
REPRESENTATION OF GROUPS BY GENERALIZED 
NORMAL MULTIPLICATION TABLES 

A. GINZBURG* 

Introduction. G will denote a finite (or infinite) group of order n. In a 
normal multiplication table (n.m.t.) of G (7, 8, 9, 12) all entries in one diagonal 
are equal to e (the identity of G), and if the entry on the intersection of the 
ith column and j th row is gitj G G, then 

gi,j gj,Jc — gi,ki gj,i = gi,j~ -

The following is a n.m.t. of Z6 = {0, 1, 2, 3, 4, 5}: 

/ 5 4 3 2 1 0 
e 4 3 2 1 0 5 
d 3 2 1 0 5 4 
c 2 1 0 5 4 3 
b 1 0 5 4 3 2 
a 0 5 4 3 2 1 

a b c d e f 

Remark. The cyclic groups Zn will always be written in additive notation. 
The table is uniquely defined by every one of its columns, in particular by 

the first. Indeed, 

gui = gi.igi.j = gi.r1 gi.j-

The associativity ensures that this construction leads to a n.m.t. of G. If 
every g G G appears in the first column, the same is true for every other 
column (and row). Every multiplication ab (a, b G G) can be done n times 
in such a table. 

By deletion of some columns and of the corresponding rows (i.e., columns 
and rows intersecting on the diagonal consisting of e's), one obtains a m.t. 
having all the above properties, except for the last one. However, the table 
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(9) obtained from the n.m.t. of Z6 by deleting the d and / columns and 

rows, i.e. 

e 4 3 2 0 
c 2 1 0 4 
b 1 0 5 3 
a 0 5 4 2 

a b c e 

shows that one can still arrive at a table in which every multiplication ab 
(a, b £ G) is done at least once. 

This paper deals with the representation of groups by such generalized (g.) 
n.m.t., which are particular cases of so-called quasi-regular partitions, and 
can also represent other binary systems (2-5, 10, 11). 

1. Generating columns. 

Definition. A set D C G with the property that for every a, b £ G there 
exist di,dj,dk G D such that 

d) a = df b = dr1 dk 

is called a generating column (g.c.) of G. 

THEOREM 1. Every g.c. D including e can serve as the first column in a g.n.m.t. 
of G, and conversely, the set of elements in the first column of a g.n.m.t. of G is a 
g.c. of this group. 

Proof. A square table is constructed with the elements of D (in an arbitrary 
order, except for gitl = e) as its first column. Set 

gi,t = di g D, gitj = drldj. 

Then giti = e for every i, gifi = df1, the associativity ensures that 

gi.j gj,k = gi,ki 

and it remains to show that every multiplication of two elements in G is done. 
Let ac = b be an arbitrary product in G. By (1) 

Jdt, dj, dk Ç D: a = df1 djy b = d~l dk. 
But 

gj.k = gj.igi* = dj-idt = (di^dj)-1 (d^djc) b = c. 

Hence, gifj = a, gjy]c = c, and the multiplication ac is done in the constructed 
table, which is thus a g.n.m.t. of G. 

Conversely, let D be the set of elements of the first column in a given 
g.n.m.t. of G. For every a,b Ç G there exists a c Ç G such that ac = b. Hence 
in the g.n.m.t. one has the configuration: 

gt,j = a> gj,Jc = c, gi,k = gi,jgj,jc = ac = b. 
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If, as before, dt = g\ti for every i, then 

a = gui = dr1 dj, b = gîtk = de1 dk, 

i.e., (1) is satisfied and D is a g.c. of G. 

It follows from the proof that all products exist in the quadratic table (i.e., 
it is a g.n.m.t.) if and only if every pair a, b £ G appears at least once in a 
common column of this table. This relation will be denoted by a* b and 
called the check between a and b. It is symmetric and reflexive (every a £ G 
appears in the table) but not transitive. 

2. Some properties of generating columns. 

LEMMA 1. D and D\ = aDb (a, b £ G) are simultaneously g.c. of G. This 
relation between the g.c. is an equivalence. 

Proof. If D is a g.c. of G, then: 

(Vgi, g2 £ G)(3 d, dh d2e D): bgl b~l = d'1 dh bg2 b~l = a1-1 d2, 

gi = (adb)~x (adib), g2 = {adb)~l (ad2b), 

i.e., B\ is also a g.c. 

COROLLARY. Every column of a g.n.m.t. of G is a g.c. of G, and all these g.c's 
are equivalent. 

D will be called an irreducible g.c. of G if no proper subset of D is a g.c. 
of G. I t is easy to see that irreducibility is preserved under the above equiva
lence transformation of the g.c. 

If cj>: G —» G' is a homomorphism of G onto G', then D<j> will be a g.c. of 
G'; but irreducibility is not invariant under homomorphism. For example, 
Dx = {0, 1,2, 4, 5, 8, 10} and D2 = {0, 1, 2, 4, 6, 7, 10} are two irreducible 
g.c. of Zi2. Now, let 4> be the homomorphism of Z\2 onto Ze.Dicj> = {0, 1, 2, 4, 5}, 
D2<t> = (0, 1,2,4} (in Z6). £>i 0 is reducible, D2 <j> is not. Moreover, D3 = 
Z)2 W {8} is reducible (in Z12), but Z>3 <£ is not (in Z&). 

Definition. DA is a set of elements of G, such that 

(Va, b e A)Qd,dud2 G DA): a = d~x dh b = d~l d2. 
DG = D. 

PROPOSITION 1. Let H be a subgroup of G and A a set of representatives, one 
from every right coset of H in G (e is taken from H). Then DH A is a g.c. of G. 

Proof. For every gh g2 G G, there exist ai, a2 £ A and hi, h2 Ç H such that 

gi = hi ah g2 = h2 a2, Qd, di, d2 £ DH): hi = d~l dh h2 = d~l d2. 

Hence 
gi = hai = d^idiai), g2 = h2 a2 = d~1(d2a2), 

and since d, di ai, d2 a2 G DH A this set is a g.c. of G. 
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PROPOSITION 2. Let H be a normal subgroup of G, G' = G/H = G<j> and 
Df = DG>. Let C be any set of representatives of the cosets of H in G corresponding 
to the elements of Df. Then for every DH the set DH C is a g.c. of G. 

Proof. 
(Vgi, £2 G G) (3 ah a2 e G): gi e #i H, g2 G a2 H, 

(3 d', di', d2' G D'): ax<j> = a S = d'-1 dS, a2 0 = a2
f = d'~l d2

f. 

Let c, ci, c2 be the elements of C Ç G representing J', d/, d2' (î Df Q Gf 

respectively. Then: c_1 c\ = a% = a\ (mod H), c~l c2 = a4 = a2 (mod if) . 
There exist Ai, fe2 G -H", such that g\ = azhi, g2 = a±h2. H is normal in G\ 
hence 

(3 hz, hi G H): h% c\ = c\ hh hi c2 = c2 h2. 

By definition of DH\ 

(3 du dj, dk G DH): hz = df1 dj} hi = df1 dk. 
Thus: 

(df c)_ 1 dj C\ = c~l df1 dj C\ = c~x hz c\ = c~l C\ h\ = a3 h\ = gi, 

(d* c)_ 1 ^ c2 = c~l d{~1 dk c2 = c~l hi c2 = c_1 c2 h2 = a±h2 = g2, 

i.e., £># C provides the check gi * g2. 

The following observation is of a somewhat different nature: 

THEOREM 2. L ^ {£>*} (i = 1, 2, . . .) be a sequence of subsets of a group G 
such that: 

Di = DG = D, D2 = DDl, . . . , Dk = DDk_ly . . . . 

For every k and every g G G there exist c\, c2 G Dk such that c\~l c2 = g. 

Proof. For k = 1 the conclusion is true by definition. Assume that it is 
satisfied for k — 1, i.e., that 

(3 61,62 G £>*_i): 6 r 1 6 2 = g. 
Then 

Dk = Du-! => (3 c, ci, c2 G Dk): c~lci = 61, c_1c2 = 62 

=>g = br1b2 = (c^ci)-1 (c-1^) = crlc2. 

The theorem is proved by induction. 

COROLLARY. In a finite G of order n every Dk in the sequence of Theorem 2 
contains at least [ri* + 1] elements. 

3. Independent checks. The following part of a g.n.m.t. 

I g2 grlg2 e 
gi e g2~

lgi 
I e gr1 g2~

l 

shows that the checks 
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(2) g i*g2 , gr1*gr1g*, g2~1^g2~1gi 

imply each other. They will be called dependent checks. 

LEMMA 2. Two of the three checks in (2) are identical if and only if the ele
ments e, gi, g2form a subgroup of G. Then all three checks in (2) are identical. 

Proof, gi2 = g2, gi3 = e =» gr1 = g2, gr1g2 = gu g2~x = gi, g2~*gi = g*, and 
the three checks in (2) coincide. 

Conversely, assume that they coincide; then 

gr1 7* g2~\ gl 5* g2~1gl, g2 9* gl~1g2, 

gi = gr*g2, g2 = gr1 => gi2 = g2, g i 3 = g2gi = grlgi = e. 

The case gi = g2~
1, g2 = g2~1gi is analogous. 

gl'1 = g2~1gl, g2~l = gl~1g2 =» gl2 = g2, g l 3 = gl g2 = gl gl g2~1 = g2 g 2
_ 1 = C 

For the \{n — 1) (n — 2) checks in G of order n (g * g and g * e(g £ G) ex
cluded) one has the following corollary. 

COROLLARY. If n ^ 0 (mod 3), £Ae number of "independent" triples of checks 
is \{n — l)(n — 2). If n = 0 (mod 3) and there are m subgroups of order 3 in 
G y the number of independent triples of checks is 

\[%(n - l)(w - 2) - m] + m = |(w - l)(w - 2) + fra. 

4. Table of checks. The checks can be recorded in a triangular table 

£3 

To every set of representatives of the above triples of checks (further: a com
plete set of independent checks) there corresponds a "part" of the table. For 
Zn a convenient decomposition of the table of checks into such parts is ex
hibited by the following examples: 

n = 7 = 1 (mod 3) n = 8 = 2 (mod 3) n = 9 = 0 (mod 3) 

1 1 1 
2 
3 
4 
5 
0 

8 \ a b c d e\f a\ 8 
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This can be generalized as follows. 

PROPOSITION 3. For Zn with n ^ 0 (mod 3) one of the parts consisting of 
independent checks, in the table of checks enumerated in the natural order, can 
be delimited by the row j = [fw] and the column i = [%n]. If n = 0 (mod 3) 
such a part will be delimited by the row j = \n and the column i = \n — \. In 
both cases the row and column mentioned are included. For n = 0 (mod 3) 
\n * \n also belongs to the above. 

LEMMA 3. Let H be a normal subgroup of G, and assume that G/H has no 
subgroup of order 3. If a, b, a~xb (? H (a, b £ G), then no three cosets among 

aH, bH, a~lH, b~lH, a~lbH, b~laH 

are equal. All checks 

aH * bH = {aht* bhd]M^^H 

are independent and imply that 

a-1H*a-1bH and b^H * b^aH. 

Proof. aH C\ bH = 0. Hence all checks aht * bhj(hu hj Ç H) are different 
and imply that 

h{~la~l * ht~
la~lbhj = a~lbhk, h^b-1 * hflb~1ahi = b~1ahm. 

All these checks can be arranged as follows: 

(V)aH*bH (20, 
(3) (30 a-lbH*a~lH (40, 

(50 b~lH*b~laH (60-

(10 * (20. 
One has also: 

b-'aa-1 = b-1 g #"=> (3') ^ (4'), 

bb-ta = a(LH=^ (5') ^ (6'), 

a-ibb-1 = a-1 (Z H=> (2') * (3'), 

a- i j d H=* (4') j* (5'), 

j - i a a - 1 = b~l £ H=ï (6') ^ (1'). 

Three cosets can be equal only in one of the following two cases: 

(10 = (30 = (50 and (20 = (40 = (60. 

But 

(10 = (50 <=>a& e H^b-'a-1 £ H ^ (20 = (4'). 

Hence it is impossible that three of the cosets will be equal and the other 
three pairwise different. 
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If three cosets are equal and at least two of the others are equal, then one 
has, among the checks of (3), identical checks. Let, for example, ahi*bh2 

and a~1bhz * a~%± be identical. Denote by <£ the natural homomorphism 
<t>\ G —> GIH. Then, also, the checks a<i> * b<j> and (a$)_160 * (a0)_ 1 are iden
tical. But this is impossible, because there is no subgroup of order 3 in G/H. 
The first part of the lemma is proved. The second follows immediately from 
the fact that all checks in (3) are different. 

THEOREM 3. A complete set of independent checks in a group G with a normal 
subgroup H and with G/H, which does not have a subgroup of order 3, is com
posed of: 

(1) A complete set of independent checks in H. 
(2) All checks in every one of the cosets of H {except H). 
(3) All checks between some cosets of H: these are the pairs of cosets corre

sponding to pairs of elements of G/H in the checks of a complete set of independent 
checks of this group. 

Proof. The complete set of independent checks in H implies all checks 
in JÏ. 

aht * ahj (a (? H, hu hj £ H) 
==> hi~

1a~1 * hi~
1a~1ahj = h{~xhj and hj~

1a~1 * hj~
1a~1ahi = h3~

lhi. 

Hence, aH * aH =» H * Har1, and when all checks in the cosets aH are com
pleted, so are all checks between H and all its cosets. The checks among the 
elements of different cosets (except H) are treated in Lemma 3. 

Remark. If G/H has subgroups of order 3, then Theorem 3 holds too, except 
that among the checks among the elements of two cosets of H in G, corre
sponding to the non-identity elements of such a subgroup, there will be 
dependent checks. 

Example. Let G be the group 

q6 = {ey A, A\ A\ A\ A\ B, C, D, E, F, K). 

(The m.t. of q^ is given in the Appendix.) 
Let H = {e, Az}. The cosets are 

H, AH={A,A*}, Am = {A2, A5}, BH={B,E\, CH={C,F}, 

DH = \D,K}. 

A complete set of independent checks in G/H ~ 5 3 is, for example, (as ele
ments of G/H one considers the cosets) : 

(4) AH * A2H, AH * BH, AH * CH, AH* DH. 

A complete set of independent checks in G is: 
1. In if none. 
2. In the cosets of H: 

A* A*, A2* A5, B*E, C*F, D * K. 
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3. Between the elements of the cosets (4): 

A*A\ A* A*, A2*A\ A**A* 

(among these are three dependent checks; cf. the above remark), 

A*B, A*E, A±*B, A±*E, 
A*C, A*F, A**C, AA*F, 
A*D, A*K, AA*D, A**K. 

5. The m i n i m u m necessary length of a g.c. in a finite group. 

Notation, n is the order of the group G = {gi, g2, . . . , gn = e] ; r is the 
"length" of a g.c, i.e., the number of elements in a column of the corre
sponding g.n.m.t. of G; k9i is the number of times that g. £ Q appears in 
the g.n.m.t.; k = min {kgi} (gt £ G); and k0itgj is the number of checks gi * g$ 
in the g.n.m.t. 

PROPOSITION 4. For every G of order n it is necessary that 

(5) rir - 1) > k(n - 1), 

(6) k(r - 2) > n - 2. 

Proof. 

and (5) follows. 

£ *w = r(r - 1) 

n-1 

]C Ki,oj = Kir - 2)> i = l, 2 , . . . , » - l. 

The g.n.m.t. will be complete if every kgit0j > 1 ; hence (6) follows. 
(5) and (6) imply that 

(7) r(r - l ) ( r - 2) > (n - l)(w - 2); 

hence, 

(8) r > wf 

(equality holds for ^ = 1 only). 
The least integer r satisfying (5) and (6) will be denoted by rmn (the mini

mum necessary r). 
For n = 1, 2, . . . , 15 one obtains: 

?r. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
k: 1 2 3 2 2 or 3 2 2 or 3 2 2 or 3 2 or 3 3 2 or 3 3 3 3 
rmn: 1 2 3 3 4 4 5 5 6 6 6 7 7 7 7 
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6. E s t i m a t e s for a suff ic ient r. rms {minimal sufficient r) will denote 
the length of a shortest possible g.c. of G. Clearly rms > rmn. rmn determined 
as above satisfies the obvious combinatorial requirements of the g.n.m.t . and 
depends only on the order of the group. By combinatorial a rguments it was 
proved in (1) t h a t for every group 

rms < Cn^ log^ n, 

where C is a sufficiently large absolute constant . 

In the Appendix smallest possible g.n.m.t. for all groups up to the order 
n = 15 are listed. One sees t h a t different groups of the same order have 
different rms, and, moreover, for a part icular group of a larger order rms can 
be smaller than for some group of a smaller order. 

Remark. A g.c. of length rms is irreducible, b u t there can exist for the same 
group irreducible g.c. of different length; for example the following are two 
irreducible g.c. of Zi 5 : 

{0, 1, 2, 4, 5, 8, 10} of length 7 and {0, 1, 2, 3, 4, 5, 6, 7, 10} of length 9. 

T h e following lemma and proposition indicate some reasons why rms often 
exceeds rmn. 

LEMMA 4. Let D be the first column in a still incomplete g.n.m.t. of a group G 
with centre Z. If for some g £ Z, kg > 2 in this table, there will be necessarily 
repeated checks (i.e., checks appearing more than once) in the g.n.m.t., the first 
column of which is D \J dg, where d £ D and dg g D. 

Proof. kg > 2 => 3 di, d2, dz, d4 G D: g = dr1 d2 = d^1 d±. 

dfldg = gd2~
ld = drYdi d<rxd = di~H. 

gd2~
1d4: = di~1d2 d2~

xd± = di~ld±. 

gdrHz = drxdzg = drldzdz~ld± = drld±. 

Hence d2~
ld± = d{~ldz and the check d2~

ldg * d2~
ld±, which appears after dg 

is added to D, is identical with d\~ld * dfldz due to D only. 

PROPOSITION 5. Let Z be the centre of G, and D the first column in a still 
incomplete g.n.m.t. of G. If in this table 

kgi, kg2 > 2 (gi, g2 e Z) and kgitff2 = 0, 

then every completion of D, giving the check gi * g2, leads to repeated checks. 

Proof. Inspect the different possibilities and use Lemma 4. 

For any group deleting an element d from the g.c. D will reduce every 
kgi,gj by a t most 3, because the check gi * gj can involve d only in the fol
lowing three possibilities: 

gi = d~ldx = dz~
ld = dsrHz, 

( d i , . . . ,de e D). 
gj = d~ld2 = df-Hi = df~ld, 

This results in the following theorem. 
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THEOREM 4. In every group G of order n every subset of [fw] + 1 or more 
elements is a g.c. 

By Proposition 2, if H is a normal subgroup of G, then 

rz>G < rr>H-rDiG/Hy 
From this we get: 

COROLLARY. Let G 3 ^ i 2 ••• 3 G M 2 Gt = e be a normal series of G. 
There exists a DG such that 

rDG< [ f » i + l ] [ f » 2 + l ] . . . [ f » , + l ] , 

where n\, n2, . . . , nt are the orders of the corresponding factors. 

The following theorem provides a quite "economical" construction of a g.c. 
for an arbitrary finite cyclic group: 

THEOREM 5. Let Zn = {0, 1, . . . , n — 1} be the cyclic group of order n. Let 
x, y y k, /, m be non-negative integers and let 

a = ky + y - 1. 
/ / the inequalities 

(9) q < x, 

(10) x + tq~y + l> [\nl 

(11) x + tq + (m - k)y > [fw] 

are satisfied, then the 

(12) r = x + l+t(k + y-l)+m 

integers given by 

(13) a + h(x) a)[by + ch(k\ b) + dqh(l; b) 

+ eyh{t - l)d)h(k;b)h(y - l ; c ) ] , 
where 

a = 0, 1, . . . , x, 

£ = 0 ,1 , 

c = 0, 1, 

d = 0, 1, 

e = 0, 1, 

constitute a generating column of Zn. By suitable choice of the parameters x, y, 
k, t, maDZn can be obtained with 

(14) r < 6 M ~ 1 . 8 1 7 2 w i 

In (13) h{u\v) is Heavisidé1 s function defined by 

(0, 0 < v < u, 
h(u]v) = v 

H, w < v. 

https://doi.org/10.4153/CJM-1967-072-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1967-072-2


784 A. GINZBURG 

Proof. T h e proof consists of: (a) a proof of the completeness of the g.c. 
defined by (13); (b) a choice of parameters assuring (14). 

(a) By Proposition 3 one has to show t h a t i*j for every two integers 
i,j satisfying 0 < i < [\n], 0 < j < [fw], i < j . a, /3, y £ (13), such 
t h a t i = a — 7, j = fi — 7 (i.e., a = i + 7, 0 = j + 7) imply i *j. 

T h e sequence (13) begins with x + 1 consecutive integers 0, 1, . . . , x. T h e n 
there are t "cycles" of fe + y — 1 integers each; the first consists of the 
integers x + y, x + 2y, . . . , x + fey, x + ky -\- 1, x + ky + 2, . . . , 
x + fey + y — 1. Every such cycle closes with a "b lock" of y consecutive 
integers. (10) ensures t h a t in one of these blocks the smallest integer is not 
smaller than [\n]. 

After the last cycle the integers 

x + tq + y, x + tq + 2y, . . . , x + tq + my 

appear in (13), and (11) provides t h a t (13) has a t least k + 1 integers not 
smaller than [%n]. 

For i > x consider the following two cases: 
(1) i is not an element of a block in (13), or it is the first integer in such 

a block. T h e n i = p + pu where p Ç (13) and 0 < pt < y. 
Let i + uy — pi = p + uy (0 < u < k) be the first integer in the block 

closing the cycle containing p. F o r j (>i) one has j = s -\- sjy where 5 G (13) 
and 0 < Sj < y. 

If y > pi; — s j; > 0 one selects: 

7 = uy - s j , 

a = i + y = i + uy-sj = p + uy+(pi- Sj), 

P=j + y=j + uy-sj = s + sj + uy-sj = s + uy. 

All these are in (13). Indeed, 7 = uy — Sj < ky — Sj < q < x (by (9) ) ; a 
belongs to the block ment ioned; (3 = s + uy belongs to (13), because s G (13) 
(even if 5 = [fw] this is t rue, since u < k). 

If y > Sj - pi > 0 pu t : 

7 = (w + l ) y - s,, 

a = i + 7 = £ + Pi + (u + l ) y - s j = p + (u + \)y - (sj - pt), 

P = J + T = ^ + s j + (u + l)y - s j = s + (u + l)y. 

y is in (13), because in this case Sj > 1; hence 

7 < (k + l)y — Sj < fey + y — 1 = g < x. 

a is in the block beginning with p + uy, and /3 is, clearly, one of the integers 
of (13) (observe t h a t in this case 5 < [in]). 

(2) i belongs to a block, b u t is not the first integer in it. By (10) i cannot 
belong to the block in the last cycle (i < [\n]). Hence, i = x + dq + fey + c} 

where 0 < d < t — 1 and 1 < c < y — 1. As before j = s + Sj (0 < Sj < y ) . 
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If Sj = 0 both i and j belong to (13) and i *j. If Sj > c one takes: 

y = y - sJt 

a = i + y = x + dq + ky + c + y — Sj = x + dq + ky + y— (SJ — C), 

P=j + 7 = s + sj + y-sj = s + y. 

y and ft belong to (13) and so does a, because it is still in the above block. If 
0 < Sj < c (c — Sj < y — 1) put: 

7 = ky + y — Sj < q < x, 

a = i _|_ y = x + dq + ky + c + ky + y — Sj 

= x + (d + l)q + ky + c - Sj + 1 < x + (d + \)q + ky + y - 1, 

P=j + y = s + Sj + ky + y-Sj = s+(k + l)y. 

y and ft are in (13) (for /3 note that Sj > 0) ; so is a, which is an integer in 
the block of the (d + 1) cycle (it exists, because i is not in the last block). 

The case i < x: If i < x — y + 1, then i, i + 1, . . . , i + 3/ — 1 belong 
to (13) and among j,j + 1, . . . ,j + y — 1 at least one integer must also 
belong to (13), because two numbers in (13) do not differ by more than y. If 
x — 3> + 1 < ^ ' < x , one has the above case (2), where i was an integer (not 
the first) in a block. The first part of the theorem is thus proved. 

(b) The number of elements in (13) is r = x+l + t(k + y — 1) + m. 
One has to choose five non-negative integers x, y, k, t, m, such that for a 
given n the inequalities (9), (10), (11) will hold and r in (12) will be as small 
as possible. A routine computation, which will be omitted here, shows that 
in every case it is possible to make r < 6*n*. 

Examples. 
(1) n = 60, y = 3, x = 5, k = 1, / = 4, m = 6, r = 24 ~ 1.57 X 60*. The 

corresponding g.c. is : 

0, 1, 2, 3, 4, 5, 8, 9, 10, 13, 14, 15, 18, 19, 20, 23, 24, 25, 28, 31, 34, 37, 40, 43. 

(2) n = 6000, y = 19, x = 180, k = 8, t = 11, m = 111, r = 578 — 1.75 
X 6000f. 

The above construction can be improved very much in particular cases ; for 
example, for Z4o one can construct a g.c. with r = rmn = 13 ~ 1.1 X 40*. 

Using Proposition 2 one obtains the following corollary. 

COROLLARY. For a G which is a direct product of t cyclic groups a g.c. can 
be constructed with r < 6 t n nJ. 

7. Remarks about g.c. in infinite groups. For a g.c. in the infinite 
cyclic group Zœ one can use the construction of Theorem 5 with an infinite 
number of cycles, x and y can be increased arbitrarily (together with k), sub
ject to the condition q < x. Thus, a g.c. of Zœ can be obtained with an arbi
trarily small "density" of its elements. 
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For every infinite G, if Df (a finite set) is the first column of an incomplete 
g.n.m.t. of G, an x G G can always be found such that its addition to Df will 
produce only new independent triples of checks, all different. Indeed, such an 
element x has to satisfy only a finite number of conditions of the form 
x ^ dfd^dj (dudj,dk G Df), and G is infinite. 

I t follows that if A is an arbitrary countable set of checks in an infinite G, 
an (incomplete) g.n.m.t. of G can be constructed such that all checks of A 
will appear in it, and the ratio of repeated independent triples of checks to 
the total number of checks in any finite quadratic segment of this table will 
be arbitrarily small. 

Moreover, there exist particular infinite groups permitting construction of 
a g.n.m.t. with every independent triple of checks occurring exactly once. 

Appendix. Minimal g.n.m.t. for all groups up to the order 15 in
clusive. 

Remark. The list of the groups mentioned and their notation is taken from 
(6). 

W = 1 Z1: 0 

« = 2 
'ms ' m 

n = 3 

= 2 

= 3 

n = 4 

fl = O 

= 4 

Z2: 

Z3: 

Z4: 

1 0 
0 1 

2 1 0 
1 0 2 
0 2 1 

2 1 0 
1 0 3 
0 3 2 

3 2 1 0 
2 1 0 4 
1 0 4 3 
0 4 3 2 

F4: c B e 
A e B 
e A C 

k = 2 cannot be otained wrhen r = 4 (cf. the table in § 5). 

Z6 n = 
f m s 

-- 6 
= rm = 4 

4 3 2 0 
2 1 0 4 
1 0 5 3 
0 5 4 2 

T T 3 : D C B e 
A'' '•A e B 
A e A- ! C 
e A M D 
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The above g.n.m.t. (up to n = 6) appear in (9). 

n = 7 Zr. 

• rr 

>4X2-

g4: 

4 3 2 1 0 
3 2 1 0 6 
2 1 0 6 5 
1 0 6 5 4 
0 6 5 4 3 

6 5 4 2 0 
4 3 2 0 6 
2 1 0 6 4 
1 0 7 5 3 
0 7 6 4 2 

E D C B e 
A*A2A e B 
A2A e AZE 
A e A*A2D 
e AZA2A C 

c D E B e 
A 'A- '•A e D 
A lA e A< ! C 
A e A *A- '•B 

e A 'A 2A E 

k = 2 cannot be 
obtained for r = 5. 

•> 2 X 2 X 2 - E C F B e 
G F C e B 
D B e C F 
A e B F C 
e A D G E 

n = 9. There are two groups of order 9: Z9 and 53X3. The rmn = 6. For the 
cyclic group Z9 this is also the rms: 

ZQ: 7 6 5 3 1 0 
6 5 4 2 0 8 
4 3 2 0 7 6 
2 1 0 7 5 4 
1 0 8 6 4 3 
0 8 7 5 3 2 

The second is the abelian group Z3 X Z3. For it, r = 6 is not sufficient. Indeed, 
this group has four subgroups of order 3; thus, in the g.n.m.t. at least 12 checks 
of the form a * a2 (a3 = e) must appear. If r = 6, one has only five entries 
different from e in every column, i.e., in every column there can be at most 
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two checks of the above form. If all of them have to be done, every column 
must contain two such checks. 

Denote the elements of the group by e, A, A2, B, B2, C, C2, D, D2. 

A* = B* = C3 = D* = e, AB = C, AC = D, AD = B. 

By symmetry one can assume that the first column contains A * A2 and 
B * B2. The corresponding part of the g.n.m.t. is 

6 e 
5 B2 C2 D2 B e 
4 B D C e B2 

3 A2 A e C2 D 
2 A e A2 D2 C 
1 e A2 A B2 B 

1 2 3 4 5 6 

and for g5i6 only C2 or D2 can be chosen. In both cases the g.n.m.t. will not 
be complete. 

For this group rms = 7. 

^ 3 X 3 B2 C2 D2 C A D e 
C B D A2 C2 e D2 

C2 D2 B2 B e C A2 

D C B e B2 A C2 

A2 A e B2 B D2 D 
A e A2 C2 D B2 C 
e A2 A D2 C C2 B 

n = 
^m s 

10 Zio 8 7 6 4 2 0 
6 5 4 2 0 8 
4 3 2 0 8 6 
2 1 0 8 6 4 
1 0 9 7 5 3 
0 9 8 6 4 2 

7 6 5 3 2 0 
5 4 3 1 0 8 
4 3 2 0 9 7 
2 1 0 8 7 5 
1 0 9 7 6 4 
0 9 8 6 5 3 

k = 3 

c D E F B e 
A4 A* A2 A e B 
A* A2 A e A4 F 
A2 A e A" A" E 
A e A" A' A2 D 
e A* A* A2 A C 
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7 6 5 3 2 0 
5 4 3 1 0 9 
4 3 2 0 10 8 
2 1 0 9 8 6 
1 0 10 8 7 5 
0 10 9 7 6 4 

10 9 8 6 5 2 0 
8 7 6 4 3 0 10 
5 4 3 1 0 9 7 
4 3 2 0 11 8 6 
2 1 0 10 9 6 4 
1 0 11 9 8 5 3 
0 11 10 8 7 4 2 

G F E D C B e 
A5 A4 A3 A* A e B 
A4 A3 A* A e A* G 
A3 A' A e A5 A4 F 
A2 A e A* A4 A3 E 
A e A" A4 A3 A2 D 
e A* A4 A3 A2 A C 

G F E D C B e 
A* A4 As A2 A e B 
A4 A' A2 A e A5 c 
A* A2 A e A5 A4 D \ 
A2 A e A5 A4 A" E 
A e A" A4 A* A2 F 
e A5 A' A* A2 A G 

C D E F G B e 
A5 A* A* A2 A e E 
A4 A* A2 A e A" D 
A' A2 A e A5 A4 C 
A2 A e A" A4 A' B 
A e A" A4 A: A' G 
e A" A4 Az A' A F 

M G H A K L e 
L F E G B e M' 
F L K D e B H 
D H G e F E A 
C B e E H G K 
A e B K M D E 
e A C F D M L 

9 8 7 5 4 2 0 
7 6 5 3 2 0 11 
5 4 3 1 0 11 9 
4 3 2 0 12 10 8 
2 1 0 11 10 8 6 
1 0 12 10 9 7 5 
0 12 11 9 8 6 4 
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n = 14, rmn = 7. There are two groups of this order: Zu and £7. For both 
r = 7 is not sufficient. For <57, for example, one argues as follows: there are 
seven elements or order 2. Every one of them must appear in the g.n.m.t. an 
even number of times. But for r = 7, k = 3. Thus, every element of order 2 
appears in the g.n.m.t. at least four times and together they occupy a total 
of at least 28 entries. Even if each of the other six elements (except the identity) 
appears in the g.n.m.t. exactly three times, there will be at least 28 -f- 18 = 46 
entries outside the diagonal, while in a 7 X 7 table there are only 42 such 
entries. The proof for Zu is more complicated and will be omitted. 

For both groups rms = 8. 

Zi4*. 9 8 7 6 4 3 1 0 1 
8 7 6 5 3 2 0 13 
6 5 4 3 1 0 12 11 
5 4 3 2 0 13 11 10 
3 2 1 0 12 11 9 8 
2 1 0 13 11 10 8 7 
1 0 13 12 10 9 7 6 
0 13 12 11 9 8 6 5 

«7: B H G F E A4 A2 e 
D C B H G A2 e A5 

F E D C B e A'" A3 

A* A3 A2 A e B G E 
A3 A2 A e A6 C H F 
A2 A e A6 Ab D B G 
A e A6 A* A* E C H 
e A6 A* A4 A3 F D B 

n = 15 Zu 
= 7 

10 9 8 6 5 2 0 
8 7 6 4 3 0 13 
5 4 3 1 0 12 10 
4 3 2 0 14 11 9 
2 1 0 13 12 9 7 
1 0 14 12 11 8 6 
0 14 13 11 10 7 5 1 
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