibility of the Vitali 
properties of §1. In their formulation, one cannot replace the 0-covering 
condition by an e-covering one, nor in the (Ga) case, replace the phrase "of 
finite outer measure" by "bounded" However, such alterations are permissible 
if the constituents are A-sets. 

3.2 Generalized Morse bases. 

FUNDAMENTAL THEOREM 3.21. We suppose that B is such a basis that for each 
x € E, the sets of every x-converging sequence contain x, and each B-constituent 
is a member of A. We assume, further, that each M-set of finite measure is a 
subset of some G-set of finite outer measure, and that Morse's halo property holds. 
Then B possesses the property (R.S.V.). 

The proof of this theorem occurs in (21, p. 80). 

Remarks. In Morse's version of the fundamental theorem, R is a metric 
space, fx a classical Radon measure, B is a blanket F. Since the contraction 
process is defined by means of the metric, the (metrically) open sets belong to 
G, the (metrically) closed to A. Thus a Radon measure in the classical sense 
is a Radon measure in the sense of 1.31, the reference sequence G°i, G°2, . . . 
consisting of concentric open spheres, whose radii tend to infinity. Morse 
assumes that V 6 F(x) implies x Ç V, and that the 5-constituents are closed. 
Without the closeness assumption for the constituents, B need not be strong 
as the following examples confirm. 

EXAMPLE 3.22. R is a plane Euclidean space, \x is plane Borel measure, 
and E is the open unit square with principal vertices at (0, 0) and (1, 1). 
To avoid repetition, throughout this discussion, / will denote an arbitrary 
point of E, n an arbitrary positive integer. We let Tn denote the set of points 
in R of the form {r/2n, s/2n), where r and 5 are arbitrary integers. Kn denotes 
the family of closed squares whose four vertices are points of Tn, with sides of 
length 2~n. Each point t lies in or on the boundary of at least one square in 
Kn; we associate, with each such t, exactly one square In>t in Kn such that 
t Ç Intt> We define I'ntt as the square concentric with IUtU with sides parallel 
to the axes and three times as long as those of In>t. 

At each point z £ Tn, we construct a square centered at z, with sides 
parallel to the axes, and of length 2~2n. We let Hn denote the family of all 
such squares, and we define 

oo 

Jn = U 0-Hm. 
m=7i+l 

We further define / "„ , , = In,t + I'n.t'Jn- Finally, we so define the blanket F 
with domain E that F(t) is the family consisting of the sets I"\tU Iff2,u • • . , 
T" 

1 n,ty 

For each integer m > n + 1, there are not over 16-22™-2n points of Tm 
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lying on or in Intt, thus not over 16-22m_2n members of Hm, each of ju-measure 
2 - 4 m , intersecting I"w,*- Therefore 

M(/ ' . .« • Jn) < 16 È 2-2m • 2-2" < 2-2"+V(J„,,); 

since w > 1, we have 

3.221 M(J"n i l) < /*(/„,,) + M(/'n.i- / . ) < 3M( I , . , ) < */*(/;.i). 

We consider a subblanket of 7\ say 7\, with spread Fi, having the property 
that each member of Fi is included in E. We let G be any countable subfamily 
of Fi whose /i-overlap is zero. Each set /3 Ç G is a set I"n,u and we may 
associate with f3 the corresponding set p' = I'n,ù we let G' denote the family 
of the corresponding sets ft'. Due to our construction, it follows that G' has 
ju-overlap zero. Using 3.221 above and the fact that aG C E we obtain 

M ( 5 - oG) > M(5) - E M(/3) > 1 - I E M(0') = 1 - IM(*G') > 1 - i = f 
/ScG 0 '«G' 

Thus, no countable subfamily of Fi whose ju-overlap is zero can cover ju-almost 
all of E. At the same time, if we define A(0) = diam (3 for fi Ç F, then it is 
clear that Morse's halo property holds. 

EXAMPLE 3.23. In this example, R and E are both the set of all real numbers, 
fi is linear Borel measure, V° denotes a fixed open subset of the open interval 
7 = ( — 1,1), containing the point x — 0, everywhere dense in 7, with JJL(V°) = 
20°, where 0 < 0° < 1. We define V(x, f), for £ > 0, as the open set image of 
V° by the direct homothetic transformation carrying the interval (x — f, 
# + ?) onto 7. F(x) is defined as the family of all sets V(x, f), f > 0. We 
define A(F) = p(V) for F = F(x, f) ; hence A(F) = 2f0°. From this it 
follows that i7(A, «, F(a, f)) = (x - f(2a + 1), * + f(2a + 1)); thus 
p(A,a, F) = (2a + l)/0°. Since 

limsup A(F) = 0 
F(x) eV^x 

for each real number x, then Morse's halo property is valid. 
We let Fi denote a subblanket of F with domain 7, with the property that 

the closure of every member of the spread of 7\ is included in 7. We consider 
any countable subfamily G of the spread of 7\, whose /x-overlap is zero. 
If /3 = V(x, f) Ç G, then the closure £' of /5 is the closed interval [x — f, 
x + f], and /z(/3) = 0° n{f$f). If G' denotes the family of the corresponding 
sets 0', it follows from the density of /3 in /3' that the /z-overlap of G' is zero. 
Thus, since aG C aG* C 7, we have 

/ i ( I - o G ) > M(7) - E M(/3) = 2 - 0° • 2 M(0') = 2 - 0°M(^G') > 2 - 20°> 0. 
/ScG /S'eG' 

This shows that F has not the property (S.V.), although F is regular. 

THEOREM 3.24. If B is such a basis that each B-constituent of any x-convergent 
sequence at any point x of E includes an A-set containing x, and if Haupfs 
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adaptation property and Morse's halo property both hold, then B possesses the 
Vitali property for Radon measures. 

Proof. We let ^ denote an arbitrary Radon measure, X an arbitrary 
bounded subset of E, say X C G°Nl V any .B-fine covering of X, and e any 
positive number. Using Proposition 1.38 we have only to show the existence 
of an M-family E of V-sets such that 

p(X - X-aE) < €, «(E,*) < €. 

For n = 1, 2, . . . we denote by B*n the set of the 5-sequences ML(x) such that 
x € X, whose constituents V belong to V, are included in G°N, satisfying 

3.241 A(V) + p ( A , a , V) < n, 

by 7} a number for which 0 < rj < 1, and by Xn the domain of 5*n . We have 
Xi C X2 C • . • C Xn . . . . Since G°N is a G-set, V a 5-fine covering of X, 
and Morse's halo property holds, it follows that lim Xn = X (mod N*), 
hence lim fx(Xn) = /x(X). Since n(X) is finite, we may and do choose n so 
that 
3.242 fji(X) - »(Xn) < e. 

We put yp° = sup^(Jlf) for M 3 I C G0^, and, since ^° < « , select 5 
so that 
3.243 0 < (5"1 - 1) rP° < e, 0 < Ô < 1. 

For each 5*TO-sequence ikft(x), we determine all possible sequences At(x) of 
A-sets, for which the properties 

x G A,{x), ii{At{x))/ii{M.{x)) > v, iK;li(*)) > H(Mt(x)) 

all hold. The corresponding sequences A t(x) may all be regarded as converging 
to x. The fact that for each 5*n-sequence such associated sequences exist 
follows from the first assumption of the theorem and the universal lower 
approximation property of the A-sets, applied to ^ + ju, which is implied by 
Haupt's adaptation property (recall Proposition 1.37). Thus if Â* denotes the 
family of the sequences AL(x), then A* is a basis with domain Xn. 

Following Morse, we associate with each ^-const i tuent F* a 5*w-constituent 
V = D ( V*) (the dilatation of V*) satisfying the conditions 

V* C V, M(F*) > w(V), HV*) > ty(V), 

and we define on the spread of Â* the disentanglement function A* by 

3.244 A*(F*) = A(F), 
where V = D(P") . 

We observe that the halo H*(A*, a, V*), which is a union of ^-const i tuents , 
is included in H (A, a, V), hence 

3.245 P(H*(A*, a, V*))MV*) = p*(A*, a, V*) < p(A, a, V)/V. 
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Combining 3.241, 3.244, and 3.245, we deduce 

3.246 A*(F*) + p*(A*, a, V*) < (A(F) + p(A, a, V))/rj < n/r,, 

where V = D(F*). Thus A* possesses the Morse halo property, in fact, 
uniformly. The assumptions of Theorem 3.21 hold, hence Z* has the property 
R.S.V. Thus there exists a disjointed M-family E* of ^-const i tuents , such 
that for 5* = o-E*, S* D Xn (mod N*). 

We define E as the M-family obtained from E* by the correspondence 
V = D(V*). The E-constituents belong to V and lie in G°N. Since D ( 7 * ) D V*, 
then 

5 = aEDS*DXn (modN*), 5 D Î , ( m o d N ) . 

Using 3.242, we have 

M(X - X-S) < a(X) - »(Xn) < e. 

Also, since S C G°Nj we have \//(S) < \p° < °o ; hence, from 3.243, 

co(E, ̂ ) = Z HV) - HS) 

< s-1( E Hv*)) - HS*) = (s-1 - i) HS*) < e. 

The M-family E fulfils the required conditions, which means that the basis 
B possesses the Vitali property for Radon measures. The following is the 
immediate consequence of Theorem 1.64. 

COROLLARY 3.25. Under the assumptions of Theorem 3.24, B differentiates 
every Radon measure. 

Remarks. The essential steps in the foregoing proof are (i) the contraction 
of the 5"Vsets into A-sets of nearly equal ^-measure, with ju-exhaustion 
power greater than 77, (ii) the transfer, expressed by A*(F*) = A(F), of the 
function A from the original sets to the new ones. The second step shows 
the power of Morse's methods residing here in the choice of the new disen
tanglement function. 

In Morse's paper (14) it is remarked that the metric axiom 

$(£', p") = 0 implies p' = p" 

is never used. Discarding this axiom, the (metric) closure P of the set {p}, 
consisting of the point p only, is the set P of points x with 8(p, x) = 0. To the 
various points x of P may be attached different families F(x), but any Borel 
set containing p must contain P . This is why the first assumption in Theorem 
3.24 is satisfied under Morse's relaxed hypotheses. 

Morse's halo property in the general case involves the contracting process; 
this is not so, however, in the special case of uniformity. If, for a blanket F, 
there exists a > 1 and A such that A(V) + p(A, a, V) is bounded on the 
spread of F, then the same is true of any blanket with the same spread, in 
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particular for the blanket F* so defined that F*(x) is the family of ^-con
stituents containing x, which is a ©-basis. Not only does F differentiate any 
Radon measure but F* does, too. 

Referring to Theorem 2.29 and Theorem 3.24, the Examples 3.22 and 3.23 
give a negative answer to a question raised by O. Nikodym in 1947: "Is the 
property (SV) mod N* equivalent to the validity of the differentiation theorem 
for /z-finite /x-integrals?" 

FUNDAMENTAL THEOREM 3.26. We suppose that S is a basis whose 
constituents are A-sets, and that there exists a disentanglement function A such 
that 

sup{lim sup p(A, 1, V)} < co 

almost everywhere on E. We assume that B has the property (L), namely, corres
ponding to any subset X of E of finite outer measure, any B-fine covering V of X, 
and any e > 0, there exists an M-family E of Y-constituents such that for S — cE 
we have 

(VI) 5 D I ( m o d N * ) , 
(V2) M (5 - S'X) < e. 

Then B has the property (S.V.). 

Proof. This can be found in (21, p. 83). See also the Remarks after Theorem 
3.27. 

Remarks. Property (L) asserts the existence of an M-family covering 
X(modN*) without any overlap condition. The essential step in the proof 
of the theorem is called disentanglement, and rests upon the halo property. 
For this reason (L) may be regarded as a rough or pre-Vitali property. In 
the formulation of (L), (VI) may be replaced by n(X — S-X) < e, and in 
case (UG) holds, (V2) may be dropped. 

Property (L) is named after Lindelôf. In fact, if R is a metric space with a 
countable basis (separable, in Fréchet's terminology), JLI a Radon measure, F 
a blanket such that the constituents of F(x) are open sets containing x, then 
Lindelôf s classical topological property implies (even expresses) the property 
(L). 

In Theorem 3.26, it is not assumed that the constituents of an x-converging 
sequence contain x, as is the case in Theorem 3.24. 

THEOREM 3.27. If there exists a disentanglement function A such that 

supjlim sup p(A, 1, V)} < oo 

almost everywhere on E, and if Haupfs adaptation property and (L) holds, then 
B possesses the Vitali property for Radon measures. 

Proof. We let ^ denote a Radon measure, X a bounded subset of E (we 
assume X C G°N), V a B-ûne covering of X, e a positive number. Due to 
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Proposition 1.38, we need to prove only that there exists an M-family E of 
V-sets such that jl(X - X-ŒE) < e and o>(E, \p) < e. 

For n = 1, 2, . . . we denote by B*n the set of ^-sequences M,{%) with 
x £ X, whose constituents belong to V, are included in G°Ni and satisfy 

3.271 p(A, 1, V) < n; 

we denote the domain of B*n by Xn. Since the sequence Xi, X2, . . . , Xn, . . . 
is increasing with lim Xn = X (mod N*), we may and do choose v so that 

3.272 M(X) - n(Xw) < e; 

we let Z = Xv. 
We denote by V1 the spread of B*V1 by rj a fixed number, 0 < r ç < l , b y ô a 

positive number such that 

3.273 0 < (d~l - 1) xp° < e, 

where \f/° — sup \[/(M) for M 3 M C G>. Finally we fix an auxiliary sequence 
of positive numbers et whose sum is less than e. 

Property (L) allows us to select an M-family Mi, M2l . . . Mjt . . . of V-sets 
such that 

3.274 T = ' 0 M, D Z(mod N*), n(T - T - Z) < e1 

where e1 = min {ei, rj jl(Z)/2(rj + *>)}. 
Since lim M(^«?) = H(T) < °°, where 

we can choose Q so that 

3.275 n(T - r 0 ) < e1. 

Now, using 3.271, we can extract from the finite family Mi, ilf2, . . . , MQ a 
disjoint subfamily Ml\, M12, . . . , M1^, such that for 

rx= DM1*, 

we have 

3.276 M(r*) > M(r0)A. 

This is the disentanglement step. 
With each set M1

k we associate an A-set Al
k C Af1* in such a way that 

3.277 n(A\) >Vfx(M\)1 *(A\) > 8*(M\). 

We evaluate the Z-exhaustion of 

S'= [)A\ 
* = 1 
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by which we mean the value n(Sl-Z) = Ji{Sl-Z). Since S1 C T, Z C T (mod 
N*), then, using 3.274, 3.275, 3.276, and 3.277, we derive 

MG^-Z) > M(Z) + M ^ 1 ) - n(T) 

> u{Z) + v(n(Z) - ^)/v - Oz(Z) + 61) 
= mt(Z)/v - eKv + v)h > w{Z)/2v. 

So far we have been able to select a finite disjoint subfamily M1^ • • • Ml
qx of 

V^-sets (hence V-sets), with a Z-overflow less than ei, and to contract each 

Ml
k into an A-set A 1

k such that the new family has a Z-power of exhaustion 

greater than rj/2v; that is, the ratio of Z-exhaustion is greater than f = r)/2v. 
We repeat the process with Y = Z — Z S1 and the family V2 consisting 

of those V^constituents which do not intersect any Al
k, k = 1, 2, . . . , qh 

to produce two finite disjoint subfamilies M2u ikf2
2, . . . , M

2
q% and A2i, A2

2l 

. . . , A2
q, satisfying, for I = 1, 2, . . . , g2, k = 1, 2, . . . , qu the relations 

M2
t G V2, ̂ 2 , C M2„ ^ 2 , 6 A, A\-M2

l = 0, M(52-F) > fp(F) 
and 

M ( 5 2 - 5 2 - F ) < e2, 
where 

The iteration of this exhaustion process yields two M-families, namely, E 
consisting of the sets M\, . . . , Ml

qx, M2
U . . . , M2

Qa1 M
z
u . . . , Mz

q%, 
and C consisting of the sets A1!, . . . , Al

qi, A2
U . . . , 42

ffa, Ad
u • • • » ^43(?3, • • • 

such that (i) the E-constituents belong to V, (ii) S = aE Z) Z (mod N*), 
(iii) the overflow jx(S — S-Z) < e, (iv) to each C-set A there corresponds an 
E-constituent V = D(A) (the dilatation of A) satisfying A C V, \p{A) > 
8$(V). In view of these facts it is easily seen that the remainder of the proof 
involves merely a repetition of a portion of the proof of Theorem 3.24, hence 
E has met the two necessary requirements, and the theorem is proved. 

Remarks. The proof of Theorem 3.26 is obtained from the preceding proof 
by discarding the contraction process. 

Haupt's adaptation property is used only in the contraction process. 
If the weaker condition (UG) is substituted, then the assertion of the theorem 
remains true for Radon integrals. 

In the proof of Theorem 3.24, Morse's function A is used to disentangle 
the infinite family of constituents to produce the desired countable family, 
hence the necessity of a choice condition based on the boundedness of A. 
In the foregoing proof we disentangle a finite family and repeat the process, 
producing the desired family by juxtaposition of sections. 

In the proof of Theorem 3.27, we do not treat of Morse's halo i?(A, a, V0) 
itself, but only with a finite family of halo constituents, which may be aptly 
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called a partial halo. For this reason we define i?'(A, a, V0) as the union mod 
N (Definition 2.51) of the constituents F intersecting V0, with A (V) < aA(V0). 
In the formulation of Theorems 3.26 and 3.27 we can replace the halo dilata
tion p (A, a, Vo) by 

p'(A,a, Vo) = n(H'(A,a, 70))//i(70) 

clearly p' < p. 
In defining H or i ï ' we accept all constituents intersecting V0 and satisfying 

A(V) < a A ( F 0 ) . The incidence requirement is V- V0 5̂  0. Correspondingly, 
disentanglement requires the determination of a strictly disjointed family of 
constituents. The incidence requirement may be altered to essential intersection, 
that is, n(V-Vo) > 0, and in turn the disentanglement changed to require the 
production of a family of pairwise mod N disjointed constituents. This point 
of view can be adopted in Theorem 3.26 if we wish to achieve the strong 
Vitali property mod N, and in Theorem 3.27, if we restrict the assertion to 
Radon integrals. The stronger we make the incidence requirement, the weaker 
the halo condition becomes. Busemann and Feller gave a necessary and suffi
cient halo condition for the validity of the density theorem, equivalent, by 
virtue of Theorem 2.12, to the Vitali /^-property, for Euclidean derivation 
bases of the ©-type, the constituents being open sets, and the contraction 
being defined metrically. We have already encountered a halo of Busemann-
Feller type in 2.4, namely o-a>r(E). 

3.3. Half-regular and regular branches of a derivation basis. 

DEFINITIONS 3.31. To some of the sequences ML(x) of the basis B we 
correlate Moore-Smith sequences M* t(x) of M-sets of positive finite measure, 
with the same indices and the same convergence point, such that for each 
sequence 
(Rl) lim inf M(M* t)//z(Aft) > 0 
(R2) lim sup M(-M*C - Mt'M*t)/n(Mt) = 0. 

The set 5 * of the sequences M*t(x) is called a half-regular branch of B, and 
B* U B is called a half-regular extension of B. If (R2) is replaced by the 
strengthened requirement M* t C Mt, then 5 * is called a regular branch, and 
B* U B is called a regular extension of B. (6, 9.7). 

De Possel has shown that the Vitali /x-property is preserved by half-regular 
extension. An example exists in which the sequences ML(x) are ordinary 
sequences of concentric closed squares in the plane (10, pp. 292—295). The 
corresponding set M*t(x) consists of Mt(x) augmented by small satellite 
squares, in such a manner that lim /x(Af*t)//x(ikTi) = 1, where ju denotes plane 
Lebesgue measure. 

Example 3.23 deals with a regular branch of the basis of closed concentric 
intervals on the line. It shows that the strong Vitali property is not preserved 
under regular extension. 
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We shall now investigate the behavior of the Vitali properties under regular 
extension. 

LEMMA 3.32. We let \p denote a Radon measure. We assume that there exists 
f > 0 such that corresponding to any bounded setX C E of positive outer measure, 
any B-fine covering V of X, any n-cover M of X, and any e' > 0, there exists an 
M-family E' of Y-constituents with union Sf = o-E' for which 

p(X-S') > f/z(Z), * (S ' - S'-M) < e', «(E' f *) < *'. 

Then S has the Vitali ^-property. 

Proof. We assume that e > 0 and attempt to find an M-family satisfying 
(VI), (V2), (V3) of Definitions 1.33. We introduce a sequence ei, e2, . . . of 
positive numbers whose sum is less than e/2. Since X is bounded and V is a 
B-fine covering of X, we may and do assume that both X and all the V-sets 
lie in some G°N. 

By hypothesis, there exists an M-family Ei of V-sets for which 

/*(Z rSi) > ftztïi), iKSi - SvMi) < €i, co(E, f) < ci, 

where Si = crEi, X\ = X, M\ = M. We repeat this process on the sets 
X2 = Xi — Xi'Si, M 2 — Mi — Mr Si) by iteration in this way, we obtain a 
sequence of M-families Ei, a nested sequence of sets Xt C. X, with a nested 
sequence of ju-covers Mi} for i = 1 , 2 , . . . , such that, for each such i, putting 
Si = crEî, 

rtXfSi) > tfliXi), tiSi - Si-Mt) < eu co(E„ V) < €t. 

Finally, we let E denote the union of the families E*. 
Since the rate of exhaustion at each step exceeds f, then E exhausts X; 

that is S = o-E Z) X (mod N*). We complete the proof by evaluating the 
i/'-overflow and ^-overlap. We have 

iKS - S • M ) < J2 *(SJ - Sj • Mj) < e; 
3 

«(E, *) = £ * W - *(S) 

< E ( E * ( ^ ) ) - * ( 5 - J i o = E ( 2 X * 0 - i K V - ^ ) ) 
j \FcEj- / j \ T e E f / 

= Z ( Z OKtO - HSj))) + Z *(s, - Mrs,) 

Remark. If Haupt's adaptation property holds, then the overflow require
ment in the above may be omitted. The same is true if the weaker (UG) 
holds and \p is a Radon /^-integral. 

LEMMA 3.33. If ^ is a Radon measure, r = \p + /x, S possesses the Vitali 
T-property, and 5 * is a regular branch of B, then B* possesses the Vitali ^-pro
perty. 
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Proof. We let X denote a subset of E of positive outer measure included in 
some G°N, M a /j-cover of Xy V* a J3*-fine covering of X, and e a positive 
number. 

For n — 1, 2, . . . we define 5*n as the set of all j5*-sequences S* consisting 
of the sets V*t(x) for which (i) x G X, (ii) F* t(z) Ç V* for all i, and (iii) 
there corresponds to each S* a ^-sequence D(5*) = 5, consisting of those 
sets Vt(x) for which F* t C F t and A*(F\)/M(F t) > 1/n for all t. 

We denote by Bn the set of the ^-sequences associated by D to the B*n-
sequences, Bn = D(5*w), and by Xn the domain of Bn, which is also the do
main of B*n. Since V* is a i5*-fine covering of X and 5 * is a regular branch of 
2?, then Xn increases with n and lim fi(Xn) = At(-X). As in the proof of Theorem 
3.24 we may and do choose k so that 

3.331 n(X) - /*(**) < e. 

We shall show by Lemma 3.32 that the subbasis B*k of 5 * possesses the 
Vitali i/'-property. We consider a subset F of Xk of positive outer measure, 
P a jit-cover of F, ?* a subbasis of B*k with domain F (mod N*), e' a positive 
number. We define f = 1/2*. and e" = min (€', p(Y)/4Jfe). ? = D(f*) is a 
subbasis of S with the same domain as T*. Since 5 has the Vitali r-property, 
there exists an M-family E of !T-sets such that 

3.332 5 = o-E 3 F(mod N*)f r(S - S-P) < e", W(E, r) < e". 

With each E-set F we associate a V*-set V = C(F) (the contraction of F), 
with 
3.333 C(F) C F, M ( F ' ) M F ) > 1/k. 

We define the M-family E', demanded by Lemma 3.32, as C(E). Clearly 

3.334 «(E' , f) < co(E, rfr) < W(E, r) < e" < e'; 

the i/'-overlap condition is satisfied. 
Putting S' = o-E', 

3.335 ^ ( 5 ; - S'-P) < ^(S - S-P) < r ( 5 - S-P) < e" < e'; 

thus the ^-overflow condition is satisfied. 
We turn to the evaluation of the F-exhaustion of e', namely, 

»(S'-P) = M(-S') - M(5 ' - S'-P). 

Since n(S' - S'-P) < /»(5 - S-P) < T(S - S-P) < e", we have n(S'-P) > 
M (S') - e". From the last relation in 3.332, w(E', M) < w(E, M) < «", hence 

M(5' • P ) > Z / " ( H - 2e" > (1/*) S M(*0 - 2e" 
F 'eE ' yeE 

> (1/jfe) p(F) - 2e" > p (F) /2* = f/Z(F). 

The basis satisfies the requirements of Lemma 3.32. Consequently, there 
exists an M-family E* of 5*n-constituents, hence V*-constituents for which 
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S* = CTE* D X*(mod N*), ^ (5* - 5*-M) < e, co(E*, ^) < e. 

Due to the choice of &, from 3.331 we have obtained the Vitali ^-property in 
the e-version. 

The following is an immediate consequence of Lemma 3.33. 

THEOREM 3.34. If B* is a regular branch of B, and B possesses the Vitali 
property for Radon measures (resp.y integrals), then 5* possesses the Vitali 
property for Radon measures (resp., integrals). 

Examples 3.35. B is the cube basis in Euclidean space E%, /z the Borel 
measure, M the family of Borel sets, 5* consists of all sequences of Borel 
sets of positive measure converging regularly to a point. According to Lemma 
3.33, 5 * possesses the Vitali property for Radon measures, hence it differ
entiates them. 

The subbasis of B* consisting of all sequences of closed sets of positive 
measure, converging regularly to a point, is the classical Lebesgue basis which 
enjoys the strong Vitali property. We may notice that any sequence of M-sets 
of positive measure converging homothetically to a point belongs to 5*. 

If we denote by J3** the superbasis of B* consisting of all sequences of 
Borel sets of positive measure converging to a point x (without regularity 
condition), it is easy to see that for a Radon integral $(M) = JMf(M) dfi 
we have D*\//(x) = essential maximum o f / a t x, D*\(/{x) = essential minimum 
of / at x. It follows that the only Radon integrals differentiated by 2?** are 
the integrals of functions summable at finite range and essentially continuous 
almost everywhere. This shows clearly the loss of differentiation power when 
discarding the regularity requirement for converging sequences. Finally, 
we notice that 5** is a blanket, different from both B* and the Lebesgue 
basis. 

3.4 Star blankets. To conclude, we give another example where the 
surrendering of the closeness assumption for the constituents of a basis 
means the replacement of the strong Vitali property by a Vitali property 
for Radon measures, with no loss of differentiation power. 

DEFINITIONS 3.41. R denotes Euclidean w-dimensional space. The hub 
of a set X C R is the set of these points x Ç X such that the segment joining 
x and x' lies in X whenever x' Ç X; the hub radius of X at a point x £ X is 
the supremum of those numbers p for which the solid sphere with x as center 
and p as radius is included in the hub of X. A star blanket (15, p. 432) according 
to Morse is a blanket Fin R, whose constituents are closed sets, and such that 
for each x of its domain, 

limsup (diam V) / (hub radius of F a t x ) < 00. 
F(x)* V^z 

We define Borelian star blankets by discarding in Morse's definition the 
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closeness requirement, and replacing it by the weaker demand that the con
stituents be Borel sets. 

Remarks. Morse proved that a star blanket in his sense possesses the strong 
Vitali property whenever ju is a Radon measure. From his differentiation 
theorems he deduces the existence /r-almost everywhere of a finite derivative 
for every Radon measure $. 

THEOREM 3.42. Borelian star blankets possess the Vitali property for Radon 
measures, whenever the basic measure n is itself a Radon measure. 

Sketch of the proof. Referring to (15), all properties of star blankets exhibited 
in §5 up to the application of Morse's Theorem 3.4 in 5.11 are valid without 
using the fact of closeness of the constituents. The statement of this basic 
theorem, but for minor changes, is as follows: R is a metric space, JUL a Radon 
measure, 0 < f < °o, X C ^ , and F is a family of closed sets. Corresponding 
to each bounded open set G there exists a countable disjointed subfamily 
K of F for which crK C G, jx(X-G) < f/x(VK). Then every disjointed subfamily 
of F can be extended to a countable subfamily of F covering X (mod N*). 

If the F-sets are required merely to be Borel sets, instead of closed, then 
we have to change the conclusion as follows: For any Radon measure \(/ 
and any e > 0, every finite subfamily of F whose ^-overlap is less than e 
can be extended to a countable subfamily of F covering X (mod N*), and with 
^-overlap less than e. 

THEOREM 3.43. Borelian star blankets differentiate every Radon measure, 
the basic measure /JL being itself any Radon measure. 

Proof. This follows from Theorem 3.42. 

Remark. This differentiation theorem, like Morse's theorems, implies that 
the set of points provided with /i-nullsequences is a ju-nullset. 

§4. AN APPROACH TO A THEORY OF DIFFERENTIATION OF ABSTRACT INTERVAL 

FUNCTIONS 

We take our setting as in 1.1. (G>) and the reduced strong Vitali property 
are assumed to hold. A denotes a finite numerical function defined on the 
spread D. 

4.1 Preliminary definitions. 

DEFINITIONS 4.11. Any enumerable disjointed family P of 5-constituents 
is called a Vitali partition. A partition P is called Y-fine if V is a family of 
^-constituents and the sets in P belong to V. P is said to be bounded if the 
P-constituents are included in some G°N. If the sum 

£ X ( 7 ) 

https://doi.org/10.4153/CJM-1955-028-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1955-028-9


DIFFERENTIATION THEOREMS AND VITALI PROPERTIES 2 6 9 

represents a real number (including + œ and — œ) ,we denote it by ^(X, P) 
and we say that P is \-integrable. 

This last condition is always fulfilled when X > 0. In general, however, X 
may be of variable sign, and we shall henceforth assume that P is X-integrable 
whenever P is a bounded Vitali partition. 

DEFINITIONS 4.12. A Vitali partition over X C R is defined as a Vitali 
partition covering X (mod N*). 

A Vitali partition over X is thus a Vitali partition over any set Y having a 
M-cover in common with X. From the reduced strong Vitali property it follows 
that for any bounded set X C. E and any 5-fine covering V of X, there 
exists a V-fine Vitali partition over X. 

DEFINITION 4.13. A set X is called X-admissible if any full 5-fine covering 
of X includes a X-integrable Vitali partition over X. According to our assump
tion above, the bounded subsets of E are X-admissible. 

DEFINITION 4.14. For any X-admissible set X C E we define the upper 
Vitali integral ^°{X) or ^°(X, X) and the lower Vitali integral \l/o(X) or ^o(X, X) 
as lim sup ^(X, P) and lim inf ^(X, P), respectively, the limits being taken in the 
family of the X-integrable partitions P over X with the full B-fine coverings 
of X serving as a scale of fineness. We have 

*°{X) = *°(;?•£), MX) = MX'E), *°(N*) = 0, AT* ÇE-N*. 

X is said to be Vitali integrable over X if ^°{X) = ^o(X), Vitali summable 
if r//°(X) and ^oC^O are equal and finite. In either case the common value is 
denoted by\f/(X). 

Explicitly, X is Vitali summable to \f/(X) if \//(X) is finite, and corresponding 
to any e > 0, there exists a full i?-fine covering W(e) of X such that for 
any X-integrable Vitali partition P over X whose constituents belong to 
W(€), we have \$(X) - i£(X, P) | < e. 

The Vitali integrals are discussed in (18), wherein E = R, the strong Vitali 
property holds, and the 5-constituents are assumed to be G-sets. Thus 
the Vitali partitions over a set X form a directed system which is used as the 
scale of fineness. The definition for the Vitali integrals is subsumed by the 
more general one adopted here. 

4.2 Differentiation theorems for Vitali summable functions. 

LEMMA 4.21. If B has the strong Vitali property, X is a bounded subset 
of E, and a and ft are any finite numbers, then: 

(a) \p°(X) > aji(X) whenever D*\ > a almost everywhere on X; 
(b) \f/o(X) < fiji(X) whenever D*\ < 13 almost everywhere on X. 

Proof. We first establish (a). If yp°(X) — oo, there is nothing to prove. 
Accordingly, we assume that i/°(X) < °°, e > 0, and J9*X > a almost every-
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where on X. In accordance with the definition of \j/°{X), there exists a full 
B-fme covering W of X such that for any bounded W'-fine Vitali partition 
P over X, we have ^(X, P) < \p°(X) + e. The family V7 of the W' constituents 
satisfying the relation \(V) > afx(V) is a 5-fine covering of X, hence, on 
account of the strong Vitali property and the boundedness of X, there exists 
a disjointed enumerable bounded subfamily P of V covering X (mod N*). 

We have 

t(\P)>aY,»(V)>afl(X). 

Since P is W'-fine, yJ/°{X) > ^(X, P) — e. Combination of the two relations 
yields (a), since e is arbitrary. 

We turn to (b). If &o(X) = — oo , there is nothing to prove; we thus assume 
that $o(X) > — oo, e > 0, and D*\ < /3 almost everywhere on X. There 
exists a full 5-fine covering W" of X such that for any bounded W"-fine 
Vitali partition P, we have 

*(X,P) >MX) - e. 

The family V" of the W"-constituents satisfying \(V) < ftu(F) is a 5-fine 
covering of X. Due to the strong Vitali property and the boundedness of Xy 

V" includes a disjointed enumerable bounded subfamily P with 

5 = crP D Z(mod N*), M(5 - S-X) < e. 
We have 

iKX, P) < | S E M ( F ) = ft*(S) < fo(X) + e), 
FeP 

and since P is W" fine, ^(X, P) > \po(X) — e. Combining, we obtain \[/o(X) < 
Pp(X) + e(l + fi). From the arbitrary nature of e, (b) follows. 

THEOREM 4.22. Assuming the strong Vitali property, if the function X is 
Vitali summable over every hounded subset X of E, then the B-derivative D\ 
exists and is finite almost everywhere on E and D\ is ixE*-measurable. In particular, 
if on the bounded subsets X of E, \p(X) can be represented as 

J_ fix) d^E 
XtE 

thenDX =f (mod N*). 

Proof. It follows readily from the preceding lemma that N' = [Z>*X = oo ] 
and N" = [D*\ = - » ] are N*-sets. 

We regard £>*X and D*X, restricted to the set £* = E - (N'KJ N"), 
as the functions / and g occurring in Lemma 1.23. Recalling the Remarks 
following Definitions 1.31, it clearly suffices to derive a contradiction from 
the assumed existence of two bounded ju*-entangled sets A and B and two 
finite numbers a and fi with ft < a, such that D*\ > a on A and D*\ < fi 
on B. However, since \p°(A) = \f/°(B) = fo(B) = fo(A), Lemma 4.21 yields 
the desired contradiction at once. 
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To prove the second part of the theorem, we let A and B denote two bounded 
subsets of E of positive measure, A = B (mod N*), such that the convex 
closure of f(A) and the convex closure of DX (B) are at a positive distance 
apart. This means that there exists two finite numbers a and ft, with a > £, 
and either 
4.221 f(x) < (3 on A, DX(x) > a on B 
or 
4.222 f(x) > a on A, DX(x) < 13 on B. 

Since the integrand/ is E- M -measurable, then/(x) < ft almost everywhere on 
ÂE in case/(x) < /3 on A, whence 

f_ f(pc) dviE < fti*(i . E) = Pn(A); 
%)A.E 

while, according to the preceding lemma, \p(B) > aji(B) if DX(x) > a on B. 
Since jx{A) = /z(B) > 0, and ip(A) = ^(B), the inequalities in 4.221 are 
incompatible. Similarly, it follows that 4.222 cannot hold. Referring to Lemma 
1.23 and the Remarks following Corollary 1.24, we obtain DX = / (mod N*). 

4.3 An example of Vitali summable functions: The non-negative upper 
semi-additive functions. 

DEFINITION 4.31. The non-negative function X is called upper semi-additive 
on E (with respect to B) if, corresponding to any 5-constituent V and any 
e > 0, there exists a full 5-fine covering Wc of V-E such that for any W€-fine 
Vitali partition P, ^(X, P) < X(F) + e. 

THEOREM 4.32. If X is a non-negative upper semi-additive function, then X is 
Vitali integrable over the subset X of E and 

*(X) = i n f £ x ( T 0 
yeE 

for all M-families E of B-constituents5 covering X (mod N*). In particular, 
if for any bounded Vitali partition P, ^(X, P) is finite, then rp(X) is finite on 
bounded X. 

Proof. We regard X as fixed and let 

7o = in f ]CMF) , 
FeE 

let € denote an arbitrary positive number, and €i, e2, . . . , en, . . . a sequence of 
positive numbers whose sum is less than |e . 

If 7o = °°, then \[/(X) = oo and there is nothing to prove. We assume, then, 
that 7o < °°. From the definition of 70, we are able to find an M-family 
Vi, V2, . . . , Vn, . . . of ^-constituents covering X (mod N*), such that 

E X ( 7 B ) < 7 o + è e . 
n 

5While the Vitali integral ^{X) may be defined for vector valued functions, the right hand 
side of the equation just given presupposes a complete lattice structure. 
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For each Vn we determine a full B-fme covering Wn in such a way that for 
any Wn-fine Vitali partition Pn over Vn-E, 

<KX,P„) <HVn) + en, 

and we define W* as the union of the Wn. W* is a full 5-fine covering of X. 
The theorem will be established if we prove that for any W*-fine Vitali 

partition P over X 
*(X,P) < Yo+ e, 

since ^(X, P) > 70. Accordingly, we let P be such a partition, and subdivide 
P into disjointed sub-partitions Pn, Pn being W^-fine. This decomposition is 
certainly possible but not necessarily unique. Due to the upper semi-additivity 
of X, 

lKX,Pn) < X ( 7 n ) + en, 
hence by addition 

X iKX, Pn) = *(X, P) < E HVn) + h < 70 + 6. 
n n 

As for the second part of the theorem, if X is bounded, then X is covered 
(mod N*) by a bounded Vitali partition P for which ^(X, P) is finite, therefore 
70 is also finite. 

Remark. Under the hypotheses of the theorem the function \// defined on 
all subsets of E is a Carathéodory outer measure, meaning that it satisfies 
(CI) and (C2) of (25, p. 43). Besides, \p vanishes on the N*-subsets of E. 
With the Carathéodory restriction process of an outer measure to a measure 
in mind, we may expect the restriction of \p to the £-M-sets to be a Radon 
/^-integral, which would enable us to apply Theorem 4.22. This proves true 
under the assumptions in (18); more on this occurs in 4.4 below. 

4.4 Morse's addivelous functions. Morse's definition of addivelous func
tions given when B is a Borelian blanket can be readily transposed to a general 
basis. 

DEFINITION 4.41. We say that the function X defined on the family D* of 
subsets of R is addivelous if: 

(i) X is non-negative ; 
(ii) D* includes the spread D of B\ 

(iii) Whenever the 5-constituents Vu V2} . . . are disjoint and included 
in the D*-set D*, then SX(FW) < X(Z>*); 

(iv) if V e D and e > 0, then there exists a D*-set D = D(V) for which 
\(D) < \{V) + e, I[D) D V-E (mod N*).6 

Defining We as the family of the 5-constituents included in Z>, we see 
that an addivelous function is upper semi-additive. The strong Vitali property 
secures the existence of a Vitali partition V°i} V°2, . . . , over E. We define 
(recall the final Remark after Definitions 1.31) 

6For the definition of 1(D) refer to 1.1. 
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R°n = 0 ( 7 i ) UZ?(72) U . . .UD(Vn), 

and regard a Vitali partition P as bounded if, for some N, the P-sets are 
included in / (R°N)- Thus for any bounded Vitali partition P, ^(X, P) is 
finite. 

Theorem 4.32 is applicable, and expresses the equivalence between Vitali 
integration and Morse's regularization, for the subsets of E. 

In Morse's case, B is a Borelian blanket. Carathéodory's condition (C3) 
is clearly fulfilled. The restriction of \[/ to the E-M-sets is a Ms-integral, more 
precisely a Radon \x ̂ -integral with respect to the expanding reference sequence 
R°n. Theorem 4.22 can be applied; D\ is equal to a Radon-Nikodym \xE-
integrand of \//\E-M. In an unpublished lecture delivered before the American 
Mathematical Society in 1948, Morse gave an interpretation, when E = R, 
of the indefinite integral of D\ as ^ |M, where \f/(X) is defined as the infimum 
of numbers of the form 

where E is such a countable subfamily of D that E covers almost all of X. 
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