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Abstract

Given two (real) normed (linear) spaces X and Y , let X ⊗1 Y = (X ⊗ Y, ‖ · ‖), where ‖(x, y)‖ = ‖x‖ + ‖y‖. It
is known that X ⊗1 Y is 2-UR if and only if both X and Y are UR (where we use UR as an abbreviation for
uniformly rotund). We prove that if X is m-dimensional and Y is k-UR, then X ⊗1 Y is (m + k)-UR. In the
other direction, we observe that if X ⊗1 Y is k-UR, then both X and Y are (k − 1)-UR. Given a monotone
norm ‖ · ‖E on R2, we let X ⊗E Y = (X ⊗ Y, ‖ · ‖) where ‖(x, y)‖ = ‖(‖x‖X , ‖y‖Y )‖E . It is known that if X is
uniformly rotund in every direction, Y has the weak fixed point property for nonexpansive maps (WFPP)
and ‖ · ‖E is strictly monotone, then X ⊗E Y has WFPP. Using the notion of k-uniform rotundity relative
to every k-dimensional subspace we show that this result holds with a weaker condition on X.

2010 Mathematics subject classification: primary 46B20; secondary 47H09, 47H10.
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1. Introduction

Let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be real normed linear spaces (normed spaces) and let
E = (R2, ‖ · ‖E), where ‖ · ‖E is a monotone norm, that is, for any s1, s2, t1, t2 ∈ R,
‖(s1, t1)‖E ≤ ‖(s2, t2)‖E whenever |s1| ≤ |s2| and |t1| ≤ |t2|. A straightforward way to
define a norm on the product space X × Y is to set ‖(x, y)‖ = ‖(‖x‖X , ‖y‖Y )‖E for all
x ∈ X and y ∈ Y . We denote the resulting normed product space by X ⊗E Y . The norm
‖ · ‖E is said to be strictly monotone if ‖(s1, t1)‖E < ‖(s2, t2)‖E whenever |s1| < |s2| and
|t1| ≤ |t2| or |s1| ≤ |s2| and |t1| < |t2|. It is easy to see that for 1 ≤ p ≤ ∞, the norm ‖ · ‖p
on R2 is strictly monotone while, for p =∞, it is monotone but not strictly monotone.
If ‖ · ‖E is the standard p-norm ‖ · ‖p (1 ≤ p ≤ ∞), then the product space normed as
above is denoted by X ⊗p Y and is called the p-direct sum of X and Y . Throughout
this article we assume that ‖ · ‖E is a monotone norm on R2. We shall avoid using the
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[2] Products of normed spaces 263

subscripts in the symbols ‖ · ‖X , ‖ · ‖Y and ‖ · ‖E when it is clear from the context which
of these is meant.

A normed space X is said to be k-uniformly rotund (k-UR) [16] if, for every ε > 0,

inf
{
1 −

1
k + 1

∥∥∥∥∥ k+1∑
i=1

xi

∥∥∥∥∥ : x1, . . . , xk+1 ∈ SX ,V(x1, . . . , xk+1) ≥ ε
}
> 0,

where

V(x1, . . . , xk+1) = sup


∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
f1(x1) · · · f1(xk+1)
...

...
...

fk(x1) · · · fk(xk+1)

∣∣∣∣∣∣∣∣∣∣∣∣ : f1, . . . , fk ∈ BX∗

 .
Here 1-UR is equivalent to uniform rotundity [4]. Given any k ∈ Z+, every k-
dimensional subspace is trivially k-UR [19].

In [3], it is proved that X ⊗1 Y is 2-UR if and only if X,Y are uniformly rotund. We
consider the following questions.

(1) If X is m-UR and Y is k-UR, does it imply that X ⊗1 Y is (m + k)-UR?
(2) If X ⊗1 Y is n-UR (or UREn as defined below) for some n ≥ 2, does it imply

that there exist m, k ∈ Z+ such that X is m-UR (UREm), Y is k-UR (UREk) and
n = m + k?

In this article, we make the following observations in connection with these questions.

(1) If X is m-dimensional and Y is k-UR, then X ⊗1 Y is (m + k)-UR.
(2) If the space X ⊗1 Y is k-UR for some positive integer k > 1, then both X and Y

are (k − 1)-UR.

Let X be a normed space and let K be a nonempty subset of X. A map T : K → K
is said to be nonexpansive if ‖T x − Ty‖ ≤ ‖x − y‖ for all x, y ∈ K. A normed space X
is said to have the weak fixed point property (WFPP) if for every nonempty weakly
compact convex set K and nonexpansive map T : K → K, there exists a point x ∈ K
such that T x = x. A number of sufficient conditions for WFPP in normed spaces
have been identified [9, 14]. Although it has been established that the Banach space
L1[0, 1] does not have WFPP [1], it is still not known whether every reflexive Banach
space has WFPP. Another interesting unsolved problem is whether WFPP is preserved
in the p-direct sum of two normed spaces that have WFPP for any 1 ≤ p ≤ ∞.
Several conditions under which this happens have been identified (see, for example,
[12, 17, 20]). We improve some existing results in the study of preservation of WFPP
in products of normed spaces.

The approximation-theoretic notion of Chebyshev centres is closely related to
fixed point theory for nonexpansive maps. For a nonempty bounded subset K and
an element x of a normed space X, let R(x, K) = sup{‖x − y‖ : y ∈ K}. Also let
R(K) = inf{R(x,K) : x ∈ K} and C(K) = {x ∈ K : R(x,K) = R(K)}. The set C(K), called

https://doi.org/10.1017/S0004972718001144 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001144


264 M. Veena Sangeetha [3]

the Chebyshev centre of K, is convex whenever K is convex. If C(K) is a proper subset
of K for every nonempty weakly compact convex subset K of a normed space X, then
X has WFPP [11]. Chebyshev centres are also closely connected with the geometry of
normed spaces. This connection can be used to deduce WFPP from certain geometric
properties.

A normed space X is said to be uniformly rotund in the direction of z ∈ X, z , 0 if,
for every ε > 0,

inf
{
1 −
‖x + y‖

2
: x, y ∈ SX , ‖x − y‖ ≥ ε, x − y ∈ span{z}

}
> 0.

If X is uniformly rotund in the direction of each z ∈ X, z , 0, then X is said to be
uniformly rotund in every direction (URED). It is well known that a normed space
X is URED if and only if the Chebyshev centre of every nonempty bounded convex
subset has at most one point [5, 6]. This shows that URED spaces have WFPP. By
introducing the notion of k-uniform rotundity relative to a k-dimensional subspace, a
natural generalisation of this characterisation is made in [19]. A normed space X is
said to be k-uniformly rotund relative to a k-dimensional subspace Y if, for every ε > 0,

inf
{
1 −

1
k + 1

∥∥∥∥∥ k+1∑
i=1

xi

∥∥∥∥∥ :
x1, . . . , xk+1 ∈ SX ,V(x1, . . . , xk+1) ≥ ε,
span{x1 − xk+1, . . . , xk − xk+1} = Y

}
> 0.

If X is k-uniformly rotund relative to every k-dimensional subspace, then we write that
X is UREk. The approximation-theoretic characterisation of UREk spaces observed in
[19] is that a normed space X is UREk if and only if the Chebyshev centre of every
nonempty bounded convex subset is either empty or is a convex set of dimension at
most k − 1. This proves that UREk spaces have WFPP for every k ∈ Z+.

For a normed space X, let

AX =

Z ⊆ X :
Z = 〈0〉 or Z is a linear subspace of X such that, for
each k ∈ Z+ and k-dimensional subspace Y of Z,
X is not k-uniformly rotund relative to Y

 .
We know from [18] that if a normed space X is UREk, then each member of AX has
dimension at most k − 1 and that if the members ofAX are all finite dimensional, then
the Chebyshev centres of nonempty bounded convex sets are finite dimensional. So, if
the members ofAX are finite dimensional, then X has WFPP. Given an m-dimensional
space X and an arbitrary normed space Y , we prove the following statements.

(1) If the members ofAY are all finite dimensional, then the members ofAX⊗1Y are
all finite dimensional.

(2) If Y is UREk, then X ⊗1 Y is UREm+k for any k ∈ Z+.
(3) If Y is k-UR, then X ⊗1 Y is (m + k)-UR for any k ∈ Z+.

The problem of preservation of WFPP in X ⊗1 Y when X is URED was reduced to
the case X = R in [12] with the observation that if X is URED, then X ⊗1 Y has WFPP
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if and only if R ⊗1 Y has WFPP. In [17], a condition on Y sufficient for X ⊗p Y to have
WFPP when X is finite-dimensional and 1 ≤ p ≤ ∞, is identified. The question was
finally settled in [20], where it is proved that if X is finite dimensional, Y has WFPP
and ‖ · ‖E is a strictly monotone norm, then X ⊗E Y has WFPP and consequently that
if X is URED, Y has WFPP and ‖ · ‖E is a strictly monotone norm, then X ⊗E Y has
WFPP.

In this paper, we prove that if the members of AX are all finite dimensional, Y
has WFPP and ‖ · ‖E is a strictly monotone norm, then X ⊗E Y has WFPP. As a
consequence, we show that if X is UREk, Y has WFPP and ‖ · ‖E is a strictly monotone
norm, then X ⊗E Y has WFPP for any k ∈ Z+.

2. Rotundity properties in 1-direct sums

In order to study the inheritance of rotundity properties in 1-direct sums of
normed spaces, we introduce the notion of k-uniform rotundity relative to an arbitrary
subspace. This is analogous to the notion of uniform rotundity relative to an arbitrary
subspace considered in [2].

Definition 2.1. Let X be any normed space and let k ∈ Z+. Let W be any subspace of
X of dimension at least k. We say that X is k-uniformly rotund relative to W if

inf
{
1 −

1
k + 1

∥∥∥∥∥ k+1∑
i=1

xi

∥∥∥∥∥ :
x1, . . . , xk+1 ∈ SX ,V(x1, . . . , xk+1) ≥ ε,
span{x1 − xk+1, . . . , xk − xk+1} ⊆ W

}
> 0

for all ε > 0.

The following result is straightforward.

Proposition 2.2. Let W be any subspace of a normed space X of dimension at least k.
If X is k-uniformly rotund relative to W, then X is k-uniformly rotund relative to every
k-dimensional subspace of W.

It is proved in [19] that a normed space X is k-uniformly rotund relative to a k-
dimensional subspace Y if and only if, for each ε > 0,

inf
{
1 −

1
k + 1

∥∥∥∥∥ k+1∑
i=1

xi

∥∥∥∥∥ :
x1, . . . , xk+1 ∈ BX ,V(x1, . . . , xk+1) ≥ ε,
span{x1 − xk+1, . . . , xk − xk+1} = Y

}
> 0.

This is achieved by noting that for any x1, . . . , xk+1 ∈ BX , there exist y1, . . . , yk+1 ∈ SX

such that x1, . . . , xk+1 ∈ co{y1, . . . , yk+1} and, if w ∈ BX ∩ aff{x1, . . . , xk+1},

(1 − ‖w‖)V(x1, . . . , xk+1)
(k + 1)(k+3)/2 ≤ 1 −

1
k + 1

∥∥∥∥∥ k+1∑
i=1

xi

∥∥∥∥∥.
Similar arguments yield the following result.
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Proposition 2.3. A normed space X is k-uniformly rotund relative to a subspace W if
and only if, for each ε > 0,

inf
{
1 −

1
k + 1

∥∥∥∥∥ k+1∑
i=1

xi

∥∥∥∥∥ :
x1, . . . , xk+1 ∈ BX ,V(x1, . . . , xk+1) ≥ ε,
span{x1 − xk+1, . . . , xk − xk+1} ⊆ W

}
> 0.

Let k ∈ Z+ and let W be any subspace of a normed space X of dimension at least k.
For any ε ≥ 0, let

δ(k)
X (ε,W) = inf

{
1 −

1
k + 1

∥∥∥∥∥ k+1∑
i=1

xi

∥∥∥∥∥ :
x1, . . . , xk+1 ∈ BX ,V(x1, . . . , xk+1) ≥ ε,
span{x1 − xk+1, . . . , xk − xk+1} ⊆ W

}
.

In [15], the following modulus of finite-dimensional uniform rotundity was
introduced:

∆
(k)
X (ε) = inf

Y∈Sk(X)
inf
x∈SX

max
‖y‖=ε,y∈Y

{‖x + y‖} − 1, ε ≥ 0,

where Sk(X) is the collection of all k-dimensional subspaces of X. A normed space X
is k-uniformly rotund if and only if ∆

(k)
X (ε) > 0 for every ε > 0 [13].

Given a subspace W of a normed space X of dimension at least k and ε ≥ 0, let

∆
(k)
X (ε,W) = inf

Y∈Sk(W)
inf
x∈SX

max
‖y‖=ε,y∈Y

{‖x + y‖} − 1,

where Sk(W) is the collection of all k-dimensional subspaces of W. From [19], if Y is
a k-dimensional subspace of a normed space X, then

δ(k)
X

( (k + 1)εk

2k(1 + ε)k ,Y
)
≤ ∆

(k)
X (ε,Y)

for all ε > 0 and ( 1
1 + ε

)
∆

(k)
X

(
ε

(k + 1)k+1 ,Y
)
≤ δ(k)

X (ε,Y)

for all ε > 0 such that δ(k)
X (ε,Y) < 1.

Theorem 2.4. Let X be a normed space and W a subspace of X of dimension at least
k ∈ Z+. The space X is k-uniformly rotund relative to W if and only if ∆

(k)
X (ε,W) > 0

for every ε > 0.

Proof. For a subspace W of a normed space X of dimension at least k,

∆
(k)
X (ε,W) = inf{∆(k)

X (ε,Y) : Y is a k-dimensional subspace of W}

and δ(k)
X (ε,W) = inf{δ(k)

X (ε,Y) : Y is a k-dimensional subspace of W}. Therefore,

δ(k)
X

( (k + 1)εk

2k(1 + ε)k ,W
)
≤ ∆

(k)
X (ε,W)

for all ε > 0 and ( 1
1 + ε

)
∆

(k)
X

(
ε

(k + 1)k+1 ,W
)
≤ δ(k)

X (ε,W)

for all ε > 0 such that δ(k)
X (ε,W) < 1. This proves that X is k-uniformly rotund relative

to W if and only if ∆
(k)
X (ε,W) > 0 for every ε > 0. �
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We give a proof of the continuity of the volume function, which we use later.

Lemma 2.5. Let X be a normed space. The map (x1, . . . , xk+1)→ V(x1, . . . , xk+1) is
continuous with respect to the product topology on Xk+1 for any k ∈ Z+.

Proof. For each x1, . . . , xk+1 ∈ X, define Φ(x1,...,xk+1) : (BX∗)k → R by

Φ(x1,...,xk+1)( f1, . . . , fk) =

∣∣∣∣∣∣∣∣∣∣∣∣
1 · · · 1

f1(x1) · · · f1(xk+1)
...

...
...

fk(x1) · · · fk(xk+1)

∣∣∣∣∣∣∣∣∣∣∣∣ .
Then Φ(x1,...,xk+1) is a bounded and continuous real-valued function. Suppose that
C((BX∗)k,R) is the Banach space of all bounded and continuous real-valued functions
on (BX∗)k with the standard supremum norm ‖ · ‖∞. Then Φ(x1,...,xk+1) ∈ C((BX∗)k,R) and
V(x1, . . . , xk+1) = ‖Φ(x1,...,xk+1)‖∞. Hence, to prove that the volume map is continuous, it
is enough to prove that the map (x1, . . . , xk+1)→ Φ(x1,...,xk+1) is continuous on Xk+1.

We shall prove this using induction on k. For k = 1, let x1, x2, y1, y2 ∈ X and let
f ∈ BX∗ . Then

|Φ(x1,x2)( f ) − Φ(y1,y2)( f )| = | f (x2 − x1) − f (y2 − y1)|
≤ | f (x1 − y1)| + | f (x2 − y2)| ≤ ‖x1 − y1‖ + ‖x2 − y2‖.

Thus, the map (x1, x2)→ Φ(x1,x2) is continuous on X2.
Suppose that for some k ∈ Z+, the map (x1, . . . , xk+1)→ Φ(x1,...,xk+1) is continuous on

Xk+1. This implies that the map (x1, . . . , xk+1)→ V(x1, . . . , xk+1) is also continuous
on Xk+1. We shall use the continuity of both of these functions to prove that the map
(x1, . . . , xk+2)→ Φ(x1,...,xk+2) is continuous on Xk+2. Let f1, . . . , fk+1 ∈ BX∗ . Then

Φ(x1,...,xk+2)( f1, . . . , fk+1) − Φ(y1,...,yk+2)( f1, . . . , fk+1)

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
f1(x1) · · · f1(xk+2)
...

...
...

fk(x1) · · · fk(xk+2)
fk+1(x1) · · · fk+1(xk+2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
f1(x1) · · · f1(xk+2)
...

...
...

fk(x1) · · · fk(xk+2)
fk+1(y1) · · · fk+1(yk+2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
f1(x1) · · · f1(xk+2)
...

...
...

fk(x1) · · · fk(xk+2)
fk+1(y1) · · · fk+1(yk+2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 1
f1(y1) · · · f1(yk+2)
...

...
...

fk(y1) · · · fk(yk+2)
fk+1(y1) · · · fk+1(yk+2)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Thus,

‖Φ(x1,...,xk+2) − Φ(y1,...,yk+2)‖∞

≤ ‖x1 − y1‖V(x2, . . . , xk+2) + · · · + ‖xk+2 − yk+2‖V(x1, . . . , xk+1)
+ ‖y1‖ · ‖Φ(x2,...,xk+2) − Φ(y2,...,yk+2)‖∞ + · · · + ‖yk+2‖ · ‖Φ(x1,...,xk+1) − Φ(y1,...,yk+1)‖∞.
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By the induction assumption, the right-hand side of the above inequality tends
to 0 as (y1, . . . , yk+2)→ (x1 . . . , xk+2) and hence so does the left-hand side, that is,
the map (x1, . . . , xk+2)→ Φ(x1,...,xk+2) is continuous on Xk+2. Thus, for every k ∈ Z+,
the map (x1, . . . , xk+1)→ Φ(x1,...,xk+1) is continuous on Xk+1 and therefore the map
(x1, . . . , xk+1)→ V(x1, . . . , xk+1) is continuous on Xk+1. �

We need the following lemma to proceed further.

Lemma 2.6. Let X, Y be normed spaces and let k ∈ Z+. If Z is a subspace of Y of
dimension at least k, then, for each ε > 0, there exists cε with 0 ≤ cε < 1 such that
δk

X⊗1Y (ε, 〈0〉 ⊗ Z) ≥ (1 − cε)δk
Y (ε,Z).

Proof. It is not difficult to see that (x1, y1), . . . , (xk+1, yk+1) ∈ X ⊗ Y satisfies

span{(x1, y1) − (xk+1 − yk+1), . . . , (xk, yk) − (xk+1, yk+1)} ⊆ 〈0〉 ⊗ Y

and V((x1, y1), . . . , (xk+1, yk+1)) ≥ ε if and only if

x1 = · · · = xk+1, span{y1 − yk+1, . . . , yk − yk+1} ⊆ Y and V(y1, . . . , yk+1) ≥ ε.

Let

sup
{
‖x‖ :

(x, y1), . . . , (x, yk+1) ∈ BX⊗1Y ,
V(y1, . . . , yk+1) ≥ ε

}
= cε .

We claim that cε < 1.
If cε = 1, there exist sequences {(x(n), y(n)

1 )}, . . . , {(x(n), y(n)
k+1)} in BX⊗1Y such that

limn→∞ ‖x(n)‖ = 1 and V(y(n)
1 , . . . , y(n)

k+1) ≥ ε for all n ∈ Z+. But ‖x(n)‖ + ‖y(n)
i ‖ ≤ 1 for

i ∈ {1, . . . , k + 1}, so limn→∞ ‖y
(n)
i ‖ = 0 and, by Lemma 2.5, limn→∞ V(y(n)

1 , . . . , y(n)
k+1) = 0.

This is not possible, because V(y(n)
1 , . . . , y(n)

k+1) ≥ ε for all n ∈ Z+. Hence, 0 ≤ cε < 1.
Let Z be a subspace of Y , (x, y1), . . . , (x, yk+1) ∈ BX⊗1Y , V(y1, . . . , yk+1) ≥ ε and

span{y1 − yk+1, . . . , yk − yk+1} ⊆ Z. Then 0 < 1 − cε ≤ 1 − ‖x‖ ≤ 1, because ‖x‖ ≤ cε < 1.
Also ‖yi‖/(1 − ‖x‖) ≤ 1 for i ∈ {1, . . . , k + 1}. Now

1 −
∥∥∥∥∥ 1

k + 1

k+1∑
i=1

(x, yi)
∥∥∥∥∥ = 1 − ‖x‖ −

( 1
k + 1

∥∥∥∥∥ k+1∑
i=1

yi

∥∥∥∥∥)
= (1 − ‖x‖)

(
1 −

1
(k + 1)(1 − ‖x‖)

∥∥∥∥∥ k+1∑
i=1

yi

∥∥∥∥∥) ≥ (1 − cε)
(
1 −

1
(k + 1)(1 − ‖x‖)

∥∥∥∥∥ k+1∑
i=1

yi

∥∥∥∥∥)
≥ (1 − cε)δk

Y

(
ε

(1 − ‖x‖)k ,Z
)
≥ (1 − cε)δk

Y (ε,Z).

Thus, δk
X⊗1Y (ε, 〈0〉 ⊗ Z) ≥ (1 − cε)δk

Y (ε,Z). �

Theorem 2.7. Let X = Rm with an arbitrary norm and let Y be any normed space.

(1) If the members of AY are all finite dimensional, then the members of AX⊗1Y are
all finite dimensional.

(2) If Y is UREk, then X ⊗1 Y is UREm+k.
(3) If Y is k-UR, then X ⊗1 Y is (m + k)-UR.
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Proof. If dim(Y) ≤ k, then dim(X ⊗1 Y) ≤ m + k and X ⊗1 Y must be (m + k)-UR.
Suppose that dim(Y) > k. Let W = span{w1, . . . ,wm+k} be an (m + k)-dimensional

subspace of X ⊗1 Y . For each j ∈ {1, . . . ,m + k}, choose x j ∈ X, y j ∈ Y such that
w j = (x j, y j). Choose α(i, j) ∈ R for i, j ∈ {1, . . . ,m} such x j = α(1, j)e1 + · · · + α(m, j)em.

Suppose that λ1, . . . , λm+k ∈ R. Then λ1w1 + · · · + λm+kwm+k ∈ 〈0〉 ⊗ Y if and only if
λ1x1 + · · · + λm+k xm+k = 0. This is equivalent to

α(1,1) · · · α(1,m+k)
...

...
...

α(m,1) · · · α(m,m+k)



λ1
...

λm+k

 = 0.

Hence, Λ = {(λ1, . . . , λm+k) ∈ Rm+k : λ1w1 + · · · + λm+kwm+k ∈ 〈0〉 ⊗ Y} is a subspace
of Rm+k of dimension at least k. The space Λ is isomorphic to W ∩ (〈0〉 ⊗ Y) under
the linear map (λ1, . . . , λm+k)→ λ1w1 + · · · + λm+kwm+k from Λ onto W ∩ (〈0〉 ⊗ Y).
Hence, dim(W ∩ (〈0〉 ⊗ Y)) is at least k.

(1) Suppose that the members ofAY are all finite dimensional. Let W be an infinite-
dimensional subspace of X ⊗1 Y . If w1,w2,w3, . . . ∈ W are linearly independent, then
span{w1, . . . ,wm+k} ∩ 〈0〉 ⊗ Y has dimension at least k for each k ∈ Z+. Consequently,
W ∩ 〈0〉 ⊗ Y is infinite dimensional. Since the members of AY are all finite
dimensional, by isometry, the members ofA〈0〉⊗Y are all finite dimensional. So, we can
choose a k-dimensional subspace Z of Y such that 〈0〉 ⊗ Z ⊂ W and Y is k-uniformly
rotund relative to Z. By Lemma 2.6, it follows that X ⊗1 Y is k-uniformly rotund
relative to 〈0〉 ⊗ Z, which proves that W <AX⊗1Y . Thus, the members ofAX⊗1Y are all
finite dimensional.

(2) Let W be an (m + k)-dimensional subspace of X ⊗1 Y . Then there exists a k-
dimensional subspace Z of Y such that 〈0〉 ⊗ Z ⊂W. If Y is k-uniformly rotund relative
to Z, then, by Lemma 2.6, X ⊗1 Y is k-uniformly rotund relative to 〈0〉 ⊗ Z. From [19],
if a normed space N is not n-uniformly rotund relative to an n-dimensional subspace
Y and Z is a subspace of Y of dimension q, then N is not q-uniformly rotund relative
to Z. Thus, X ⊗1 Y is (m + k)-uniformly rotund relative to W. It follows that if Y is
UREk, then X ⊗1 Y is UREm+k.

(3) Suppose that Y is k-UR and ε > 0. Then δk
X⊗1Y (ε, 〈0〉 ⊗ Y) ≥ (1 − cε)δk

Y (ε) > 0
by Lemma 2.6, so ∆

(k)
X⊗1Y (ε, 〈0〉 ⊗ Y) > 0 by Theorem 2.4. For an (m + k)-dimensional

subspace W of X ⊗1 Y , if Z is a k-dimensional subspace of Y such that 〈0〉 ⊗ Z ⊆ W,
then ∆

(m+k)
X⊗1Y (ε,W) ≥ ∆

(k)
X⊗1Y (ε, 〈0〉 ⊗ Z). So,

∆
(m+k)
X⊗1Y (ε,W) ≥ inf{∆(k)

X⊗1Y (ε, 〈0〉 ⊗ Z) : Z is a subspace of Y, dim(Z) = k, 〈0〉 ⊗ Z ⊆ W}

≥ inf{∆(k)
X⊗1Y (ε, 〈0〉 ⊗ Z) : Z is a subspace of Y, dim(Z) = k}

= ∆
(k)
X⊗1Y (ε, 〈0〉 ⊗ Y).

But now ∆
(m+k)
X⊗1Y (ε) = inf{∆(m+k)

X⊗1Y (ε,W) : W is a subspace of X ⊗1 Y, dim(W) = m + k}
is at least ∆

(k)
X⊗1Y (ε, 〈0〉 ⊗ Y). Thus, ∆

(m+k)
X⊗1Y (ε) > 0, which proves that X ⊗1 Y

is (m + k)-UR. �

https://doi.org/10.1017/S0004972718001144 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001144


270 M. Veena Sangeetha [9]

We illustrate with an example showing how the above result can be used to obtain
k-UR (UREk) renormings of spaces which are UR (or URED) for arbitrary k ∈ Z+.
Example 2.8. For k ∈ Z+, x ∈ l2, let x′ = (x(1), . . . , x(k)), x′′ = (x(k + 1), x(k + 2), . . .).
Define ‖x‖(k)

1 = ‖x′‖1 + ‖x′′‖2 for all x ∈ l2. Then (l2, ‖ · ‖
(k)
1 ) is (k + 1)-UR but not k-UR.

To see this, note that from the definition of ‖x‖(k)
1 , the space (l2, ‖ · ‖

(k)
1 ) is

isometrically isomorphic to (Rk, ‖ · ‖1) ⊗1 (l2, ‖ · ‖2). Therefore, by Theorem 2.7, this
space is (k + 1)-UR. It is not k-UR, because it contains (Rk, ‖ · ‖1) as a subspace.

We now give a necessary condition for the 1-direct sum of two normed spaces to be
k-UR for k > 1. The case k = 2 was solved in [3] and we adapt the same technique for
the general case.

Theorem 2.9. Let X and Y be normed spaces. For any k ≥ 2, if X ⊗1 Y is k-UR, then
both X and Y are (k − 1)-UR.

Proof. Let x1, . . . , xk ∈ BX and y ∈ Y with ‖y‖ = (k − 1)/k. If zi = (xi/k, y) for i ∈
{1, . . . , k} and zk+1 = (0, ky/(k − 1)), then ‖zi‖ ≤ 1 for i ∈ {1, . . . , k} and ‖z(k+1)‖ = 1.
Also,

1
k + 1

∥∥∥∥∥ k+1∑
i=1

zi

∥∥∥∥∥ =
1

k + 1

(1
k

∥∥∥∥∥ k∑
i=1

xi

∥∥∥∥∥ +

(
k +

k
k − 1

)
‖y‖

)
=

1
k + 1

(1
k

∥∥∥∥∥ k∑
i=1

xi

∥∥∥∥∥ + k
)

and V(z1, . . . , zk+1) ≥ V(z1, . . . , zk) dist(zk+1, aff{z1, . . . , zk}) [7]. Here

V(z1, . . . , zk) = V((x1/k, y), . . .) = V((x1/k, 0), . . .) =
1

kk−1 V(x1, . . . , xk)

while, for any λ1, . . . , λk ∈ R such that
∑k

i=1 λi = 1,

‖zk+1 − (λ1z1 + · · · + λkzk)‖ =
‖λ1x1 + · · · + λk xk‖

k
+
‖y‖

k − 1

≥
1
k

(dist(0, aff{x1, . . . , xk}) + 1).

Since x1, . . . , xk ∈ BX ,

V(z1, . . . , zk+1) ≥
1
kk V(x1, . . . , xk) (dist(0, BX ∩ aff{x1, . . . , xk}) + 1).

Suppose that X is not (k − 1)-uniformly rotund. Choose ε > 0 with δ(k−1)
X (ε) = 0.

There exist sequences {x(n)
1 }, . . . , {x

(n)
k } in BX such that V(x(n)

1 , . . . , x(n)
k ) ≥ ε for

all n while limn→∞(1/k)‖
∑k

i=1 x(n)
i ‖ = 1. Thus, using the remark which precedes

Proposition 2.3, limn→∞ dist(0, BX ∩ aff{x(n)
1 , . . . , x(n)

k }) = 1. So, we may assume that
dist(0, aff{x(n)

1 , . . . , x(n)
k }) ≥

1
2 for all n ∈ Z+.

Choose y ∈ Y with ‖y‖ = (k − 1)/k. Let z(n)
i = (x(n)

i /k, y) for n ∈ Z+ and i ∈ {1, . . . , k}
and z(n)

k+1 = (0, ky/(k − 1)). Then

lim
n→∞

1
k + 1

∥∥∥∥∥ k+1∑
i=1

z(n)
i

∥∥∥∥∥ = lim
n→∞

1
k + 1

(1
k

∥∥∥∥∥ k∑
i=1

x(n)
i

∥∥∥∥∥ + k
)

= 1.

But V(z(n)
1 , . . . , z(n)

k+1) ≥ 3V(x(n)
1 , . . . , x(n)

k )/2kk ≥ 3ε/2kk for n ∈ Z+. By a sequential
characterisation of k-uniform rotundity, it follows that X ⊗1 Y is not k-UR. �
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3. Preservation of WFPP in some product spaces

To prove that a normed space X has WFPP, it is enough to prove that every
nonempty separable weakly compact convex subset of X has the fixed point property
for nonexpansive maps [9]. We use the following well-known result.

Theorem 3.1 [8, 10]. Let K be a nonempty weakly compact convex subset of a normed
space. Suppose that T : K → K is a nonexpansive map and K is minimal with respect
to being a closed convex subset of K that is invariant under T . Then there exists a
sequence {xn} in K such that limn→∞ ‖T xn − xn‖ = 0 and, for such a sequence (called
an approximate fixed point sequence), limn→∞ ‖x − xn‖ = diam(K) for all x ∈ K.

Throughout this section, the following assumptions hold:

(1) X,Y are normed spaces and E = (R2, ‖ · ‖E), where ‖ · ‖E is strictly monotone;
(2) K is a nonempty separable weakly compact convex subset of X ⊗E Y;
(3) KX = {x ∈ X : (x, y) ∈ K} and KY = {y ∈ Y : (x, y) ∈ K};
(4) T : K → K is a nonexpansive map;
(5) K is minimal as a closed convex subset of K that is invariant under T ;
(6) {(an, bn)} is an approximate fixed point sequence for T in K such that, for every

(x, y) ∈ K, the limits limn→∞ ‖x − an‖ and limn→∞ ‖y − bn‖ exist.

The existence of a sequence {(an, bn)} as described in assumption (6) is observed in
[12] and can be verified easily by using the separability of K and a standard diagonal
sequence argument.

Lemma 3.2. For any c ≥ 0, the set {x ∈ KX : limn→∞ ‖x − an‖ = c} is convex and
therefore contained in a translation of some Y ∈ AX .

Proof. By Lemma 3.1, limn→∞ ‖(x − an, y − bn)‖ = limn→∞ ‖(‖x − an‖, ‖y − bn‖)‖ =

‖(limn→∞ ‖x − an‖, limn→∞ ‖y − bn‖)‖ = diam(K) for all (x, y) ∈ K. Since K is convex,
KX is convex. Let c ≥ 0. By the strict monotonicity of ‖ · ‖E , if d1, d2 ≥ 0 and
‖(c, d1)‖E = ‖(c, d2)‖E , then we must have d1 = d2. Let x1, x2 ∈ KX be such that
limn→∞ ‖x1 − an‖ = c = limn→∞ ‖x2 − an‖. Choose y1, y2 ∈ Y such that (x1, y1), (x2, y2)
∈ K. Then ‖(c, limn→∞ ‖y1 − bn‖)‖ = diam(K) = ‖(c, limn→∞ ‖y2 − bn‖)‖. So, there
exists dc ≥ 0 such that limn→∞ ‖y1 − bn‖ = dc = limn→∞ ‖y2 − bn‖. Let λ ∈ (0, 1).
Now limn→∞ ‖(1 − λ)x1 + λx2 − an‖ ≤ c, limn→∞ ‖(1 − λ)y1 + λy2 − bn‖ ≤ dc and
also ‖(limn→∞ ‖(1 − λ)x1 + λx2 − an‖, limn→∞ ‖(1 − λ)y1 + λy2 − bn‖)‖ = diam(K) =

‖(c, dc)‖. Again by strict monotonicity, we have limn→∞ ‖(1 − λ)x1 + λx2 − an‖ = c
and so {x ∈ KX : limn→∞ ‖x − an‖ = c} is a convex set.

Let k ∈ Z+. If x1, . . . , xk+1 ∈ KX with limn→∞ ‖xi − an‖ = c for each i, then the
convexity of {x ∈ KX : limn→∞ ‖x − an‖ = c} gives

lim
n→∞

∥∥∥∥∥ 1
k + 1

k+1∑
i=1

xi − an

∥∥∥∥∥ = c.

https://doi.org/10.1017/S0004972718001144 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718001144


272 M. Veena Sangeetha [11]

Consequently, if V(x1, . . . , xk+1) > 0, then, by a sequential characterisation of k-
uniform rotundity relative to a k-dimensional subspace [19], it follows that X is
not k-uniformly rotund relative to span{x1 − xk+1, . . . , xk − xk+1}. From [18], if K
is a nonempty subset of a normed space X such that X is not k-uniformly rotund
relative to span{u1, . . . , uk} for all k ∈ Z+ and linearly independent u1, . . . , uk ∈ K, then
span(K) ∈ AX . Thus, {x ∈ KX : limn→∞ ‖x − an‖ = c} is contained in a translation of Y
for some Y ∈ AX . �

Lemma 3.3.

(1) If dim KX ≥ k + 1, then, for some c ≥ 0, the set {x ∈ KX : limn→∞ ‖x − an‖ = c} is
of dimension at least k.

(2) If dim KX =∞, then the set {x ∈ KX : limn→∞ ‖x − an‖ = c} is infinite dimensional
for some c ≥ 0.

Proof. (1) Suppose that KX is of dimension at least k + 1. Choose affinely independent
x0, . . . , xk+1 ∈ KX such that limn→∞ ‖x0 − an‖ ≤ · · · ≤ limn→∞ ‖xk+1 − an‖. If the first k
or the last k of the above inequalities are equations, then we are done. If this is not
the case, then limn→∞ ‖xp − an‖ < c < limn→∞ ‖xp+1 − an‖ for some p and some c > 0.
The map x→ limn→∞ ‖x − an‖ on the convex set KX is continuous. So, there exist
λ1, . . . , λk+1−p, µ1, . . . , µp ∈ (0, 1) such that limn→∞ ‖(1 − λi)x0 + λixp+i − an‖ = c for
i ∈ {1, . . . , k + 1 − p} and limn→∞ ‖(1 − µi)xp+1 + µixi − an‖ = c for i ∈ {1, . . . , p}. Let
ui = (1 − λi)x0 + λixp+i for i ∈ {1, . . . , k + 1 − p} and uk+1−p+i = (1 − µi)xp+1 + µixi for
i ∈ {1, . . . , p}. The affine independence of x0, . . . , xk+1 implies the affine independence
of u1, . . . , uk+1. Thus, the set {x ∈ KX : limn→∞ ‖x − an‖ = c} is of dimension at least k.

(2) Suppose that KX is infinite dimensional. Then there exist affinely independent
x0, x1, x2, . . . ∈ KX such that limn→∞ ‖x0 − an‖ ≤ limn→∞ ‖x1 − an‖ ≤ · · · . If infinitely
many of the above inequalities are equations, then we have nothing to prove. If this is
not the case, then we may assume without loss of generality that for some p ≥ 1,
limn→∞ ‖xp − an‖ < c < limn→∞ ‖xp+1 − an‖. By the same arguments as in (1), for
each k ≥ p, there exist u1, . . . , uk+1 ∈ {x ∈ KX : limn→∞ ‖x − an‖ = c} which are affinely
independent. Thus, {x ∈ KX : limn→∞ ‖x − an‖ = c} is infinite dimensional. �

Theorem 3.4. If the members of AX are finite dimensional and Y has WFPP, then
X ⊗E Y has WFPP.

Proof. By Lemma 3.2, {x ∈ KX : limn→∞ ‖x − an‖ = c} is finite dimensional for any
c ≥ 0 and so, by Lemma 3.3(2), KX is finite dimensional, that is, span(KX − x0) is
finite dimensional for (x0, y0) ∈ K. Now K − (x0, y0) ⊆ (KX − x0) × (KY − y0) ⊆ Z × Y ,
where Z is a finite-dimensional subspace of X. Thus, K is contained in a translation
of Z ⊗E Y for some finite-dimensional subspace Z of X. From [20], Z ⊗E Y has WFPP
and so X ⊗E Y has WFPP. �

Corollary 3.5. If X is UREk and Y has WFPP, then X ⊗E Y has WFPP.
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