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Asymptotic Behavior of Optimal Circle
Packings in a Square

Kari J. Nurmela, Patric R. J. Östergård and Rainer aus dem Spring

Abstract. A lower bound on the number of points that can be placed in a square of side σ such that no two
points are within unit distance from each other is proven. The result is constructive, and the series of packings
obtained contains many conjecturally optimal packings.

1 Introduction

The problem of finding the maximum radius of n non-overlapping congruent circles in a
unit square, or equivalently, the problem of maximizing the minimum distance between
any two of n points in a unit square (this distance is denoted by dn, and a corresponding
packing is said to be optimal) has received a lot of attention; see [1], [3], [6] for recent
results and references to earlier work. In the results to be presented here still another equiv-
alent formulation will be used: Determine Np(σ), the maximum number of points with
mutual distance at least 1 that can be placed into a square of side σ.

In [1] it is pointed out that it is not difficult to show that dn behaves asymptotically
according to

dn ∼

√
2
√

3n

as n tends to infinity. In the same place, good bounds for the error term are further asked
for. Already in the early 1960s, Oler [7] proved a theorem that implies the following corol-
lary: If X is a compact convex subset of the Euclidean plane, then the number of points
with mutual distance at least 1 is at most

2
√

3
A(X) +

1

2
P(X) + 1,

where A(X) is the area and P(X) is the perimeter of the convex subset (see [2] for an ele-
mentary proof). If X is a square (A(X) = σ2, P(X) = 4σ), then this result leads directly to
the upper bound

√
3

2
Np(σ) ≤ σ2 +

√
3σ +

√
3

2
(1)
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(where actually, in discussing the asymptotic behavior, the value of the constant term is
insignificant).

In this paper, a lower bound on Np(σ) is obtained. The bound is constructive: packings
that attain the lower bound are used in the proof. Some of the packings are very good.
These packings, which are the cornerstones of the proof, are possibly optimal for many
values of n (there is possibly even an infinite sequence of optimal packings of this type).
This is in contrast to the series discussed in [3], which all contain only a finite number of
optimal packings for very small values of n.

Before proceeding, we would like to point out that the dual problem of covering a square
by circles has been studied earlier from a similar point-of-view. Kershner [4] and Verblun-
sky [8] obtained the following upper and lower bounds on Nc(σ), the least number of
circles of unit radius which can cover a square of side σ.

Theorem 1 There is a c ≥ 1
2 such that, for all sufficiently large σ, σ2 + cσ < 3

√
3

2 Nc(σ) <
σ2 + 8σ + 16.

2 The Proof

We shall now give a construction of packings, which will lead to a desired lower bound on
Np(σ). In the following presentation, however, we will explicitly consider packings in a
unit square. The packings have the pattern depicted in Figure 1, where the side of the solid
square is of unit length.

1

a

1

b

dn

�

Figure 1

We have a + 1 columns and b + 1 rows of points (or circles) in Figure 1. Without loss
of generality, we require that b ≥ a. Furthermore, a circle in a column touches one or two
circles in adjacent columns, but not necessarily (in practice, not) other circles in the same

https://doi.org/10.4153/CMB-1999-044-4 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1999-044-4


382 Kari J. Nurmela, Patric R. J. Östergård and Rainer aus dem Spring

column. The total number of points is

n =

⌊
(a + 1)(b + 1) + 1

2

⌋
,(2)

where bxc denotes the greatest integer less than or equal to x. For circles not to overlap, we
must have that

dn

2
≤

1

b
.

Straight-forward calculations give that α ≥ π
6 and, as tanα = a

b , that

b ≤
√

3a.

Finally,

dn =

√
1

a2
+

1

b2
=

√
a2 + b2

ab
.(3)

We now consider the following values of a and b: ai = i, bi = b
√

3ic, b ′i = b
√

3ic − 1,
and b ′ ′i = b

√
3ic−2 for i ≥ 3. Using (2), these values of a and b lead to packings for values

ni , n ′i , and n ′′i , respectively. It is a matter of direct calculations to show that ni−1 < n ′′i , so
we have that · · · < ni−2 < n ′ ′i−1 < n ′i−1 < ni−1 < n ′′i < n ′i < ni < · · · . For other values
of n, we construct packings by taking the smallest value in this series which is greater than
or equal to n and by removing points from that packing.

Theorem 2 σ2 + 1−
√

3
2 σ ≤

√
3

2 Np(σ) ≤ σ2 +
√

3σ +
√

3
2 .

Proof The upper bound is from (1) and we prove here that the lower bound holds for
all packings with ni−1 < n ≤ ni for i ≥ 3. We consider the three cases n ′i < n ≤ ni ,
n ′ ′i < n ≤ n ′i , and ni−1 < n ≤ n ′′i , and finally take the worst of the three bounds obtained.
All packings in one of these intervals have the same minimum distance.

Case 1: (n ′i < n ≤ ni) Now a = ai and b = bi = b
√

3ac. We first use (3) to get

dn =

√
1

a2
+

1

b2
≥

√
1

a2
+

1

3a2
=

2
√

3a
.

When this packing is enlarged to get a packing with minimum distance 1, we get that the

side of the square is σ ≤
√

3
2 a, so a ≥ 2√

3
σ. The number of points is

n ≥ n ′i + 1 =

⌊
(ai + 1)(bi − 1 + 1) + 1

2

⌋
+ 1 ≥

⌊
(a + 1)(

√
3a− 1) + 1

2

⌋
+ 1

=

⌊√
3a2 + (

√
3− 1)a

2

⌋
+ 1 ≥

√
3

2
a2 +

√
3− 1

2
a.
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By combining this inequality and a ≥ 2√
3
σ, we get that

√
3

2
n ≥ σ2 +

√
3− 1

2
σ.(4)

Case 2: (n ′′i < n ≤ n ′i ) Now a = ai and b = b ′i = b
√

3ac − 1. Again, we derive a lower
bound on dn. This is somewhat trickier than in Case 1. Using (3) we get that

d2
n ≥

4a2 − 2
√

3a + 1

3a4 − 2
√

3a3 + a2
, so

σ2 ≤
3a4 − 2

√
3a3 + a2

4a2 − 2
√

3a + 1
=

3

4
a2 −

√
3

8
a−

1

8
+

1−
√

3a

8(4a2 − 2
√

3a + 1)

≤
3

4
a2 −

√
3

8
a−

1

8
,

when a ≥ 1√
3
. Furthermore,

n ≥ n ′′i + 1 =

⌊
(ai + 1)(bi − 2 + 1) + 1

2

⌋
+ 1

≥

⌊
(a + 1)(

√
3a− 2) + 1

2

⌋
+ 1 =

⌊√
3a2 + (

√
3− 2)a− 1

2

⌋
+ 1

≥

√
3

2
a2 +

√
3− 2

2
a−

1

2
=

2
√

3

(
3

4
a2 +

3− 2
√

3

4
a−

√
3

4

)

(here we do not explicitly have a as a function of σ)

=
2
√

3

(
3

4
a2 −

√
3

8
a−

1

8
+

6− 3
√

3

8
a +

1− 2
√

3

8

)

≥
2
√

3

(
σ2 +

2
√

3− 3

4
σ +

1− 2
√

3

8

)
.

Hence

√
3

2
n ≥ σ2 +

2
√

3− 3

4
σ +

1− 2
√

3

8
.(5)

Case 3: (ni−1 < n ≤ n ′ ′i ) This case is similar to Case 2. Now a = ai and b = b ′ ′i =
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b
√

3ac − 2. Using (3) we get that

d2
n ≥

4a2 − 4
√

3a + 4

3a4 − 4
√

3a3 + 4a2
, so

σ2 ≤
3a4 − 4

√
3a3 + 4a2

4a2 − 4
√

3a + 4
=

3

4
a2 −

√
3

4
a−

1

2
+

2−
√

3a

4a2 − 4
√

3a + 4

≤
3

4
a2 −

√
3

4
a−

1

2

when a ≥ 2√
3
. Now

n ≥ ni−1 + 1 =

⌊
(ai−1 + 1)(bi−1 + 1) + 1

2

⌋
+ 1

≥

⌊
a(
√

3(a− 1)− 1 + 1) + 1

2

⌋
+ 1 =

⌊√
3a2 −

√
3a + 1

2

⌋
+ 1

≥

√
3

2
a2 −

√
3

2
a +

1

2
=

2
√

3

(
3

4
a2 −

3

4
a +

√
3

4

)

=
2
√

3

(
3

4
a2 −

√
3

4
a−

1

2
+

√
3− 3

4
a +

2 +
√

3

4

)

≥
2
√

3

(
σ2 +

1−
√

3

2
σ +

2 +
√

3

4

)

≥
2
√

3

(
σ2 +

1−
√

3

2
σ

)
.

Hence

√
3

2
n ≥ σ2 +

1−
√

3

2
σ.(6)

Comparing the bounds (4), (5), and (6) for packings with at least n ≥ n2 + 1 = 7 points
reveals that (6) from Case 3 is worst. An analysis of this bound for small values of σ gives
that the theorem holds for all positive values of σ.

3 A Series of Conjecturally Optimal Packings

Many of the packings used in the proof in the previous section are very good and possibly
optimal. We shall now discuss a subseries of these packings; we conjecture that all packings
in this subseries are optimal.

To get a possibly good packing, we want the fraction

a

b
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to be very close to tan π6 =
√

3
3 in the construction discussed earlier (then the interior of

the packing is close to the hexagonal lattice packing in the plane). From elementary Dio-
phantine approximation theory it is known that a “good approximation” to an irrational
number is necessarily a partial fraction in the continued fraction expansion of this num-
ber; see [5, Ch. 7]. Furthermore, the continued fraction expansion of a quadratic irrational
number is periodic [5, Theorem 7.19]. We now have that

√
3

3
= 0 +

1

1 +
1

1 +
1

2 +
1

1 +
1

2 +
1

1 + · · ·

.

This expansion gives a sequence of partial fractions

0

1
,

1

1
,

1

2
,

3

5
,

4

7
,

11

19
,

15

26
,

41

71
, . . . ,

where every second value, starting with 1, is greater than
√

3
3 and gives a valid, conjecturally

optimal packing (when a is given the value of the numerator, and b is given the value of
the denominator). The first four packings in this subseries have 2, 12, 120, and 1512 points
(the packing with 12 points is shown in Figure 1).
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