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Fubini’s Theorem for Ultraproducts
of Noncommutative Lp-Spaces

Marius Junge

Abstract. Let (Mi)i∈I , (Nj ) j∈ J be families of von Neumann algebras and U, U′ be ultrafilters in I, J,

respectively. Let 1 ≤ p < ∞ and n ∈ N. Let x1,. . . ,xn in
∏

Lp(Mi) and y1,. . . ,yn in
∏

Lp(Nj ) be

bounded families. We show the following equality

lim
i,U

lim
j,U ′

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j)
∥∥∥

Lp (Mi⊗N j )
= lim

j,U ′
lim
i,U

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j)
∥∥∥

Lp (Mi⊗N j )
.

For p = 1 this Fubini type result is related to the local reflexivity of duals of C∗-algebras. This fails for

p = ∞.

0 Introduction

Fubini’s Theorem is a fundamental tool in measure theory, probability and analysis.
Our aim is to prove a version of Fubini’s Theorem in the context of noncommuta-

tive Lp-spaces associated with von Neumann algebras. More precisely, we will extend
the Fubini Theorem to ultraproducts of noncommutative Lp-spaces. Although ul-
traproducts might appear less natural in the context of measure theory, they are a
standard tool in the context of von Neumann algebras, we refer for example to the

use of Dixmier traces in Connes’ work [C3] on noncommutative geometry. Ultra-
products appear also rather naturally in the investigation of Lp-spaces associated to
residually finite non-amenable groups, for example free groups. The aim of this pa-
per and the forthcoming paper [J2] is to extend Pisier’s [P7] theory of vector-valued

noncommutative Lp-spaces to Lp-spaces associated to free groups and an even more
general class of von Neumann algebras. Our proof of the Fubini theorem for ultra-
products requires operator algebraic methods and is related to the local reflexivity
of duals of C∗-algebras, see [EJR]. In combination with the factorization theory of

linear maps, the noncommutative Fubini theorem provides an important ingredient
for the investigation of the local structure of noncommutative Lp-spaces associated
to von Neumann algebras, see the forthcoming papers [J2, JNRX].

Let us illustrate these applications by considering the free group Fn in n generators.
Using an idea of S. Wassermann [Wa], it can easily be shown that the noncommuta-
tive Lp-space Lp(V N(Fn)) associated to the von Neumann algebra V N(Fn) obtained

from the left regular representation embeds naturally in an ultraproduct of Lp-spaces
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984 Marius Junge

of matrix algebras. Although V N(Fn) is not hyperfinite, i.e., does not admit an in-
creasing weakly dense family of matrix algebras, we can nevertheless use genuinely

finite dimensional techniques to obtain information about Lp(V N(Fn)). We will
show in [JNRX, J2] that this approach is generic for a large class of von Neumann
algebras. Indeed, the Fubini Theorem is a central tool in the proof of the following
applications.

(i) [JNRX] An analysis of the local structure of noncommutative Lp-spaces.

(ii) [JR] For 1 < p <∞ the space Lp(V N(Fn)) has a basis.
(iii) [J2] Let 1 ≤ p < ∞ and V : Lp(N1) → Lp(N2), W : Lp(M1) → Lp(M2) be

linear maps, then

‖V ⊗W : Lp(N1 ⊗ M1) → Lp(N2 ⊗ M2)‖ ≤ ‖V‖cb‖W‖cb,

where

‖V‖cb = ‖V ⊗ idLp(B(ℓ2)) : Lp(N1 ⊗ B(ℓ2)) → Lp(N2 ⊗ B(ℓ2))‖.

(iv) [J2] Let 1 ≤ p ≤ q <∞ and V : Lq(N1) → Lp(M1), W : Lq(N2) → Lp(M2) be
completely positive maps, then

‖V ⊗W : Lq(N1 ⊗ N2) → Lp(M1 ⊗ M2)‖ ≤ ‖V‖‖W‖.

Here N1,N2,M1 and M2 are assumed to be von Neumann algebras with the QWEP

and Lp(N1 ⊗ M1) refers to Haagerup Lp-space associated to the von Neumann al-
gebra N1⊗̄M1. Let us recall that a C∗-algebra has the weak expectation property of

Lance (WEP), if A ⊂ A∗∗ ⊂ B(H) is given in its universal representation and there
exists a contraction P : B(H) → A∗∗ such that P|A = idA. A C∗-algebra B is a quo-

tient of a C∗-algebra with WEP, in short B is QWEP, if there exists a C∗-algebra A

with WEP and a two sided ideal I in A such that B ∼= A/I. It is open whether ev-
ery C∗-algebra is QWEP. (See Kirchberg’s work [Ki] for many important equivalent
conjectures.) In the classical commutative theory the applications (iii) and (iv) are

easy consequences of Fubini’s theorem and basic facts about vector-valued Lp-spaces.
Our proof of (iii) and (iv) requires an extension of Pisier’s [P7] notion of noncom-
mutative vector-valued Lp-spaces to QWEP algebras and will be given in [J2] based
on the following main result of this paper.

Theorem 0.1 Let 1 ≤ p < ∞ and (Mi)i∈I (N j) j∈ J be families of von Neumann

algebras. Let U, U ′ be ultrafilters on I, J, respectively. Let n ∈ N, x1,. . . ,xn in
∏

Lp(Mi)
and y1,. . . ,yn in

∏
Lp(N j), then

lim
i,U

lim
j,U ′

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j)
∥∥∥

Lp(Mi⊗N j )
= lim

j,U ′
lim
i,U

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j)
∥∥∥

Lp (Mi⊗N j )

A reader not familiar with Haagerup’s Lp-spaces is advised to assume that all the
von Neumann algebras Mi and N j are semifinite. However, even for finite von
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Fubini’s Theorem for Ultraproducts of Noncommutative Lp-Spaces 985

Neumann algebras our proof of Fubini’s theorem relies on modular theory and an
approximation result derived from Kaplansky’s density Theorem. However, in the

type III case, we first have to define and study the canonical tensor product map
Ip : Lp(M) ⊗ Lp(N) → Lp(M ⊗ N) (see Proposition 3.6) which is (implicitly) used
in the formulation of Theorem 0.1. The proof of Theorem 0.1 is based on Raynaud’s
fundamental work on ultraproducts of noncommutative Lp-spaces. Following a sug-

gestion of G. Elliott, we prove in the appendix that the conclusion fails for p = ∞.
The paper is organized as follows: after some preliminaries in section one, we de-

velop a theory of vector-valued L1 spaces for duals of injective von Neumann algebras
in section 2. In this case tensor norms for operator spaces can be used to prove the

Fubini theorem. We refer to [J2] for the extension of the vector-valued theory to the
case p > 1 and further applications. Section 2 is devoted to prove Theorem 0.1 for
p = 1 in the general case. In the third part, we prove the Fubini Theorem 0.1 for
p > 1 and show that both expressions coincide with the norm of finite rank tensors

in the Lp-tensor product of two (suitable chosen) noncommutative Lp-spaces.

1 Preliminaries

We use standard notation in operator algebras as in [Tk, KR]. In particular, B(H)
denotes the bounded operators on a Hilbert H. For n ∈ N, we denote by Mn =

B(ℓn
2) the space of n × n matrices. Given two C∗-algebras A ⊂ B(H1) and B ⊂

B(H2), the minimal tensor product A ⊗min B is the closure of the algebraic tensor

product A⊗B with respect to the norm induced by the inclusion A⊗min B ⊂ B(H1 ⊗
H2). A von Neumann algebra is a σ-weakly closed unital ∗-subalgebra of the bounded
operators on a Hilbert space. For von Neumann algebras N ⊂ B(H1), M ⊂ B(H2),
the von Neumann algebra tensor product N⊗̄M is the σ-weak closure of N ⊗min

M ⊂ B(H1 ⊗ H2). We refer to [Tk, KR] for the relevant locally convex topologies on
operator algebras. Every von Neumann algebra N has a unique predual N∗ consisting
of the normal functionals. Indeed, a functional φ ∈ N∗ is normal if and only if it is
the restriction of the functional T 7→ tr(AT) to N for some A in the trace class

operators S1(H) on H. Let us recall that every functional in N∗ has a decomposition
in its normal and singular part. Moreover, the projection of N∗ onto the normal
functionals N∗ is given by multiplication with a central projection in N∗∗, see [Tk].
In the following we will often use the existence of a strictly, semifinite normal weight.

Indeed, given a maximal family (q j , φ j) j∈ J of mutually disjoint projections (q j) and
normal faithful state φ j on q jNq j , we will have

∑
j q j = 1. Then, w(x) =

∑
j φ j(x)

is defined on a σ-weakly dense subalgebra. Indeed, we can use as index sets the finite
subsets P f ( J) of J and for J ′ ∈ P f ( J), we set q J ′ =

∑
j∈ J ′ q j . Then w J ′ =

∑
j∈ J ′ φ j

is a positive functional on N such that w = lim J ′ w J ′ . In the following, we will also
use the obvious facts that q J ′w = wq J ′ and the modular group σw

t satisfies σw
t (q J ′) =

q J ′ . Given a family of Banach spaces (Xi)i∈I , we denote by
∏

Xi =

∏
i∈I

Xi = {(xi) | ∀i∈Ixi ∈ Xi , ‖(xi)‖ = sup
i∈I

‖xi‖ <∞},
∑

Xi =

∑
i∈I

Xi = {(xi) | ∀i∈Ixi ∈ Xi , ‖(xi)‖ =

∑

i∈I

‖xi‖ <∞}
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the corresponding product and sum space. Note that if (Ai) is a family of C∗-algebras,
then

∏
Ai is again a C∗-algebra. Similarly, the sum

∑
i(Ni)∗ of preduals of von

Neumann algebras is the predual of
∏

Ni .
Let us also recall some basic notions in the theory of operator spaces as they can

be found in [ER3]. An operator space X is a Banach space together with a specified
isometric embedding J : X → B(H). This embedding induces matrix norms ‖ ‖Mn(X)

on Mn ⊗ X defined for x = (xi j ) by

‖x‖Mn(X) = ‖( J(xi j))n
i, j=1‖B(ℓn

2 (H)).

These matrix norms satisfy Ruan’s axioms

(R1) ‖(a⊗idX)x(b⊗idX)‖Mn(X) ≤ ‖a‖‖x‖Mn(X)‖b‖ for all x ∈ Mn(X) and a, b ∈ Mn.
(R2) For x ∈ Mn(X) and y ∈ Mm(X) the norm of x ⊕ y =

[
x 0
0 y

]
satisfies

‖x ⊕ y‖Mn+m(X) = max{‖x‖Mn(X), ‖y‖Mm(X)}.

Conversely, every sequence α = (‖ ‖n)n∈N of norms on (Mn ⊗ X)n∈N satisfying the
axioms (R1) and (R2) can be obtained from a suitable embedding J : X → B(Hα),
see [R1]. Therefore, we will say that an operator space structure is either given by

a sequence of norms α satisfying Ruan’s axioms or a concrete embedding Jα. The
morphisms in the category of operator spaces are the completely bounded linear maps,
i.e. the linear maps T : X1 → X2 such that

‖T‖cb = sup
n

‖idMn
⊗ T : Mn(X1) → Mn(X2)‖ <∞.

We denote by CB(X1,X2) the Banach (operator) space of completely bounded maps

between X1 and X2. A linear map T with ‖T‖cb ≤ 1 is called a complete contraction.
A linear map T : X1 → X2 is called completely isometric if idMn

⊗ T is isometric for
all n ∈ N. Similarly, a map T : X1 → X2 is called a complete quotient map if idMn

⊗ T

maps the open unit ball in Mn(X1) onto the open unit ball of Mn(X2). An important

feature in the theory of operator spaces is duality. More precisely, for every operator
space X and a matrix x∗ = (x∗i j )

n
i, j=1 ⊂ X∗ of functionals we may consider the linear

map Tx∗ : X → Mn defined by Tx∗(x) = (x∗i j(x))n
i, j=1. Then the sequence of norms

on Mn(X∗) given by

‖x∗‖Mn(X∗) = ‖Tx∗ : X → Mn‖cb

satisfies Ruan’s axioms (R1) and (R2) and defines an operator space structure on X∗.
This is called the standard dual of X, see [BP, ER3]. Using this duality, X is completely
isometrically embedded into its bidual X∗∗ and for every completely bounded map
T : X1 → X2, we have

‖T : X1 → X2‖cb = ‖T∗ : X∗
2 → X∗

1 ‖cb.

Clearly, the adjoint of a complete quotient map is a complete isometry. Using Witt-
stock’s extension Theorem, see [Pa], for Mm, it is easily seen that the dual of a com-
plete isometry is a complete quotient map.
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Natural examples of operator spaces are C∗-algebras, von Neumann algebras and
their duals, preduals, respectively. As for C∗-algebras the minimal tensor product

X1 ⊗min X2 of operator spaces X1 ⊂ B(H1) and X2 ⊂ B(H2) is defined as the clo-
sure of X1 ⊗ X2 with respect to the norm induced by the inclusion

X1 ⊗min X2 ⊂ B(H1) ⊗min B(H2) ⊂ B(H1 ⊗ H2).

Note that every element x ∈ X1 ⊗ X2 induces a linear map Tx : X∗
1 → X2 such that

‖x‖X1⊗min X2
= ‖Tx : X∗

1 → X2‖cb. As in the category of Banach spaces there is also a
largest tensor norm ‖l‖∧ on X1 ⊗ X2 such that

(X1 ⊗̂ X2)∗ ∼= CB(X1,X
∗
2 ) ∼= CB(X2,X

∗
1 ).

There are several ways to define this operator space projective tensor product, see [ER3,
BP]. For example, it is easily checked that for every operator space X there is a com-
plete quotient map q : S1(H) → X. Let q1 : S1(H1) → X1 and q2 : S1(H2) → X2 be

such complete quotient maps, respectively, then

q1 ⊗ q2 : S1(H1 ⊗ H2) → X1 ⊗̂ X2

is a quotient map and defines the norm in X1 ⊗̂ X2. The operator space projective

tensor product is functorial in the sense that

‖T1 ⊗ T2 : X1 ⊗̂ X2 → Y1 ⊗̂ Y2‖ ≤ ‖T1‖cb‖T2‖cb

for all operator spaces X1,X2, Y1, Y2 and completely bounded maps T1 : X1 → Y1,
T2 : X2 → Y2. Let us note that the operator space projective tensor product is sym-
metric, i.e., the flip map constitutes a complete isometry between X1⊗̂X2 and X2⊗̂X1.
Moreover, S1(H1) ⊗̂ S1(H2) = S1(H1 ⊗ H2), see [ER3] for more information.

A von Neumann algebra N is called injective, if for every completely isometric
inclusion of operator spaces X1 ⊂ X2 and every completely bounded map T : X1 →
N, there exists an extension T̂ : X2 → N such that T̂|X1

= T and ‖T̂‖cb = ‖T‖cb.
We refer to Connes’ and Haagerup’s work [C1, Ha1] for the equivalence between
injectivity and hyperfiniteness for von Neumann algebras. We refer to [Se, Ne, Ko,

Te1, Fi] for general information on noncommutative Lp-spaces and their operator
space structure (see also section 3 below).

2 QWEP Algebras and Tensor Norms

In this part, we will prove the Fubini Theorem for p = 1 and start the investigation
of vector-valued noncommutative L1-spaces for QWEP algebras. The extension to
vector-valued noncommutative Lp-spaces will be discussed in a forthcoming paper

[J2] and allows us to obtain the applications mentioned in the introduction. How-
ever, the case p = 1 is fundamental for this investigation and relies on the operator
space projective tensor product introduced by Effros/Ruan [ER3]. Pisier [P7] ex-
tended the notion of noncommutative vector-valued Lp-spaces for 1 < p < ∞ first
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in the discrete case, i.e., the underlying von Neumann algebra is B(ℓ2), and then by
approximation to the hyperfinite case [P7]. In this paper, we will use ultraproducts to

extend this concept to the QWEP case in the case p = 1 and provide the fundamen-
tal tools for the general case p > 1 in [J2]. Vector-valued L1-spaces and the Fubini
theorem for duals of injective von Neumann algebras are closely related and can be
obtained by introducing suitable tensor norms. The general case in Fubini’s theo-

rem is based on similar ideas. We will first discuss some equivalent reformulations of
QWEP for von Neumann algebras.

Lemma 2.1 Let B be a C∗-algebra. B is QWEP if and only if B∗∗ is isomorphic to a

von Neumann subalgebra of B(H)∗∗ (for some H) which is the range of a normal (not

necessarily faithful) conditional expectation. If B is in addition a von Neumann algebra,

then B is QWEP if B is itself isomorphic to such a von Neumann subalgebra of B(H)∗∗.

Proof Let A ⊂ A∗∗ ⊂ B(H) be a C∗-algebra with WEP. Consider P : B(H) → A∗∗

such that P|A = idA. Let j : A∗ → B(H)∗ be the restriction j = P∗|A∗ of the dual map
to A∗. Then E = j∗ : B(H)∗∗ → B∗∗ is normal. For every a ∈ A, we have E(a) = a.
Since every element a∗∗ ∈ A∗∗ can be approximated in the σ-weak topology by a

bounded net of elements in A, the weak∗-continuity then implies E(a∗∗) = a∗∗ and
in particular E(1) = 1. Hence, E is a normal conditional expectation, see [Tk, The-
orem III 3.4.], and the assertion holds for A. If B = A/I is a quotient of A, then
there exists a central projection z such that B∗∗ ∼= zA∗∗ and B∗ ∼= zA∗. Hence,

EB(x) = zE(x) yields a normal conditional expectation from B(H)∗∗ onto B∗∗. Let
N be a von Neumann algebra which is QWEP and let E : B(H)∗∗ → N∗∗ be a nor-
mal conditional expectation onto N∗∗. If i : N∗ → N∗ denotes the natural inclu-
sion map, then E1 = i∗ : N∗∗ → N is a normal conditional expectation and hence

E1E : B(H)∗∗ → N is a normal conditional expectation onto N. For the converse,
we assume that B ⊂ B∗∗ ⊂ B(H)∗∗ and E : B(H)∗∗ → B∗∗ is a normal condi-
tional expectation. We note that B(H) is injective and hence has WEP. Therefore
B(H)∗∗ is QWEP according to [Ki, Corollarly 3.3.]. (Indeed, B(H)∗∗ is a quotient

of C st
∞(S; B(H)) the strong∗ convergent bounded sequences in B(H) over a suitable

index set S.) Then B is relatively weakly injective (r.w.i.) in B(H)∗∗. According to [Ki,
Corollarly 3.3.], we deduce that B is QWEP.

Our first step in extending the theory of noncommutative vector-valued L1-spaces
will be to define a suitable norm on the tensor product of an operator space and the
dual of an injective von Neumann algebra. To be more precise let N be an injective
von Neumann algebra and F be a finite dimensional operator space, then we define

the space N∗[F] by specifying a norm on the tensor product N∗ ⊗ F as follows

N
∗[F] = (F∗ ⊗min N)∗.

In other words, given a tensor x =
∑m

i=1 r∗i ⊗ fi , we consider the associated linear
map Sx : N → F defined by Sx(r) =

∑m
i=1 r∗i (r) fi and have

‖x‖N∗[F] = sup{tr(SxT) | ‖T‖cb ≤ 1} = ι(Sx).
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Here ι(S) denotes the operator integral norm, see [EJR, ER3]. By the definition of the
operator space dual F∗ and using that F∗ is finite dimensional, we obtain a natural

isomorphism ([ER2, BP])

F∗ ⊗min N ∼= cb(F,N).

Indeed, a tensor y =
∑m

i=1 f ∗i ⊗ ri corresponds to the linear map defined by

(2.1) Ty( f ) =

m∑

i=1

f ∗i ( f )ri and ‖y‖F∗⊗min N = ‖Ty‖cb.

Lemma 2.2 Let N be an injective von Neumann algebra, F1 ⊂ F2 finite dimensional

operator spaces, T : F2 → F3 a linear map between finite dimensional operator spaces

and q : G1 → G2 a complete quotient map between finite dimensional spaces, then

(i) N∗[F1] is isometrically embedded into N∗[F2].

(ii) idN∗ ⊗ T : N∗[F2] → N∗[F3] satisfies

‖idN∗ ⊗ T : N
∗[F2] → N

∗[F3]‖ ≤ ‖T‖cb.

(iii) idN∗ ⊗ q : N∗[G1] → N∗[G2] is a quotient map.

Proof (i) Let i : F1 → F2 be the natural, completely isometric inclusion map. Then

q = i∗ : F∗
2 → F∗

1 is a quotient map. The assertion follows by duality provided

q∗ ⊗ idN : F∗
2 ⊗min N → F∗

1 ⊗min N

is a quotient map. Indeed, let y ∈ F∗
1 ⊗min N and let Ty : F1 → N be its associated

linear map. By injectivity of N, we can find an extension T : F2 → N such that

‖T‖cb ≤ ‖Ty‖cb = ‖y‖F∗
1 ⊗min N.

Since F∗
2 is finite dimensional there exists an element ŷ ∈ F∗

2 ⊗min N such that T ŷ = T

and (q ⊗ idN)(ŷ) = y. Using (2.1), we deduce the assertion.

(ii) Let T : F2 → F3 be a linear map, then

‖T∗ ⊗ idN : F∗
3 ⊗min N → F∗

2 ⊗min N‖ ≤ ‖T∗‖cb = ‖T‖cb.

By duality, we deduce

‖idN∗ ⊗ T : N
∗[F2] → N

∗[F3]‖ ≤ ‖T∗ ⊗ idN : F∗
3 ⊗min N → F∗

2 ⊗min N‖ ≤ ‖T‖cb.

(iii) Since q : G1 → G2 is a complete quotient map, we see that q∗ : G∗
2 → G∗

1 is a
completely isometric inclusion. Therefore

q∗ ⊗ idN : G∗
2 ⊗min N → G∗

1 ⊗min N

is an isometric embedding. The Hahn-Banach theorem implies the assertion.
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So far, the space N∗[F] is only defined for a finite dimensional space. Let us recall
that for a Banach space X, the space L1(Ω, µ; X) of Bochner integrable functions is

the norm closure of simple functions and therefore

L1(Ω, µ; X) = L1(Ω, µ) ⊗π X.

Here π refers to the Banach space projective tensor product and the norm of a finite
tensor can be calculated using a finite dimensional subspace of X. We pursue a similar
approach in the noncommutative case.

Definition and Remark 2.3 Let X be an operator space and N be an injective von
Neumann algebra, then N∗[X] is defined to be the completion of

⋃
F⊂X N∗[F] where

the union is taken over all finite dimensional subspaces F of X. Due to Lemma 2.2,
N∗[X] is well-defined.

(i) If X1 ⊂ X2 is a subspace, then N∗[X1] ⊂ N∗[X2] completely isometrically.
(ii) If T : X2 → X3 is completely bounded then

‖idN∗ ⊗ T : N
∗[X2] → N

∗[X3]‖ ≤ ‖T‖cb.

In the following, we want to identify N∗[A∗] for the dual of a C∗-algebra A. These

results are related to local reflexivity of duals of C∗-algebras [EJR]. We will have to use
two facts related to this problem. The first fact is a direct consequence of Kaplansky’s
density Theorem [Tk, Theorem II.4.8]. For the second fact, we refer to [ER2, BP].

Fact 2.4 Let A and B be two C∗-algebras. Then the unit ball of A ⊗min B is dense
in the unit ball of the von Neumann algebra tensor product A∗∗⊗̄B∗∗ with respect to
the σ(A∗∗⊗̄B∗∗,A∗ ⊗ B∗)-topology.

Fact 2.5 (Effros-Ruan) Let A and B be C∗-algebras. Then

(A∗ ⊗̂ B∗)∗ = CB(A∗,B∗∗) = A∗∗⊗̄B∗∗

holds isometrically. Here for an element z ∈ A∗∗⊗̄B∗∗, the linear map Tz : A∗ → B∗∗

is defined by

(2.2) Tz(a∗)(b∗) = 〈z, a∗ ⊗ b∗〉.

Lemma 2.6 Let N be an injective von Neumann algebra, A a C∗-algebra and F ⊂ A∗

a finite dimensional subspace with quotient map q : A∗∗ → F∗, then

q ⊗ idN : A∗∗ ⊗min N → F∗ ⊗min N

maps the open unit ball onto the open unit ball.
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Proof Let x ∈ F∗ ⊗min N be an element of norm ‖x‖ < 1 and Tx : F → N be
the corresponding linear map. Let ( fi)

n
i=1 ⊂ F, ( f ∗i )n

i=1 ⊂ F∗ be an Auerbach basis

of F, i.e., ‖ fi‖ ≤ 1, ‖ f ∗j ‖ ≤ 1 and f ∗j ( fi) = δi j . Let a j ∈ A∗∗, j = 1, . . . , n
be norm preserving extensions of the f ∗j ’s. Using the injectivity of N, there exists
an extension T : A∗ → N of Tx with the same cb-norm. According to Fact 2.5 the
map T corresponds to a norm one element z in A∗∗⊗̄N and according to Fact 2.4,

we can find a net (zλ) in the unit ball of A ⊗min N converging to z with respect to
the σ(A∗∗⊗̄N∗∗,A∗ ⊗ N∗)-topology. Hence, the corresponding net (Tλ) of maps
Tλ : A∗ → N converges in the point-weak topology to T. A convex combination of

those maps converges in the point-norm topology to T. Therefore, given ε =
1−‖x‖

2
,

we can find a finite rank map T1 : A∗ → N such that ‖T1‖cb ≤ ‖x‖ and

‖T1( fi) − T( fi)‖ ≤ ε

n

for i = 1, . . . , n. Consider

T2 =

n∑

i=1

ai ⊗ [T( fi) − T1( fi)],

then T1 + T2|F = Tx. Following Fact 2.5, we see that the finite rank map T = T1 + T2

corresponds to a tensor z ′ ∈ A∗∗ ⊗ N such that Tz ′ = T. In particular, T|F = Tx

implies (q ⊗ idN)(z ′) = z and

‖z ′‖A∗∗⊗min N = ‖T1 + T2‖cb ≤ ‖x‖ +

n∑

i=1

‖ai‖‖T1( fi) − T( fi)‖ ≤ ‖x‖ + ε < 1.

Lemma 2.7 Let N be an injective von Neumann algebra and A be a C∗-algebra, then

N∗[A∗] = N∗ ⊗̂ A∗ holds isometrically.

Proof Since both spaces N∗ ⊗̂A∗ and N∗[A∗] are defined as the closure of the finite
rank tensors, we only have to prove that for finite rank tensors the norms coincide.

Let x =
∑m

j=1 a∗j ⊗ r∗j and F = span{a∗1 , . . . , a
∗
n} ⊂ A∗ be given. According to

Lemma 2.6 and using the fact that a Banach space is isometrically embedded in its
bidual, we get

‖x‖(F∗⊗min N)∗ = ‖x‖(A∗∗⊗min N)∗ ≤ ‖x‖(A∗∗⊗̄N∗∗)∗

= ‖x‖(N∗⊗̂A∗)∗∗ = ‖x‖
N∗⊗̂A∗ .

Conversely, we apply the Hahn-Banach theorem and find an element in the unit ball
of A∗∗⊗̄N∗∗ such that

‖x‖
N∗⊗̂A∗ = |〈x, z〉| .

According to Fact 2.4, we can find a net zλ in the unit ball of N ⊗min A such that

|〈x, z〉| = lim
λ

|〈x, zλ〉| .
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Let q : A∗∗ → F∗ be the quotient map, then idN⊗q(zλ) is in the unit ball of F∗⊗min N

and hence

|〈x, zλ〉| = |〈x, idN ⊗ q(zλ)〉| ≤ ‖x‖N∗[F]‖idN ⊗ q(zλ)‖N⊗min F∗ ≤ ‖x‖N∗[F].

Passing to the limit, we deduce ‖x‖
N∗⊗̂A∗ = |〈x, z〉| ≤ ‖x‖N∗[F]. The assertion is

proved.

Corollary 2.8 Let N and M be injective von Neumann algebras, then

N
∗[M∗] ∼= M

∗[N∗]

isometrically.

Proof By symmetry in the definition of the operator space projective tensor prod-

uct, we get

N
∗[M∗] = N

∗ ⊗̂ M
∗ ∼= M

∗ ⊗̂ N
∗

= M
∗[N∗]

Definition and Remark 2.9 Let A be a C∗-algebra with QWEP and let E : B(H)∗∗ →
A∗∗ be a normal conditional expectation with predual map E∗ : A∗ → B(H)∗ (for the
existence, we refer to Lemma 2.1), then for every operator space X we define

A∗[X] = cl(A∗ ⊗ X)

to be the closure of the finite rank tensors A∗ ⊗ X with respect to the norm

‖x‖A∗[X] = ‖E∗ ⊗ idX(x)‖B(H)∗[X].

If X1 ⊂ X2 subspace (in the sense of operator spaces), then the inclusion map

A∗[X1] ⊂ A∗[X2]

is isometric. For any completely bounded map T : X2 → X3

‖idA∗ ⊗ T : A∗[X2] → A∗[X3]‖ ≤ ‖T‖cb.

Formally this definition depends on E. However, the results in this paper are inde-
pendent of the particular choice of E. In applications, we will have a canonical choice
of E by verifying that A is QWEP.

Corollary 2.10 Let A be C∗-algebra with QWEP and B be an arbitrary C∗-algebra,

then A∗[B∗] = A∗ ⊗̂B∗ isometrically. If moreover, B is QWEP, then A∗[B∗] = A∗ ⊗̂B∗

∼= B∗ ⊗̂ A∗
= B∗[A∗] isometrically.
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Proof Fix E∗ : A∗ → B(H)∗ as it is used to define the norm in A∗[X]. By Lemma
2.7 applied to B(H), we have B(H)∗ ⊗̂ B∗

= B(H)∗[B∗]. Hence,

E∗ ⊗ idB∗ : A∗ ⊗̂ B∗ → B(H1)∗ ⊗̂ B∗
= B(H)∗[B∗]

is continuous. Therefore, we get

‖x‖A∗[B∗] = ‖E∗ ⊗ idB∗(x)‖B(H)∗⊗̂B∗ ≤ ‖x‖A∗⊗̂B∗ .

Let π : A∗∗ → B(H)∗∗ be the normal embedding and π∗ : B(H)∗ → A∗ its predual
map. Then π∗E∗ = idA∗ and π∗ is completely contractive. Hence

‖x‖A∗⊗̂B∗ = ‖(π∗E∗⊗idB∗)(x)‖A∗⊗̂B∗ ≤ ‖π∗‖cb‖E∗⊗idB∗(x)‖B(H)∗⊗̂B∗ ≤ ‖x‖A∗[B∗].

If B has QWEP, the assertion follows from the symmetry of the operator space pro-
jective tensor product.

We want to apply similar techniques to ultraproducts. Let us recall that the ultra-
product

∏
U

Xi of a family of Banach spaces is defined as the quotient
∏

i∈I Xi/KerU

where
KerU = {(xi)i∈I | lim

i,U
‖xi‖Xi

= 0}.

Let (Ai) be a family of C∗-algebras. According to a result of Groh [Gr], we know that

NU =

( ∏
U

A∗
i

)∗

is a von Neumann algebra. Indeed,

∏
U

A∗
i ⊂

( ∏
i∈I

Ai

)∗

is invariant under the multiplication from the left and the right by elements in∏
i∈I Ai and according to [Tk, Theorem 2.7.] there exists a central projection zU ∈

(
∏

i∈I Ai)
∗∗ such that

∏
U

A∗
i = zU

( ∏
i∈I

Ai

)∗

.

Therefore NU
∼= zU(

∏
i∈I Ai)

∗∗ is a von Neumann algebra such that (NU)∗ =∏
U

A∗
i .

Proposition 2.11 Let (Ai), (B j) be two families of C∗-algebras and U, U ′ be two

ultrafilters on the index set I, J, respectively. Let
∑n

k=1 a∗k ⊗ b∗k ∈
∏

U
A∗

i ⊗
∏

U ′ B∗
j be

a finite rank tensor. Then

lim
i,U

lim
j,U ′

∥∥∥
n∑

k=1

a∗k (i) ⊗ b∗k ( j)
∥∥∥

A∗
i ⊗̂B∗

j

=

∥∥∥
n∑

k=1

a∗k ⊗ b∗k

∥∥∥
(
∏

U
A∗

i )⊗̂(
∏

U ′ B∗
j )

= lim
j,U ′

lim
i,U

∥∥∥
n∑

k=1

a∗k (i) ⊗ b∗k ( j)
∥∥∥

A∗
i ⊗̂B∗

j

.
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Proof For i ∈ I and j ∈ J, we denote by Mi = A∗∗
i and N j = B∗∗

j , the correspond-
ing von Neumann algebras. Let Pi : M∗

i → A∗
i = (Mi)∗, Q j : N∗

j → B∗
j = (N j)∗

be the projections onto the normal parts, respectively. Then P = (Pi) :
∏

U
M∗

i →∏
U

A∗
i , Q = (Q( j)) :

∏
U ′ N∗

j →
∏

U ′ B∗
j are completely contractive projections.

Let d =
∑n

k=1 a∗k ⊗ b∗k . From P ⊗ Q(d) = d, we deduce

∥∥∥
n∑

k=1

a∗k ⊗ b∗k

∥∥∥
(
∏

U
M

∗
i )⊗̂(

∏
U ′ N

∗
j )

=

∥∥∥
n∑

k=1

a∗k ⊗ b∗k

∥∥∥
(
∏

U
A∗

i )⊗̂(
∏

U ′ B∗
j )
.

Let zU, zU ′ be the central projections such that
∏

U
M∗

i = zU

(∏
Mi

)∗
,
∏

U ′ N∗
j =

zU ′

(∏
N j

)∗
, respectively. Define the functional f by

〈 f ,m ⊗ n〉 =

n∑

k=1

lim
i,U

〈m(i), a∗k (i)〉 lim
j,U ′

〈n( j), b∗k ( j)〉,

then (zU ⊗ zU ′) f = f and

‖ f ‖(
∏

i∈I Mi)∗⊗̂(
∏

j∈ J N j)∗ =

∥∥∥
n∑

k=1

a∗k ⊗ b∗k

∥∥∥
(
∏

U
M

∗
i )⊗̂(

∏
U ′ N

∗
j )
.

By symmetry it therefore suffices to show the following equality

(2.3) ‖ f ‖(
∏

i∈I Mi )∗⊗̂(
∏

j∈ J N j )∗
= lim

i,U
lim
j,U ′

∥∥∥
n∑

k=1

a∗k (i) ⊗ b∗k ( j)
∥∥∥

A∗
i ⊗̂B∗

j

.

First, we consider an arbitrary element d̃ = (d̃(i, j)) ∈
∏

U

∏
U ′ A∗

i ⊗̂B∗
j . Let (ε(i, j))

be a family of positive real numbers such that limi,U lim j,U ′ ε(i, j) = 0. For each
coordinate (i, j) we apply Fact 2.5 and find a norm one element x(i, j) ∈ Mi⊗̄N j

such that
‖x(i, j)‖Mi⊗̄N j

≤ (1 + ε(i, j))
∣∣〈d̃(i, j), x(i, j)〉

∣∣ .

This shows that map

Φ1 :
∏

U

∏
U ′

A∗
i ⊗̂ B∗

j →
( ∏

(i, j)∈I× J

Mi⊗̄N j

)∗

defined by
Φ1(d̃)(x) = lim

i,U
lim
j,U ′

〈d̃(i, j), x(i, j)〉

is isometric. We specialize to d =
∑n

k=1 a∗k⊗b∗k and want to relate this to f . According
to Fact 2.5 every norm one element x ∈ ∏

I× J Mi⊗̄N j defines a complete contraction
Tx :

∑
i(Mi)∗ → ∏

j N j defined according to (2.2) as follows. Let i ∈ I and a∗ ∈
A∗

i = (Mi)∗. Consider the family si(a∗) ∈ ∑
i(Mi)∗ defined by

si(a∗)(i ′) =

{
a∗ if i ′ = i,

0 else.
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By definition of
∑

i(Mi)∗ the span of such elements is norm dense. Then Tx satisfies
for all b∗ ∈ N∗

j

〈b∗j ,Tx(si(a∗))( j)〉 = 〈a∗ ⊗ b∗, x(i, j)〉.
We observe that T∗

x : (
∏

j N j)
∗ → ∏

i Mi is also a complete contraction such that for

every ψ ∈ (
∏

N j)
∗, and for every i ∈ I and a∗ ∈ A∗

i , we have

〈a∗,T∗
x (ψ)(i)〉 = 〈si(a∗),T∗

x (ψ)〉 = ψ ◦ Tx(si(a∗))

= 〈ψ, (Tx(si(a∗))( j)) j∈ J〉.

Let ι :
∏

Mi → (
∏

Mi)
∗∗ be the canonical embedding. Using Fact 2.5 (and an

obvious flip), we get an isometric isomorphism

β : CB
(( ∏

N j

)∗
,
( ∏

Mi

)∗∗
)
→

( ∏
Mi

)∗∗⊗̄
( ∏

N j

)∗∗

such that for every φ ∈ (
∏

Mi)
∗ and ψ ∈ (

∏
N j)

∗, we have

〈β(ιT∗
x ), φ⊗ ψ〉 = 〈φ,T∗

x (ψ)〉.

Recall f =

n∑
k=1

a∗k ⊗ b∗k . Let us fix k ∈ {1, . . . , n} and consider the functionals

〈φk,m〉 = limi,U〈m(i), a∗k (i)〉 and 〈ψk, n〉 = lim j,U ′〈n( j), b∗k ( j)〉. Then we deduce

〈β(ιT∗
x ), φk ⊗ ψk〉 = 〈φk,T

∗
x (ψk)〉

= lim
i,U

〈a∗k (i),T∗
x (ψk)(i)〉

= lim
i,U

〈ψk, [(a∗k (i) ⊗ idN j
)(x(i, j))] j∈ J〉

= lim
i,U

lim
j,U ′

〈a∗k (i) ⊗ b∗k ( j), x(i, j)〉

= Φ1(a∗k ⊗ b∗k )(x).

Let us define the contraction α :
∏

I× J N j⊗̄Mi → (
∏

N j)
∗∗⊗̄(

∏
Mi)

∗∗ by α(x) =

β(ιT∗
x ). By linearity, we obtain

Φ1(d)(x) = 〈β(ιT∗
x ), f 〉 = 〈α(x), f 〉

for all x ∈
∏

I× J Mi⊗̄N j . Then α extends the natural embedding π : (
∏

i Mi) ⊗min

(
∏

N j) → (
∏

Mi)
∗∗⊗̄(

∏
j N j)

∗∗. From Fact 2.4, we deduce

‖Φ1(d)‖ = sup
‖x‖∏

I× J Mi⊗̄N j

|〈α(x), f 〉| ≤ ‖ f ‖ sup
‖x‖∏

I× J Mi⊗̄N j

‖α(x)‖

≤ ‖ f ‖ = sup
‖x‖(

∏
Mi )⊗min (

∏
N j )≤1

|〈 f , π(x)〉|

≤ sup
‖x‖∏

I× J Mi⊗̄N j
≤1

|〈 f , α(x)〉| = ‖Φ1(d)‖.

Hence, we obtain equality (2.3). This completes the proof.
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Remark 2.12 In the special case where Mi = B(Hi) and N j = B(K j), we can define
the injective algebras M =

∏
i B(Hi) and N =

∏
j B(K j). Then it is easy to deduce

from Lemma 2.6 that

lim
i,U

lim
j,U ′

∥∥∥
n∑

k=1

a∗k (i) ⊗ b∗k ( j)
∥∥∥

B(Hi )∗⊗̂B(K j )∗
=

∥∥∥
n∑

k=1

a∗k ⊗ b∗k

∥∥∥
N∗[M∗]

,

where a∗k and b∗k denote the functional a∗k ((Ti)) = limi,U〈a∗k (i),Ti〉 and b∗k ((S j)) =

lim j,U ′〈b∗k ( j), S j〉, respectively. Therefore, in this special case the assertion of Propo-
sition 2.11 follows from Corollary 2.8.

In general double duals and ultraproducts are closely related. This will be used in
[J2] and in our situation this reads as follows.

Lemma 2.13 Let N be a von Neumann algebra, then there exist an index set I, an

ultrafilter U, a von Neumann algebra NU = (
∏

U
N∗)∗, a normal contractive map

E : NU → N∗∗ and a normal faithful representation π : N∗∗ → NU such that Eπ =

idN∗∗ .

Proof Let us consider the index set

I = {(F,G)|1 ∈ F ⊂ N, dim(F) <∞,G ⊂ N
∗, dim(G) <∞}.

Using the principle of local reflexivity, see [EJR], we can find for every pair i = (F,G)
a map ui : G∗ → N∗ such that

‖ui‖cb ≤ 1 +
1

dim(F) + dim(G)
,

and for all x ∈ F and y∗ ∈ G

|〈y∗, x〉 − 〈u(y∗), x〉| ≤ (dim(F) + dim(G))−1.

For x ∈ N, y∗ ∈ N∗ and m ∈ N, we consider Ix,y∗,m = {(F,G) ∈ I|x ∈ F, y∗ ∈
G, dim(F) + dim(G) ≥ m}. Then finite intersections Ix1,y∗1 ,m1

∩ · · · ∩ Ixk,y
∗
k
,mk

are not

empty and hence there exists an ultrafilter U such that

{Ix,y∗,m|x ∈ N, y∗ ∈ N
∗,m ∈ N} ⊂ U.

We define a map u : N∗ →
∏

U
N∗ by

u(y∗) = (ui(y∗))i∈I

where ui(y∗) = 0 if i = (F,G) and y∗ /∈ G. Obviously, ‖u‖cb ≤ 1 and u is well-

defined. Let us consider w :
∏

U
N∗ → N∗ defined for x ∈ N by

〈w((yi)), x〉 = lim
i,U

〈yi, x〉.
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Then w is a complete contraction and by the definition of I and the choice of U, we
deduce for all y∗ ∈ N∗ and x ∈ N

〈wu(y∗), x〉 = 〈y∗, x〉.

Thus, we get wu = idN∗ and by duality u∗w∗
= idN∗∗ . Let NU = (

∏
U

N∗)∗ and zU

be the corresponding central projection in (
∏

N)∗∗. We have a natural representa-
tion π0 : N →

∏
i∈I N defined by π0(x) = 1 ⊗ x. Let and πU : N → NU be given by

πU(x) = zUπ0(x). Then for every x ∈ N and (yi) ∈
∏

U
N∗, we have

〈πU(x), (yi)〉 = lim
i,U

〈x, yi〉 = 〈w((yi)), x〉.

Hence, π∗
U
|∏

U
N∗

= w and therefore the normalization (πU)nor : N∗∗ → NU sat-

isfies (πU)nor = w∗. In particular, w∗ is a normal C∗-homomorphism. The map
u∗ : NU → N∗∗ is a complete contraction and

u∗(1) = u∗w∗(1) = 1.

According to Tomiyama’s Theorem [Tk, Theorem III 3.4.], we deduce that E = w∗u∗

is a normal conditional expectation onto w∗(N∗∗).

Remark 2.14 (1) Let us consider the special case N = B(H). Then NU = NU(H)
is a quotient of the QWEP algebra ℓ∞(B(H))∗∗ and therefore NU(H) is QWEP.
Lemma 2.1 implies that a C∗-algebra A is QWEP if and only if there exists a normal

conditional expectation E : NU(H) → A∗∗ for a suitable NU(H).

(2) The preconjugate E∗ :
∏

U
S1 → (

∏
B(H))∗ defined in the proof of Lemma

2.13, provides us with a conditional expectation E = (E∗)∗ : (
∏

B(H))∗∗ → NU

such that

(NU)∗[F] =

∏
U

S1[F]

for every finite dimensional operator space F. This will be our preferred choice of E∗

for NU(H) in the forthcoming paper [J2].

3 The Fubini Theorem for p > 1

In this section we will extend Fubini’s Theorem for ultraproducts of noncommutative
Lp-spaces to the range p > 1. We will use the concept of the Haagerup Lp-spaces as

a fundamental tool. We refer to [Ha2, Te1, C2] for more details and properties of the
abstract Haagerup Lp-spaces, whose definition we recall now. Let N be a von Neu-
mann algebra with an n.s.f. (normal, semifinite, faithful weight) w on N. Consider
the crossed product N ⋊σw R with respect to the modular automorphism group σw.

Indeed, if N acts faithfully on a Hilbert space H, then the crossed product N ⋊σw R

is a von Neumann algebra acting on L2(R,H) and generated by all the elements

π(x)(ξ(t)) = σw
−t (x)(ξ(t)) and λ(s)ξ(t) = ξ(t − s)
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x ∈ N and s ∈ R. For s ∈ R let W (s) be the unitary defined by the phase shift

(
W (s)ξ

)
(t) = e−istξ(t).

Then N ⋊σw R is semifinite and admits a unique trace τ such that the dual action

θs(x) = W (s)xW (s)∗

satisfies τ (θs(x)) = e−sτ (x), see [PT ]. Moreover, for every x ∈ N and s ∈ R we have

θs(π(x)) = π(x) and even

(3.1) π(N) = {x ∈ N ⋊σw R | ∀s ∈ R : θs(x) = x}

Let us agree to identify N with π(N) in the following. Haagerup’s Lp space Lp(N,w)

(or in short Lp(N)) is defined to be the space of (unbounded) τ -measurable operators
affiliated to N ⋊σw R such that for all s ∈ R

θs(x) = e−
s
p x.

Note that the intersection Lp(N) ∩ Lq(N) is {0} for different values p 6= q. There is

a natural isomorphism between N∗ and L1(N) such that for every normal functional
φ ∈ N∗ there is a unique operator aφ ∈ L1(N) satisfying

φ
( ∫

R

θs(x) ds
)

= τ (aφx)

for all positive elements x ∈ N ⋊σw R. The trace functional tr : L1(N) → C (corre-
sponding to the integral in the commutative case) is given by

tr(aφ) = φ(1).

N acts as a left and right module on Lp(N) and more generally Hölder’s inequality

(3.2) ‖xy‖r ≤ ‖x‖p‖y‖q

holds whenever x ∈ Lp(N), y ∈ Lq(N) and 1
p

+ 1
q

=
1
r
. Let 1

p
+ 1

p ′ = 1 and x ∈ Lp(N),

y ∈ Lp ′(N). Then we have the tracial property

tr(xy) = tr(yx).

The polar decomposition x = u|x| of x ∈ Lp(N) satisfies u ∈ N and

‖x‖p = tr(|x|p)
1
p .

In particular, for every x ∈ L2p(N)

(3.3) ‖x‖2p = ‖x∗x‖
1
2
p .
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For 0 < p ≤ 1, the space Lp(N) is p-normed, i.e.,

(3.4) ‖x + y‖p
p ≤ ‖x‖p

p + ‖y‖p
p

holds for all x, y ∈ Lp(N) (see [Ko2]). As for semifinite von Neumann algebras, there
is a positive cone Lp(N)+ in Lp(N) consisting of elements in Lp(N) which are posi-

tive as unbounded operators affiliated to N ⋊σw R. Following [Te1, Proposition 33,
Theorem 32], we deduce for 0 ≤ x ≤ y ∈ Lp(N) and 1

p
+ 1

p ′ = 1

‖x‖p = sup
z∈Lp ′ (N)+

‖z‖p ′≤1

tr(zx) ≤ sup
z∈Lp ′ (N)+

‖z‖p ′≤1

tr(zy) = ‖y‖p.

The operator space structure of Haagerup’s Lp-spaces is slightly more difficult to
define because interpolation is not immediately applicable for Haagerup Lp-spaces.

Indeed, we first consider the case p = 1. Then the mapping β : L1(N) → N
op
∗ defined

by
β(D)(x) = tr(Dx)

is well-defined since N and Nop coincide as (dual) Banach spaces (not as algebras of

course). Given a matrix [Di j] of elements in L1(N) we observe that

‖[β(Di j )]‖Sn
1⊗̂N

op
∗

= sup
‖[xi j ]‖Mn(Nop )≤1

∣∣∣
∑

i j

tr(Di jxi j)
∣∣∣

= sup
‖[xi j ]‖Mn(N)≤1

∣∣∣
∑

i j

tr(Di jx ji)
∣∣∣

= ‖[Di j]‖L1(Mn⊗N,trn⊗w).

Here trn is the non-normalized trace on Mn and, trn ⊗w the n.s.f. weight on Mn ⊗N.
Therefore, the operator space structure induced by β satisfies

Sn
1 ⊗̂ L1(N) = L1(Mn ⊗ N).

We will call this the natural operator space structure on L1(N). In order to obtain the

operator space structure for Lp(N), we first assume that φ is a normal faithful state
with density D ∈ L1(N). Then, we may define the symmetric embedding I : N →
L1(N) by I(x) = D

1
2 xD

1
2 and by interpolation (see [BL] for general information) the

operator space

Ep(N) = [I(N), L1(N)] 1
p
.

According to Kosaki’s results [Ko, Theorem 9.1] there is a natural isometric isomor-

phism between Ep(N) and Lp(N) which sends x ∈ Lp(N) to D
1

2p ′ xD
1

2p ′ ∈ Ep(N) ⊂
L1(N). This induces the natural operator space structure on Lp(N). Indeed, according
to [P7, Corollary 1.4], we obtain by complex interpolation

(3.5) Sn
p[Lp(N)] = Lp(Mn ⊗ N).
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In the general case, we use a strictly semifinite normal weight w. This means there is
an increasing family of projection ei with w(ei) < ∞ such that ei converges strongly

to 1 and σw
t (ei) = ei . Then, we obtain the natural operator space structure on

eiLp(N)ei = Lp(eiNei) using the state φi = w(ei)
−1eiwei . It is easily checked that we

obtain compatible operator space structures for ei ≤ e j . By density of
⋃

i eiLp(N)ei

in Lp(N), we finally obtain the natural operator space structure on Lp(N) which still

satisfies (3.5). Thus (3.5) completely determines the operator space structure by

‖x‖Mn(Lp(M)) = sup
‖a‖Sn

2p
‖b‖Sn

2p
≤1

‖a.x.b‖Lp (Mn⊗N,trn⊗w).

Note that we could have used this formula as a definition. But then it is not clear

that Ruan’s axiom (R2) is verified. Note, moreover, that (3.5) is also compatible with
the isomorphisms obtained by a change of weight (see [Te1]) and hence the natu-
ral operator space structure is indeed defined for Haagerup’s abstract Lp(N) space.
In this paper, we will sometimes indicate that certain isometries are indeed com-

plete isometries. However, using (3.5) this often follows automatically and therefore
the proof of these statements will be omitted. We refer to [KR, section 11] for ten-
sor products of unbounded operators and [KR, proposition 13.1.12] for the tensor
product of modular groups. Haagerup Lp-spaces are also compatible with normal

conditional expectations. In the context of a faithful normal state, we will use the
following observation from [JX, Proposition 2.3].

Proposition 3.1 Let N be a von Neumann algebra, M a von Neumann subalge-

bra with a normal, faithful state φ and E : N → M a faithful normal conditional

expectation. For 0 < p ≤ ∞ there is a natural (completely) isometric embedding

i p : Lp(M) → Lp(N). For 1 ≤ p ≤ ∞, there is a contraction Ep : Lp(N) → Lp(N)

such that

Ep(i2p(a)xi2p(b)) = i2p(a)E(x)i2p(b)

for all x ∈ M, a ∈ Lr(M), b ∈ Ls(M) with 1
r

+ 1
s

=
1
p
≤ 1. Moreover, if DM denotes

the density of φ ∈ L1(M) and DN denotes the density of φ ◦ E in L1(N), then

(3.6) i p(D
1−θ

p

M
xD

θ
p

M
) = D

1−θ
p

N
xD

θ
p

N
and Ep(D

1−θ
p

N
yD

θ
p

N
) = D

1−θ
p

M
E(y)D

θ
p

M

for all 1 ≤ p ≤ ∞, 0 ≤ θ ≤ 1 and x ∈ M, y ∈ N.

Remark 3.2 It is easily checked that E∗
p = i p ′ for conjugate indices 1

p
+ 1

p ′ = 1.

Proof Indeed, let trN be the trace on L1(N) and trM the trace on L1(M). Let a =

D
1
p

N
x ∈ Lp(N) and b = yD

1

p ′

M
∈ Lp ′(M), then we deduce from (3.6) (θ = 1)

trM(Ep(a)b) = trM(D
1
p

M
E(x)yD

1

p ′

M
) = trM(E(xy)DM) = φ ◦ E(xy)

= trN(xyDN) = trN(D
1
p

N
xyD

1

p ′

N
)

= trN(ai p ′(b)).
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Therefore the assertion follows by density (see [JX, Lemma 1.1]) using the duality
brackets 〈a, b〉 = tr(ab) for M, N, respectively.

The following well-known observation allows us to identify the support of the

composition state.

Lemma 3.3 Let E : N → M be a faithful, normal conditional expectation and φ a

normal state on M. Then the support s(φ) of φ and the support of φ ◦ E coincide.

Proof Let s = s(φ) and s̃ = s(φ ◦ E) and x ∈ N, then

φ ◦ E(sx) = φ(sE(x)) = φ(E(x)) = φ ◦ E(x).

Hence s̃ ≤ s and thus ss̃s = s̃ and E(ss̃s) ≤ E(s) = s. However,

φ(s − sE(s̃)s) = φ(1) − φ(sE(s̃s)) = 1 − (φ ◦ E)(s̃)

= φ(1) − (φ ◦ E)(1) = φ(1) − φ(1) = 0.

Since φ is faithful on sMs, we deduce

E(s) = s = sE(s̃)s = E(ss̃s) = E(s̃).

Since E is faithful, we deduce s = s̃.

Let (Mi), (N j) be families of von Neumann algebras and U, U ′ be ultrafilters
on the index sets I and J, respectively. As in the first part, we will consider their
corresponding von Neumann algebras

MU =

( ∏
U

L1(Mi)
) ∗

and NU ′ =

( ∏
U ′

L1(N j)
) ∗

,

which can be identified with zU(
∏

Mi)
∗∗, zU ′(

∏
N j)

∗∗, respectively. In the follow-
ing it will be useful to work with the tracial map TrU :

∏
U

L1(Mi) → C, defined

by

TrU((xi)) = lim
i,U

tri(xi).

Let 1
p

+ 1
p ′ = 1. Then, we note that for every x ∈ ∏

U
Lp(Mi) and every y ∈∏

U
Lp ′(Mi) we have

(3.7) TrU(xy) = lim
i,U

tri(x(i)y(i)) = lim
i,U

tri(y(i)x(i)) = TrU(yx).

In particular, for every x ∈ MU and y ∈
∏

U
L1(Mi), we deduce that

TrU(xy) = TrU(yx)
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is well-defined by approximation with a bounded net xα converging in the strong∗

topology to x. Every (component wise) positive element d ∈ ∏
U

L1(Mi) with

TrU(d) = 1 defines a positive, normal state on (
∏

Mi)
∗∗ defined by

φd(x) = TrU(dx).

Then φd extends to a normal functional on (
∏

M j)
∗∗ such that zUφd = φd. Hence,

φd is a normal state in the predual (MU)∗ and we obtain an isometric map
V :

∏
U

L1(Mi) → (MU)∗ satisfying

V (d) = φd.

Raynaud [Ra2] extends this map to other values of p. In our context, we will use the
inverse of that map, namely a family of linear maps (Tp)0<p<∞ such that

Tp : Lp(MU) →
∏

U
Lp(Mi)

and

(3.8) Tp(ab) = Tr(a)Ts(b),

holds for all 1
r

+ 1
s

=
1
p

and a ∈ ∏
U

Lr(Mi), b ∈ ∏
U

Ls(Mi), see [Ra2, Theorem

5.1]. Moreover, using the identification between (MU)∗ and L1(MU), we have

V ◦ T1 = id = T1 ◦V.

We deduce for conjugate indices ( 1
p

+ 1
p ′ = 1) that

(3.9) TrU(Tp(a)Tp ′(b)) = TrU(T1(ab)) = V1(T1(ab))(1) = trMU
(ab).

Therefore using the duality bracket Lp(MU)∗ = Lp ′(MU) given by trMU
and the

duality bracket on (
∏

U
Lp(Mi))∗ =

∏
U

Lp ′(Mi) given by TrU, we deduce

(3.10) T∗
p = Tp ′ .

Moreover these maps preserve the Mazur map, i.e., for a positive element a ∈∏
U

Lp(Mi) we have

(3.11) Tp(a)p
= T1(ap).

We refer to [Ra2] for more details on this map. (Raynaud actually considers the
ultrapower of a given von Neumann algebra but his arguments carry over verbatim

to this more general situation.) Let us note that in view of (3.5), the map Tp is a
completely isometric isomorphism.

Fact 3.4
∏

U
Lp(Mi) is a left and right MU module. More precisely, if (xα) is a

bounded net in
∏

Mi converging in the strong∗ topology to x ∈ (
∏

i Mi)
∗∗ and if

a ∈ ∏
U

Lp(Mi), then xαa is converging in norm to the element called xa.
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Proof Using Raynaud’s Theorem [Ra2, Theorem 3.6.] which identifies Lp(MU)
with

∏
U

Lp(Mi) (see (3.8) below), it is clear that
∏

U
Lp(Mi) is a left and right MU

module. We can also argue as in [J1, Lemma 2.3] that for every bounded, strongly
convergent net (xα) ⊂

∏
Mi and for every a ∈

∏
U

Lp(Mi), we obtain a norm
convergent net xαa, where (xαa)(i) = xα(i)a(i) is defined pointwise.

The next lemma ensures that the support of the state is compatible with its density.

Lemma 3.5 Let d ∈
∏

U
L1(Mi)+ and φd be its associated state. For 0 < p < ∞ let

d
1
p = (d(i)

1
p ). Then

s(φd)d
1
p = d

1
p = d

1
p s(φd).

Similarly, for every a ∈ ∏
U

Lp(Mi)

zUa = a.

Proof We note that for every x ∈
∏

i Mi

TrU(dx) = φd(x) = s(φd).φd(x) = φd(xs(φd))

= TrU(dxs(φd)) = TrU(s(φd)dx).

Hence s(φd)d = d. Similarly, we deduce zUa = a for every a ∈
∏

U
L1(Mi). Since

the proof for both assertions is very similar, we will only show the first assertion. Let

S be the set of all p’s such that s(φd)d
1
p = d

1
p . We have just proved 1 ∈ S. Let us show

p ∈ S implies 2p ∈ S. Indeed,

‖(1 − s(φd))d
1

2p ‖2
2p = ‖(1 − s(φd))d

1
p (1 − s(φd))‖p

≤ ‖(1 − s(φd))d
1
p ‖p‖(1 − s(φd))‖∞ = 0.

Therefore, by induction we deduce that {2k|k ∈ N} ⊂ S. However, for q < p ∈ S,
we deduce from Hölder’s inequality and using 0 < r <∞ defined by 1

q
=

1
p

+ 1
r

that

‖(1 − s(φd))d
1
q ‖q ≤ ‖(1 − s(φd))d

1
p ‖p‖d

1
r ‖r = 0.

Hence, we find (0,∞) ⊂ S and the assertion is proved.

Before we prove Fubini’s theorem, we shall first provide a natural embedding of

Lp(M) ⊗ Lp(N) in Lp(M ⊗ N).

Proposition 3.6 Let M and N be von Neumann algebras. Then there is a family of

linear maps (Ip)1≤p<∞, Ip : Lp(M) ⊗ Lp(N) → Lp(M ⊗ N) all with dense range such

that

(3.12) Ip(ma ⊗ nb) = (m ⊗ n)Ip(a ⊗ b) and Ip(am ⊗ bn) = Ip(a ⊗ b)(m ⊗ n),
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holds for all a ∈ Lp(M), b ∈ Lp(N), m ∈ M, n ∈ N. Moreover,

(3.13) Ip(a1a2 ⊗ b1b2) = Ip1
(a1 ⊗ b1)Ip2

(a2 ⊗ b2)

holds for 1
p

=
1
p1

+ 1
p2

and a1 ∈ Lp1
(M), a2 ∈ Lp2

(M), b1 ∈ Lp1
(N) and b2 ∈ Lp2

(N).

Finally for positive elements a ∈ L1(M) and b ∈ L1(N)

(3.14) Ip(a
1
p ⊗ b

1
p ) = I1(a ⊗ b)

1
p .

Proof Let us first assume that M and N are σ-finite, i.e., there exist a normal faithful
state φ on M and ψ in N. Let C ∈ L1(M) and C ′ ∈ L1(N) be the densities of

φ, φ, respectively. Then φ ⊗ ψ defines a normal faithful state and we denote by
D ∈ L1(M ⊗ N) its density. Then, we may define for m ∈ M and n ∈ N

Ip(mC
1
p ⊗ nC ′

1
p ) = (m ⊗ n)D

1
p

and extend Ip by linearity to the dense subspace MC
1
p ⊗ NC ′

1
p ⊂ Lp(M) ⊗π Lp(N).

(Here π denotes the Banach space projective tensor product.) Now, we want to show
that Ip extends by continuity to Lp(M) ⊗ Lp(N). Since this embedding is compatible
with Kosaki’s interpolation [Ko, Theorem 9.1] and invoking the bilinear complex
interpolation, it suffices to show the continuity for p = ∞ and p = 1. This is

obvious for p = ∞. For p = 1 it follows from Fact 2.5 combined with the canonical
isometric identification between L1(M) and M∗, L1(N) and N∗, respectively. We
denote by Ip : Lp(M) ⊗π Lp(N) → Lp(M ⊗ N) the uniquely determined continuous
extension. According to Kaplansky’s density theorem the unit ball of M ⊗min N is

strong∗ dense in the unit ball of M⊗̄N and then [J1, Lemma 2.3.] implies that Ip

has a dense range for all 1 ≤ p < ∞. The first equation in (3.12) is obvious by

definition. For the second we assume that m, n are analytic elements, i.e., t 7→ σφt (m)

and t 7→ σψt (n) extends to an analytic function on C. Since σφ⊗ψt = σψt ⊗ σψt , see
[KR, Volume II, section 9], we see that x ⊗ y is analytic as well. It follows from [Te1,
Lemma 19] that the right hand side of

σφ−iz(m)C = CzmC1−z

is analytic in L1(M). Since the left hand side is analytic too, and both functions
coincide on the boundary of the strip {0 ≤ Re(z) ≤ 1}, we have equality for all
{0 ≤ Re(z) ≤ 1}. This argument applied to C , C ′ and D yields

σψ−iz
p

(m)C = C
z
p mC

1−z
p , σψ−iz

p

(n)C ′
= C ′

z
p nC ′

1−z
p

and
σφ⊗ψ−iz

p

(m ⊗ n)D = D
z
p (m ⊗ n)D

1−z
p .

Therefore, we deduce

Ip(C
1
p m ⊗C ′

1
p n) = Ip(σφ−i

p

(m)C
1
p ⊗ σψ−i

p

(n)C ′
1
p ) = σφ−i

p

(m) ⊗ σψ−i
p

(n)D
1
p

= σφ⊗ψ−i
p

(m ⊗ n)D
1
p = D

1
p (m ⊗ n).
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By continuity and strong density of the analytic elements, we obtain the second part
of (3.12). The same argument shows that for analytic elements m1,m2 and n1, n2 and
1
p1

+ 1
p2

=
1
p

, we have

Ip(C
1

p1 m1m2C
1

p2 ⊗C ′
1

p1 n1n2C ′
1

p2 ) = D
1

p1 (m1m2 ⊗ n1n2)D
1

p2

= D
1

p1 (m1 ⊗ n1)l(m2 ⊗ n2)D
1

p2

= Ip1
(C

1
p1 m1 ⊗C ′

1
p1 n1)lIp2

(m2C
1

p2 ⊗ n2C ′
1

p2 ).

Again by continuity and density, we deduce (3.13). Now, we establish (3.14) for cer-

tain values of p. We assume that a ≤ C and b ≤ C ′. Then a
1
p C− 1

p ∈ M, b
1
p C ′−

1
p ∈ N

for all 2 ≤ p < ∞ (see [J1, Lemma 1.1]). Let 1 ≤ m ∈ N. Then, we deduce by in-

duction from (3.13) that

I1(a ⊗ b) = I1(a
m
m ⊗ b

m
m ) = Im(a

1
m ⊗ b

1
m )m.

Hence for k,m ∈ N with m ≥ k, we have

I m
k

(a
k
m ⊗ b

k
m ) = Im(a

1
m ⊗ b

1
m )k

= I1(a ⊗ b)
k
m .

Therefore the module property (3.12) implies

I1(a ⊗ b)
k
m = I m

k
(a

k
m ⊗ b

k
m ) = (a

k
m C− k

m ⊗ b
k
m C ′−

k
m )D

k
m .

Now, we want to show that

Ip(a
1
p ⊗ b

1
p )D1− 1

p = (a
1
p C− 1

p ⊗ b
1
p C ′−

1
p D

holds for all 2 ≤ p ≤ ∞. By the above this is true for rational values p and it suffices
to have continuity. Following the argument in [JX, Lemm 7.4], we see that azC−zC

1
2

is even complex differentiable in L2(M) for 0 ≤ Re(z) ≤ 1
2
. Using ‖azC−z‖ ≤ 1, we

deduce by density that for all h ∈ L2(M) the function z 7→ azC−zh is analytic. Let us
say that azC−z is strongly analytic. Similarly, z 7→ bzC ′−z

is strongly analytic. Using
‖azC−z ⊗ bzC ′−z‖ ≤ 1, we deduce that z 7→ azC−z ⊗ bzC ′−z

is strongly analytic on

L2(M)⊗L2(N), and hence for the canonical representationπ : M⊗N → (M⊗N)⋊R,
we see that z 7→ azC−z ⊗ bzC ′−z

is strongly analytic. Therefore, for every u ∈ M⊗̄N

the function

g(z) = trM⊗N((azC−z ⊗ bzC ′−z
)Du)

is analytic on 0 ≤ Re(z) ≤ 1
2

and in particular continuous. We observe that for

z =
m
k

we have

g(
m

k
) = trM⊗N((a

m
k C− m

k ⊗ b
m
k C ′−

m
k )D

m
k D1−m

k u) = trM⊗N(I1(a ⊗ b)
m
k D1− m

k u).
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As above we deduce from the proof of [JX, Lemm 7.4] that I1(a ⊗ b)zD−z is strongly
analytic because

I1(a ⊗ b) = I1(C
1
2 C− 1

2 aC− 1
2 ⊗C ′

1
2 C ′−

1
2 bC ′−

1
2 C ′

1
2 )

= I1(C ⊗C ′)
1
2 (C− 1

2 aC− 1
2 ⊗C ′−

1
2 bC ′−

1
2 )I1(C ⊗C ′)

1
2

≤ I1(C ⊗C ′) = D.

Hence, for a dense subset of [0, 1
2
] the continuous functions g and

g̃(z) = trM⊗N(I1(a ⊗ b)zD1−zu)

coincide and therefore g = g̃. Since u ∈ M⊗̄N was arbitrary and the map x 7→
xD1− 1

p is injective, we deduce

Ip(a
1
p ⊗ b

1
p ) = (a

1
p C− 1

p ⊗ b
1
p C− 1

p )D
1
p = I1(a ⊗ b)

1
p

for all p ≥ 2. However, for 1 ≤ p ≤ 2, we have

Ip(a
1
p ⊗ b

1
p ) = I2p(a

1
2p ⊗ b

1
2p )2

= I1(a ⊗ b)
2

2p = I1(a ⊗ b)
1
p .

Since C
1
2 M+C

1
2 , C ′

1
2 N+C ′

1
2 is dense in L1(M)+, L1(N)+, respectively and the inverse

of the Mazur map D 7→ D
1
p is continuous (see [Ra2, Lemma 3.2]), we obtain (3.14)

in the σ-finite case. This also shows that the family of maps (Ip)p≥1 is uniquely
determined by

I1(Dφ ⊗ Dψ) = Dφ⊗ψ

which holds for all φ ∈ N∗ and ψ ∈ M∗ and operators Dφ, Dψ , Dφ⊗ψ associated to
φ, ψ and φ ⊗ ψ, respectively. Indeed, given C1,C2 and C ′

1 and C ′
2 with full support,

we have

I
C2,C

′
2

p (mC
1
p

1 ⊗ nC ′
1

1
p ) = (m ⊗ n)I

C2,C
′
2

1 (C1 ⊗C ′
1)

1
p = (m ⊗ n)D

1
p

φC1
⊗ψC2

= (m ⊗ n)I
C1,C

′
1

1 (C1 ⊗C ′
1)

1
p = I

C1,C
′
1

p (mC1 ⊗ nC ′
1).

Here, we used the states φC1
(x) = tr(C1x), ψC ′

1
(x) = tr(C ′

1x). With the help of

this uniqueness property, we are now able to obtain the same result in the general
case. Let w, w ′ be strictly semifinite weights on M, N respectively and (ei), ( f j)
be an increasing net of projections converging to 1 such that σw

t (ei) = ei , wi =

eiwei is finite and σw ′

t ( f j) = f j and w ′
j = f jw

′e j is finite. By compatibility, we

deduce that
⋃

i, j I
wi⊗w ′

j

p is well-defined. Since p < ∞, we deduce from limi, j ei ⊗
f j = 1 the norm density of Ip. Let us conclude this proof by showing that this
construction is independent of the weight w, w ′. Indeed, if w̃ and w̃ ′ is another pair
of normal faithful weights, then the equation I1(Dφ ⊗ Dψ) = Dφ⊗ψ is preserved by
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the canonical isomorphism (induced by the cocyle) of the corresponding Haagerup
L1 spaces. Moreover, the canonical isomorphisms

αN

p : Lp(N,w) → Lp(N, w̃ ′),

αM

p : Lp(M,w ′) → Lp(N, w̃ ′),

αN⊗M

p : Lp(N ⊗ M,w ⊗ w ′) → Lp(N ⊗ M, w̃ ⊗ w̃ ′)

preserve the Mazur map. Therefore, we deduce that

αN⊗M

p Ip((αN

p )−1(C
1
p ) ⊗ (αM

p )−1(C ′
1
p ))

= αN⊗M

p Ip((αN

1 )−1(C)
1
p ⊗ (αM

1 )−1(C ′)
1
p )

= αN⊗M

p

(
(Dw⊗w ′

φC⊗ψC ′
)

1
p
)

= (Dw̃⊗w̃ ′

φC⊗ψC ′
)

1
p .

for all norm one elements C ∈ L1(N)+, C ′ ∈ L1(M)+ with states φC (x) = tr(Cx),

ψC ′(y) = tr(C ′y) and associated operator Dw⊗w ′

φC⊗ψC ′
∈ L1(N⊗M,w⊗w ′), Dw̃⊗w̃ ′

φC⊗ψC ′
∈

L1(N ⊗ M, w̃ ⊗ w̃ ′), respectively. Using the fact that the αps preserve the module
action of N, M, N ⊗ M, respectively, we deduce that the family of maps

Ĩp = αN⊗M

p ◦ Ip ◦ (αN

p )−1 ⊗ (αM

p )−1

satisfies (3.12)–(3.14) and does not dependent on w and w ′.

Remark 3.7 This construction may be extended to 0 < p < 1. Again, we assume
that M and N are σ-finite, φ and ψ are normal faithful states with densities C and C ′

and joint density D. Given analytic elements m, n, we observe that for 1
2
≤ p ≤ 1

∥∥ (m ⊗ n)D
1
p

∥∥ 2

p
=

∥∥D
1
p (m∗m ⊗ n∗n)D

1
p

∥∥
2p

=
∥∥σ− i

p
(m∗m ⊗ n∗n)D

2
p

∥∥
2p

≤
∥∥σφ

− i
p

(m∗m)C
2
p

∥∥
2p

∥∥σψ
− i

p

(n∗n)C ′
2
p
∥∥

2p

=
∥∥mC

1
p

∥∥ 2

p

∥∥nC ′
1
p
∥∥ 2

p
.

Thus, we still have continuity and hence a Cauchy-sequence argument (using (3.4))
provides a unique continuous extension to the algebraic tensor product Lp(M) ⊗
Lp(N). We still have the multiplicative property (3.13) and thus

Ip(a
1
p ⊗ b

1
p ) = I2p(a

1
2p ⊗ b

1
2p )2

= I1(a ⊗ b)
1
p .

Hence, the properties (3.12)–(3.14) remain true for 1
2
≤ p ≤ 1 and then induction

yields them for all 0 < p ≤ 1.
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For the proof of Fubini’s theorem, we will consider two different ultrafilters on the
index set I × J defined by

S ∈ U1 ⇐⇒d f {i ∈ I|{ j ∈ J|(i, j) ∈ S} ∈ U
′} ∈ U

and

S ∈ U2 ⇐⇒d f { j ∈ J|{i ∈ I|(i, j) ∈ S} ∈ U} ∈ U
′.

Given densities d ∈ ∏
U

L1(Mi) and d ′ ∈ ∏
U ′ L1(N j), we will consider two different

densities
d1(i, j) = I1(d(i) ⊗ d ′( j)) ∈

∏
U1

L1(Mi ⊗ N j)

and
d2(i, j) = I1(d(i) ⊗ d ′( j)) ∈

∏
U2

L1(Mi ⊗ N j).

Throughout the rest of the paper, we will use the following notation:

M0 =

∏
Mi , N0 =

∏
N j , C0 = M0 ⊗min N0.

Clearly, d ∈ ∏
U

L1(Mi), d ′ ∈ ∏
U ′ L1(N j) define normal states φd, φd ′ on MU,

NU ′ respectively. Let us denote by s(d) = s(φd), s(d ′) = s(φd ′) their corresponding
support projections. We will also use the normal functional φd1

on

AU1
= (

∏
U1

L1(Mi ⊗ N j))∗ = zU1
(
∏

Mi⊗̄N j)
∗∗.

In the following, we will denote by π0 : C0 → MU⊗̄NU ′ the natural ∗-homomorph-
ism given by π0(n ⊗ m) = n ⊗ m and by π : C0 → AU1

the ∗-homomorphism given
by

〈π
( l∑

k=1

nk ⊗ mk

)
, y〉 =

l∑

k=1

lim
i,U

lim
j,U ′

〈nk(i) ⊗ mk( j), y(i, j)〉

for all x =
∑l

k=1 nk ⊗ mk ∈ C0 and all y ∈ ∏
U1

L1(Mi ⊗ N j).

Proposition 3.8

(i) There is a normal, completely positive map

E : AU1
→ MU⊗̄NU ′

such that

π0 = E ◦ π.
(ii) Let s(E) be the support projection of E, then there is a von Neumann subalgebra

C of s(E)AU1
s(E) such that the restriction ρ = E|C is a von Neumann algebra

isomorphism between C and MU⊗̄NU ′ satisfying

ρ
(

s(E)π(x)s(E)
)

= π0(x) and E
(
π(x1)zπ(x2)

)
= π0(x1)E(z)π0(x2)

for all x, x1, x2 ∈ C0 and z ∈ AU1
.
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(iii) E = ρ−1E : s(E)AU1
s(E) → C is a normal faithful conditional expectation onto

C.

(iv) Let d ∈
∏

U
L1(Mi), d

′ ∈
∏

U ′ L1(N j) and d1 defined as above. Let φT1
1 (d1) be the

normal state induced by d1. Then

E∗(φd ⊗ φd ′) = φT1
1 (d1)

and s(φd1
) ≤ s(E).

Proof Let (Pi) be the family of completely contractive projections onto the normal

part Pi : M∗
i → L1(Mi) and (Q j) be the corresponding family Q j : N∗

j → L1(N j).
Then P = (Pi) and Q = (Q j) define completely contractive projections. We consider

î1 ⊗ i ′1 :
( ∏

U
L1(Mi)

)
⊗̂

( ∏
U ′

L1(N j)
)
→

∏
U1

L1(Mi ⊗ N j)

defined by

î1 ⊗ i ′1(a ⊗ b)(i, j) = I1(a(i) ⊗ b( j)).

We will use the map Φ1 from the proof of Proposition 2.11. We deduce from Propo-
sition 2.11 that the embedding

Φ1 î1 ⊗ i ′1 :
( ∏

U
L1(Mi)

)
⊗̂

( ∏
U ′

L1(N j)
)
→

( ∏
I× J

Mi⊗̄N j

)∗

given by

Φ1 î1 ⊗ i ′1(a ⊗ b)(x) = lim
i,U

lim
j,U ′

trMi⊗N j
(I1(a(i) ⊗ b( j))x(i, j))

= TrU1
(î1 ⊗ i ′1(a ⊗ b)x)

(3.15)

is well-defined and isometric. Since Φ1 is isometric, we deduce that î1 ⊗ i ′1 is isomet-

ric as well. Tensoring with Sn
1 = M∗

n , it is easily seen that î1 ⊗ i ′1 is indeed completely

isometric. Let E1 = (î1 ⊗ i ′1)∗ : (
∏

U1
L1(Mi ⊗N j))∗ → MU⊗̄NU ′ be the dual map.

Then E = E1(T1
1 )∗ : AU1

→ MU⊗̄NU ′ is completely contractive and unital. Ac-
cording to [Tk, Lemma 3.2] (see also [Pa]), we deduce that E is completely positive.

Consider x =
∑l

k=1 nk ⊗ mk ∈ C0 and z ∈ ∏
Mi⊗̄N j . Then we get, for every

v ⊗ w ∈
∏

U
L1(Mi) ⊗̂

∏
U ′ L1(N j),

〈E1(π(x)z), î1 ⊗ i ′1(v ⊗ w)〉 = lim
i,U

lim
j,U ′

〈
x(i, j)z(i, j), I1(v(i) ⊗ w( j))

〉

= lim
i,U

lim
j,U ′

l∑

k=1

〈
(nk(i) ⊗ mk( j))z(i, j), I1(v(i) ⊗ w( j))

〉

= lim
i,U

lim
j,U ′

〈
z(i, j),

n∑

k=1

I1(ak(i).v(i) ⊗ bk( j).w( j))
〉

= 〈E1(z), π0(x).(v ⊗ w)〉
= 〈π0(x)E1(z), v ⊗ w〉.
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Since T1
1 is compatible with the natural inclusion of

∏
U1

L1(Mi ⊗ N j) ⊂
( ∏

I× J
Mi⊗̄N j

) ∗

,

and using E(1) = 1 we deduce π0 = E ◦ π and the proof of (i) is completed. Note
that a similar argument yields E(zπ(x)) = E(z)π0(x). Let s = s(E) be the support
projection of E. Then we deduce for every x ∈ C0 and z = π(x),

E(sz∗sszs) = E(z∗sz) = π0(x)∗E(s)π0(x)

= π0(x)∗π0(x) = E(z∗)E(z).

Hence sπ(C0)s, and by strong∗ continuity also its weak closure C , is in the multi-
plicative domain of E. See [Ch] for the definition and properties of the multiplicative

domain. Since E is obviously faithful on sAU1
s, we deduce that E yields an injective

von Neumann algebra homomorphism ρ = E|C : C → MU⊗̄NU ′ . Let us show that
ρ is surjective. Given x ∈ MU⊗̄NU ′ , we can find x̃ ∈ C∗∗

0 such that the normaliza-
tion πnor

0 of π0 satisfies πnor
0 (x̃) = x. According to Kaplansky’s density Theorem [Tk,

III. 3.4.], we can find a bounded net xλ ∈ C0 converging weakly to x̃. Let us denote
by πnor : C∗∗

0 → AU1
the normalization of π. Then πnor(xλ) is weakly convergent to

πnor(x̃) and we deduce

E(πnor(x̃)) = lim
λ

E(πnor(xλ)) = lim
λ
π0(xλ) = x.

Hence ρ is an isomorphism between sCs and MU⊗̄NU ′ . Moreover, E = ρ−1E is a

conditional expectation onto C . For the last assertion (iv), we first observe that by

definition î1 ⊗ i ′1(d ⊗ d ′) = d1. Let φT1
1 (d1) be the state on AU1

induced by d1. We

consider the family of states ψ(i, j) = φd(i) ⊗ φd ′( j) and deduce from (3.15) that

(3.16) φT1
1 (d1) = Φ1(ψ) = E∗(φd ⊗ φd ′) = (φd ⊗ φd ′) ◦ E.

Moreover, for every x ∈ AU1

φT1
1 (d1)(x) = (φd ⊗ φd ′)(E(x)) = (φd ⊗ φd ′)(E(sxs)) = φd1

(sxs).

The assertion is proved.

The next Lemma enables us to reduce the study of finite sets in the ultraproduct to

spaces generated by one state and thus to ‘localize’ the proof of the Fubini theorem.

Lemma 3.9 Let 0 < p < ∞ and x1, . . . , xn ∈ ∏
U

Lp(Mi). Then there exists a

positive element d ∈
∏

U
L1(Mi) and elements b1, . . . , bn ∈

∏
Mi such that for all

k = 1, . . . , n and i ∈ I

xk(i) = d
1

2p (i)bk(i)d
1

2p (i).
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Proof We can decompose xk(i) =
∑4

r=1(−1)
r
2 xk,r(i) where all the xk,r(i)’s are pos-

itive elements and ‖xk,r(i)‖p ≤ ‖xk(i)‖p . Therefore it suffices to show the assertion

for positive elements x1, . . . , xn. Define

a(i) =

n∑

k=1

xk(i)

and let s(i) be its support projection. For every index i ∈ I and every k = 1, . . . , n,
we have xk(i) ≤ a(i). According to [J1, Lemma 1.1], we deduce that the contractions

vk(i) = xk(i)
1
2 a(i)−

1
2 s(i) ∈ Mi

Hence, we get

xk(i) = a(i)
1
2 vk(i)∗vk(i)a(i)

1
2 .

We obtain contractions bk(i) = vk(i)∗vk(i) and the positive elements d(i) = a(i)p ∈
L1(Mi). Then, we get d

1
2p (i) = a(i)

1
2 such that xk(i) = d

1
2p (i)bk(i)d

1
2p (i) for all

k = 1, . . . , n and for all i ∈ I .

Proof of Theorem 0.1 Let x1, . . . , xl ∈
∏

U
Lp(Mi) and y1, . . . , yl ∈

∏
U ′ Lp(N j).

We apply Lemma 3.9 and an obvious normalization in order to find positive states
d ∈ ∏

U
L1(Mi) and d ′ ∈ ∏

U ′ L1(N j) and bounded elements nk ∈ ∏
Mi , mk ∈∏

N j such that for k = 1, . . . , l,

xk = d
1

2p mkd
1

2p and yk = d ′
1

2p nkd ′
1

2p .

Let us define

x =

l∑

k=1

nk ⊗ mk ∈ C0.

We consider

d1(i, j) = I1(d(i) ⊗ d( j)) ∈
∏

U1

L1(Mi ⊗ N j)

and the states

φ = φd ⊗ φd ′ ∈ (MU⊗̄NU ′)∗ and φT1
1 (d1) = φ ◦ E ∈ (AU1

)∗.

Here E is the completely positive map from Proposition 3.8 and the last equality is
(3.16). We denote the densities of φ and φT1

1 (d1) by

(3.17) D ∈ L1(MU⊗̄NU ′) and T1
1 (d1) = D1 ∈ L1(AU1

),

respectively. Let s(E) be the support projection of E. We recall that

C ⊂ s(E)AU1
s(E)
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is isomorphic to MU⊗̄NU ′ and the isomorphism is given by the restriction of E to
C . Since E = ρ−1E : s(E)AU1

s(E) → C is faithful, we deduce from Lemma 3.3 that

ρ−1(s(φd ⊗ φd ′)) = s(D1) = s(φd1
).

We will use the notation s⊗ for the support of φd ⊗ φd ′ and s1 = s(φd1
). The restric-

tion Es1
: s1AU1

s1 → s1Cs1 of E to s1AU1
s1 is a normal faithful conditional expecta-

tion satisfying φd1
= (φd ⊗ φd ′) ◦ Es1

. Hence, we can apply Proposition 3.1 and find
an isometric embedding

i p : Lp(s⊗(MU⊗̄NU ′)s⊗) → Lp(s1AU1
s1)

such that (using Lemma 3.5)

i p(D
1

2p π0(x)D
1

2p ) = i p(D
1

2p s⊗π0(x)s⊗D
1

2p ) = D
1

2p

1 s1π(x)s1D
1

2p

1 = D
1

2p

1 π(x)D
1

2p

1 .

Therefore, we have

(3.18) ‖D
1

2p π0(x)D
1

2p ‖Lp(MU⊗NU ′ ) = ‖D
1

2p

1 π(x)D
1

2p

1 ‖Lp (AU1
).

Now, we apply Raynaud’s isomorphism T1
p to AU1

and deduce from (3.11) and (3.17)

that

T1
p(D

1
2p

1 π(x)D
1

2p

1 ) = T1
2p(D

1
2p

1 )π(x)T1
2p(D

1
2p

1 ) = T1
1 (D1)

1
2p π(x)T1

1 (D1)
1

2p

= d
1

2p

1 π(x)d
1

2p

1 .

Combining this with (3.18) we deduce from [Ra2, Theorem 4.3]

(3.19) ‖d
1

2p

1 π(x)d
1

2p

1 ‖∏
U1

Lp(Mi⊗N j ) = ‖D
1

2p π0(x)D
1

2p ‖Lp (MU⊗N
U ′ ).

Moreover, the module properties (3.12)–(3.14) imply

(d
1

2p

1 π(x)d
1

2p

1 )(i, j) =

l∑

k=1

Ip(xk(i) ⊗ yk( j)).

By definition of U1, we deduce with (3.19)

lim
i,U

lim
j,U ′

∥∥∥
l∑

k=1

Ip(xk(i) ⊗ yk( j))
∥∥∥

Lp(Mi⊗N j )

=

∥∥∥
( l∑

k=1

Ip(xk(i) ⊗ yk( j))
)

i j

∥∥∥∏
U1

Lp(Mi⊗N j )

= ‖T1
p(D

1
2p

1 π(x)D
1

2p

1 )‖∏
U1

Lp (Mi⊗N j )

= ‖D
1

2p π0(x)D
1

2p ‖Lp(MU⊗N
U ′ ).

https://doi.org/10.4153/CJM-2004-045-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-045-1


Fubini’s Theorem for Ultraproducts of Noncommutative Lp-Spaces 1013

Changing U1 to U2 and d1 to d2, we obtain the same result and hence

lim
i,U

lim
j,U ′

∥∥∥
l∑

k=1

Ip(xk(i) ⊗ yk( j))
∥∥∥

Lp(Mi⊗N j )

= ‖D
1

2p π0(x)D
1

2p ‖Lp (MU⊗N
U ′ )

= lim
j,U ′

lim
i,U

∥∥∥
l∑

k=1

Ip(xk(i) ⊗ yk( j))
∥∥∥

Lp (Mi⊗N j )
.

The assertion is proved.

Hidden in Proposition 3.8 is the fact that for p = 1 the embedding

î1 ⊗ i ′1 :
( ∏

U
L1(Mi)

)
⊗̂

( ∏
U ′

L1(N j)
)
→

∏
U1

L1(Mi ⊗ N j)

given by

(î1 ⊗ i ′1)(a ⊗ b)(i, j) = I1(a(i) ⊗ b( j))

is (completely) isometric. We want to study the image of the corresponding map

î p ⊗ i ′p :
( ∏

U
Lp(Mi)

)
⊗

( ∏
U ′

Lp(N j)
)
→

∏
U1

Lp(Mi ⊗ N j)

given by

(î p ⊗ i ′p)(a ⊗ b)(i, j) = Ip(a(i) ⊗ b( j))

and show that the closure of the image is (completely) complemented and (com-
pletely) isometrically isomorphic to Lp(MU ⊗ NU ′).

We will need the following extension of Proposition 3.1 for non-faithful condi-
tional expectations which occur naturally in our context.

Lemma 3.10 Let E : N → M be a normal conditional expectation and 1 ≤ p <
∞. Then there is an isometric embedding ιp : Lp(M) → Lp(N) and a contraction

Ep : Lp(M) → Lp(N) such that

ιp(D
1−θ

p

M
xD

θ
p

M
) = D

1−θ
p

N
xD

θ
p

N
and Ep(D

1−θ
p

N
yD

θ
p

N
) = D

1−θ
p

M
E(y)D

θ
p

M

hold for all 0 ≤ θ ≤ 1, x ∈ M, y ∈ N and all φ ∈ M∗ with density DM ∈ L1(M) and

density DN of φ ◦E. For conjugated indices 1
p

+ 1
p ′ = 1 the duality E∗

p = ιp ′ holds with

respect to the duality bracket given by the trace.

Proof Let s = s(E) be the support projection of E. As in the proof of Lemma 3.8,

we observe that for every x ∈ M

E(sx∗ssx) = x∗E(s)x = x∗x = E(x∗)E(x).
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Hence, the restriction of E to sMs yields a von Neumann algebra homomorphism.
In particular, we deduce from Lemma 3.3 applied to the faithful unital, normal con-

ditional expectation E : sNs → M that for every normal φ ∈ M∗, we have s(φ) =

s(E ◦ φ). In view of

D
1
p

N
s(φ) = D

1
p

N
= s(φ)D

1
p

N
,

we conclude that it suffices to prove the assertion under the additional assumption
that E is faithful. Now, we consider a normal strictly semifinite weight w on M with

increasing family of projections (ei) converging to 1. For p < ∞ it is easy to show
that

⋃
i eiLp(M)si ,

⋃
i eiLp(N)ei is norm dense in Lp(M), Lp(N), respectively. For

i ≤ i ′ and associated positive functions wi = eiwei and wi ′ = ei ′wei ′ , we can find a
bounded operator x ∈ M such that the corresponding densities satisfy

D
1

2p

i = xD
1

2p

i ′ .

Therefore, the contractions i p and Ep from Proposition 3.1 constructed for
wi ′(1)−1wi ′ extend the corresponding maps for wi(1)−1wi . By density, we can then

extend these maps to Lp(M), Lp(N), respectively, and obtain the assertion by ap-
proximation. The last assertion follows again by approximation from Remark 3.2.

In our next theorem we combine these general observations with the proof of
Theorem 0.1. This provides the following description for the closure of the algebraic
tensor product of two ultraproducts with respect to the natural Lp norm.

Theorem 3.11 Let 1 ≤ p < ∞ and Tp : Lp(MU) → ∏
U

Lp(Mi), T ′
p : Lp(NU ′) →∏

U ′ Lp(N j), T1
p : Lp(AU1

) → ∏
U1

Lp(Mi ⊗ N j) be Raynaud’s isomorphisms. Then

there exists an isometric embedding ιp : Lp(MU ⊗ NU ′) → Lp(AU1
) making the fol-

lowing diagram commutative

Lp(MU) ⊗ Lp(NU ′)
Tp⊗T ′

p

//

Ip

��

( ∏
U

Lp(Mi)
)
⊗

( ∏
U ′ Lp(N j)

)

î p⊗i ′pV

��

Lp(MU ⊗ NU ′)

ιp

��

Lp(AU1
)

T1
p

//
∏

U1
Lp(Mi ⊗ N j)

For every state φ ∈ (MU)∗ ⊗ (NU ′)∗ with density D ∈ L1(MU ⊗ NU ′) and density

D1 ∈ L1(AU1
) of ι1(φ) and for every x ∈ MU⊗̄NU ′ , we have

T1
pιp(D

1
2p xD

1
2p ) = T1(D1)

1
2p xT1(D1)

1
2p .

https://doi.org/10.4153/CJM-2004-045-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2004-045-1


Fubini’s Theorem for Ultraproducts of Noncommutative Lp-Spaces 1015

Proof We will use the notation from Lemma 3.8. Since MU⊗̄NU ′ is isomorphic to
C ⊂ s(E)AU1

s(E), we deduce from Lemma 3.10 the existence of the map

ιp : Lp(MU ⊗ NU ′) → Lp(AU1
)

satisfying

ιp(D
1

2p xD
1

2p ) = D
1

2p

1 xD
1

2p

1

for all positive densities D ∈ L1(MU ⊗ NU ′) and all x ∈ MU⊗̄NU ′ . According to

(3.8) we deduce that ιp satisfies the equality stated in the second part of the assertion.
In order to prove that the diagram is commutative it suffices, by linearity, to consider

positive elements d
1
p ∈

∏
U

Lp(Mi), d ′
1
p ∈

∏
U ′ Lp(N j) and d1 = î1 ⊗ i ′1(d ⊗ d ′) ∈∏

U1
L1(Mi ⊗ N j). Then the proof of Theorem 0.1 shows that for the corresponding

density D1 = î1 ⊗ i ′1(d ⊗ d ′) ∈ L1(MU ⊗ NU ′), we have

ι1(D) = D1

and hence by (3.15)

T1
pιp(D

1
p ) = T1

p(D
1
p

1 ) = (T1(D1))
1
p = d

1
p

1 = î p ⊗ i ′p(d
1
p ⊗ d ′

1
p ).

The assertion follows by linearity since Lp is spanned by the positive elements.

In order to show that the image of ιp is complemented for 1 ≤ p <∞, we will use

the following procedure which associates with every x ∈
∏

U1
Lp(Mi ⊗ N j) a linear

map Tx :
∏

U ′ Lp ′(N j) →
∏

U
Lp(Mi) defined by duality as

TrU(Tx(b)a) = lim
i,U

lim
j,U ′

trMi⊗N j

(
x(i, j)Ip ′(a(i) ⊗ b( j))

)
,

where b ∈
∏

U ′ Lp ′(N j) and a ∈
∏

U
Lp ′(Mi). Note that by uniform convexity of

Lp(Mi) we still have (
∏

U
Lp ′(Mi))∗ =

∏
U

Lp(Mi). This definition is motivated by
the investigation of completely p-summing maps introduced by Pisier, see [P7].

Corollary 3.12 Let 1 ≤ p < ∞. The closure of î p ⊗ i ′p is (completely) contractively

complemented. More precisely

(i) There is a (complete) contraction E1
p :

∏
U1

Lp(Mi ⊗ N j) →
∏

U1
Lp(Mi ⊗ N j)

onto the closure Y p of the image of î p ⊗ i ′p.

(ii) Y p is (completely) isometrically isomorphic to Lp(MU ⊗ NU ′).

(iii) The kernel Jp of E1
p consists of the elements x ∈

∏
U1

Lp(Mi ⊗ N j) such that

Tx = 0.

Proof Let 1 ≤ p <∞ and

ιp : Lp(MU ⊗ NU ′) → Lp(AU1
)
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be the complete contraction from Theorem 3.11. Let E be the completely positive
map from Lemma 3.8. Using the obvious isomorphism between Lp(C) and Lp(MU⊗
NU ′), we deduce from Lemma 3.10 that there is a complete contraction

Ep : Lp(AU1
) → Lp(MU ⊗ NU ′)

satisfying

Ep(D
1

2p

1 π(x)D
1

2p

1 ) = D
1

2p xD
1

2p

for x ∈ MU⊗̄NU ′ and all normal states φ ∈ (MU⊗̄NU ′)∗ with density D and
corresponding density D1 of φ ◦ E . In particular, we deduce from the density of
the span of positive elements and Theorem 3.11 that Epιp = idLp(MU⊗N

U ′ ). Since

T1
p is (completely) isometric, we deduce from the density of Lp(MU) ⊗ Lp(NU ′) in

Lp(MU ⊗ NU ′) that Y p coincides with

T1
pιp(Lp(MU ⊗ NU ′)).

In particular, Y p is (completely) isometrically isomorphic to Lp(MU ⊗ NU ′). Since
Ep : Lp(AU1

) → Lp(C) is a (complete) contraction onto Lp(C), we deduce that E1
p =

T1
pEp(T1

p)−1 is a (complete) contraction onto Y p. Hence, (i) and (ii) are proved. Let
us consider x ∈

∏
U1

Lp(Mi ⊗ N j). If p ′ <∞, we can use duality and the density of

Ip ′(Lp ′(MU) ⊗ Lp ′(NU ′)) in Lp ′(MU ⊗ NU ′) to deduce that E1
p(x) = 0 if and only

if
trMU⊗NU ′ (Ep((T1

p)−1(x))Ip ′(a ⊗ b)) = 0

for all a ∈ Lp ′(MU) and all b ∈ Lp ′(NU ′). If p ′
= ∞, we recall that by (a variation

of) Fact 2.5, we have

(M
op
U
⊗̄N

op
U ′)∗ = L1(MU) ⊗̂ L1(NU ′) = L1(MU⊗̄NU ′).

Clearly, M
op
U

⊗ N
op
U ′ is σ-weakly dense and hence a normal functional vanishes if it

vanishes on M
op
U

⊗ N
op
U ′ and we have the same conclusion. Let a ∈ Lp ′(MU) and

b ∈ Lp ′(NU ′) and consider ã = T−1
p ′ (a), b̃ = T−1

p ′ (b), respectively. Using the iso-
morphism between C and MU⊗̄NU ′ and the second part of Lemma 3.10, we deduce

that

trMU⊗NU ′ (Ep((T1
p)−1(x))Ip ′(a ⊗ b)) = 〈Ep((T1

p)−1(x)), Ip ′(a ⊗ b)〉

= trAU1

(
(T1

p)−1(x)(T1
p ′ Ip ′(a ⊗ b))

)

= TrU1
(x ̂i p ′ ⊗ i ′p ′(ã ⊗ b̃))

= lim
i,U

lim
j,U ′

trMi⊗N j

(
x(i, j)Ip ′(ã(i) ⊗ b̃( j))

)

= TrU(Tx(b̃)ã),

We deduce E1
p(x) = 0 if and only if Tx = 0.
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4 Appendix

Following a suggestion by G. Elliott, we will show that the Fubini theorem fails for
p = ∞. Let us start with an estimate for the Fubini constant with respect to n vectors.

Proposition 4.1 Let (x1(i)), . . . , (xn(i)) and (y1( j)), . . . , (yn( j)) be bounded fami-

lies of operators in B(H), B(K), respectively. Then

lim
j,U ′

lim
i,U

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j)
∥∥∥

B(H)⊗min B(K)

≤
√

n lim
i,U

lim
j,U ′

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j)
∥∥∥

B(H)⊗min B(K)
.

holds for all ultrafilters U and U ′ on I, J, respectively.

Proof We will apply Pisier’s theorem about the cb-distance of an n dimensional
operator space to the operator space OHn (see [P6]). Indeed, OHn is a subspace of

B(ℓ2) spanned by operators T1, . . . ,Tn such that

∥∥∥
n∑

l=1

Tl ⊗ al

∥∥∥
B(ℓ2⊗K)

=

∥∥∥
n∑

l=1

al ⊗ āl

∥∥∥
1
2

B(K⊗K)

for all a1, . . . , an ∈ B(K). In particular, we have

(4.1) sup
l=1,..,n

∥∥al

∥∥ ≤
∥∥∥

n∑

l=1

Tl ⊗ al

∥∥∥ ≤
n∑

l=1

∥∥al

∥∥

We refer to [P6] for basic properties of OHn. Let us fix an index i ∈ I and con-
sider an n-dimensional subspace E(i) ⊂ B(H) containing the x1(i), . . . , xn(i). Ac-
cording to Pisier’s theorem (see [P6]), we can find linearly independent elements

e1(i), . . . , en(i) ∈ E(i) such that

(4.2)
∥∥∥

n∑

l=1

Tl ⊗ al

∥∥∥ ≤
∥∥∥

n∑

k=1

el(i) ⊗ al

∥∥∥ ≤
√

n
∥∥∥

n∑

l=1

Tl ⊗ al

∥∥∥

for all operators al ∈ B(K). Then the xk(i)s are linear combinations of the el(i)’s and
thus there are coefficients ak,l(i) ∈ C such that

xk(i) =

n∑

l=1

akl(i)el(i).

It follows from (4.1) and (4.2) that

|akl(i)| ≤
∥∥∥

n∑

l=1

akl(i)Tl

∥∥∥ ≤
∥∥∥

n∑

l=1

akl(i)el(i)
∥∥∥ = ‖xk(i)‖.
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Recall that we assume ‖xk(i)‖ ≤ C and ‖yk( j)‖ ≤ C for some constant C > 0. Then
we can find coefficients akl ∈ C such that

Uε =

{
i
∣∣∣ ∀1≤k,l≤n|akl − akl(i)| < ε

Cn
5
2

}
∈ U.

For such an element i ∈ Uε we deduce for all j that

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j) −
n∑

k,l=1

aklel(i) ⊗ yk( j)
∥∥∥

=

∥∥∥
n∑

k,l=1

(akl(i) − akl)el(i) ⊗ yk( j)
∥∥∥

≤
√

n
∥∥∥

n∑

k,l=1

(akl(i) − akl)Tl(i) ⊗ yk( j)
∥∥∥

≤
√

n

n∑

l=1

∥∥∥
n∑

k=1

(akl(i) − akl)yk( j)
∥∥∥

≤ ε

Cn
5
2

n
5
2 sup

k, j

‖yk( j)‖ < ε.

Since ε > 0 is arbitrary, we deduce

lim
i,U

lim
j,U ′

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j)
∥∥∥ = lim

i,U
lim
j,U ′

∥∥∥
n∑

k,l=1

aklel(i) ⊗ yk( j)
∥∥∥ ,

lim
j,U ′

lim
i,U

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j)
∥∥∥ = lim

j,U ′
lim
i,U

∥∥∥
n∑

k,l=1

aklel(i) ⊗ yk( j)
∥∥∥ .

In particular, we deduce from (4.2)

lim
i,U

lim
j,U ′

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j)
∥∥∥ = lim

i,U
lim
j,U ′

∥∥∥
n∑

l=1

el(i) ⊗
( n∑

k=1

akl yk( j)

)∥∥∥

≤
√

n lim
j,U ′

∥∥∥
n∑

l=1

Tl ⊗
( n∑

k=1

akl yk( j)

)∥∥∥

≤
√

n lim
j,U ′

lim
i,U

∥∥∥
n∑

l=1

el(i) ⊗
( n∑

k=1

akl yk( j)

)∥∥∥

=
√

n lim
j,U ′

lim
i,U

∥∥∥
n∑

k=1

xk(i) ⊗ yk( j)
∥∥∥ .

This yields the upper estimate
√

n for the Fubini constant with n-vectors.
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Proposition 4.2 There are bounded families of operators (x1(i)), . . . , (xn(i)) and

(y1( j)), . . . , (yn( j)) in B(ℓ2) such that

lim
j

lim
i

∥∥∥
n∑

k=1

xk(i)⊗ yk( j)
∥∥∥

B(ℓ2)⊗min B(ℓ2)
= cn lim

i
lim

j

∥∥∥
n∑

k=1

xk(i)⊗ yk( j)
∥∥∥

B(ℓ2)⊗min B(ℓ2)

and

cn ≥
√

n

2
.

Proof This result is an application of Pisier’s estimate of the exactness constant for
n-dimensional operator spaces. We will use some operator space terminology as in

[P8]. Indeed, given an n-dimensional operator space E ⊂ B(ℓ2), we consider the
operator space Ei defined with E as underlying Banach space and the matrix norms

‖x‖Mm(Ei ) = sup
‖u : E→Mi‖cb≤1

‖(id ⊗ u)(x)‖Mm(Mi ).

Let us collect some obvious facts. If i < j, then

(4.3) ‖id : E j → Ei‖cb ≤ 1

because the i × i matrices Mi sit as a corner in the j × j matrices M j . Thus every
complete contraction u : E → Mi induces a contraction u : E → M j . In particular,

lim
i

lim
j
‖id : E j → Ei‖cb = 1.

On the other hand, given a matrix x ∈ Mm(E) we have

‖x‖Mm(E) = sup
i

sup
i,rk(pi )≤i

‖(1 ⊗ pi)x(1 ⊗ pi)‖Mm(B(ℓ2)) = sup
i

‖x‖Mm(Ei ).

Hence, we deduce from (4.3)

lim
j

lim
i
‖id : E j → Ei‖cb = inf

j
sup

i

‖id : E j → Ei‖cb

= inf
j

sup
i

sup
‖x‖

Mm(E j )
≤1

‖x‖Mm(Ei )

= inf
j
‖id : E j → E‖cb.

Let us recall
ex(E) = inf

j
‖id : E j → E‖cb.

We refer to [P8] for the fact that there is an n-dimensional operator space E = En

such that

(4.4) ex(E) ≥
√

n

2
.
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Finally, let (xk) ⊂ E (x∗k ) ⊂ E∗ be an Auerbach basis, i.e., ‖xk‖ = ‖x∗k ‖ = 1 and
x∗k (xl) = δkl. Denote by vi : E → Ei the formal identity map and define

xk(i) = vi(xk) ∈ Ei and yk( j) = v∗j
−1

(x∗k ) ∈ (E j)∗.

Note that (xk(i))n
k=1, (yk(i))n

k=1 still form a biorthogonal basis for E(i). By operator
space duality, we may assume (E j)∗ ⊂ B(ℓ2) and thus

‖id : E j → Ei‖cb =

∥∥∥
n∑

k=1

yk( j) ⊗ xk(i)
∥∥∥

B(ℓ2)⊗min B(ℓ2)
.

Therefore

lim
i

lim
j

∥∥∥
n∑

k=1

yk( j) ⊗ xk(i)
∥∥∥

B(ℓ2)⊗min B(ℓ2)
= 1

and

lim
j

lim
i

∥∥∥
n∑

k=1

yk( j) ⊗ xk(i)
∥∥∥

B(ℓ2)⊗min B(ℓ2)
= ex(E) ≥

√
n

2
.

The assertion is proved.

Remark 4.3 Note that for all i ∈ N, the space Ei is a subspace of ℓ∞(I; Mi), a nuclear
C∗-algebra. Hence, we may assume Ei ⊂ K. Similarly, we can consider ((E j )∗)l as a
subspace of K and thus, we find xk(i) ∈ K and yk( j, l) ∈ K such that

lim
i

lim
j≤l

∥∥∥
n∑

k=1

yk( j, l) ⊗ xk(i)
∥∥∥ = 1 and lim

j≤l
lim

i

∥∥∥
n∑

k=1

yk( j, l) ⊗ xk(i)
∥∥∥ = cn.

Thus the Fubini theorem for arbitrary ultrafilters does not even hold with a constant
for the nuclear C∗-algebra K.
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